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pardubska@fmph.uniba.sk



1 Introduction

Inspired by the recent trends in wireless communication technologies and by the models of alternating
and synchronous Turing machines (cf. [1], [2], [3], [5]) the authors have recently designed a new model
of parallel computing, called Wireless Parallel Turing Machine (WPTM) [6]. The initial motivation
was the investigation of the computational power and efficiency of a device consisting of a dynamic
set of processors communicating one with each other via radio, on different channels. The first
results have shown that despite their different architecture, the WPTMs are computationally related
to the classical parallel computational model, viz. the alternating Turing machines (ATMs). Under
the self-explaining notation and reasonable assumptions on T (n), in [6] it has been established that
ATM − TIME(T(n)) ⊆ WPTM − TIME(T(n)) and WPTM − TIME(T(n)) ⊆ ATM − TIME(T2(n)), i.e.,
a polynomial-time equivalence of both models: WPTM − PTIME = ATM − PTIME. Both respective
simulations work in space of size O(T (n)).

In the present paper we continue studies of the computational relations between WPTMs and
ATMs. Our new simulations present an ultimate improvement of the previous results — namely
mutual simulations of both models simultaneously preserving their time and space complexities. This
is quite a surprising result taking into account completely different architectures of both models and
the fact that among all universal models of parallel computing the models are only known which
are polynomially, but not linearly, time- and space-equivalent to ATMs. These new simulations use
a number of interesting techniques which differ quite substantially from the simulations described
in the original paper and are interesting by themselves because they show how alternation can be
efficiently realized by broadcasting, and vice versa. The new results have shifted the motivations
of our investigations: now the primary goal appears to be to obtain an alternative computational
characterization of alternation, rather than capturing the power of wireless mobile computing. In
terms of WPTMs, the new results not only bring a new characterization of the computational power
of alternation, but also that of the related complexity classes which are sensitive to asymptotical
increase of complexity bounds, such as bounded uniform circuit families.

Note that, to some extent, the WPTMs represent a more realistic model of parallel computing than
ATMs. Namely, the WPTMs are fully deterministic computing devices (not resorting to nondetermin-
ism) using a natural acceptance mechanism: an agreement of all processes obtained via broadcasting.
The latter is to be compared with a quite tricky acceptance mechanism of ATMs which, in fact, makes
a “hidden use” of inter-processor communication when reporting the accpetance/rejection to the roots
of the computational subtrees in the ATM computational tree (cf. [1]). Hencefore, the WPTMs can
be seen as a parallel computational model which is more realistic than ATM and which retains the
computational efficiency of the latter model. Last but not least, referring to the original motivation
(cf. [6]), the WPTMs demonstrate that there is a huge computational potential hidden in the instances
of the wireless mobile computing which are covered by our modelling.

The structure of the paper is as follows. In Section 2 we recall a formal definition of a WPTM
and that of its computation. In Section 3 we show a novel simulation of a WPTM by an ATM which
is simultaneously linear in time and space, and in Section 4 we prove a similar reverse simulation. In
Section 5 we prove consequences of the previous results on the relation of WPTMs to uniform circuit
families. Finally, in Conclusions we summarize our achievements.

The present paper has been written so as to be independent from the original paper [6] in which
the model of a WPTM had been introduced. However, to learn more about the original background of
our studies and the relation of our design to the related models studied within the complexity theory
the reading of [6] is recommended.

2 Wireless Parallel Turing Machine

Now we give the definition of the basic model of the WPTM (with minor changes when compared to
[6]).

Definition 1 A k–tape wireless parallel Turing machine (WPTM) with a separate read–only input
tape and a separate channel tape is an eleven–tuple M = (k, Q,R, Σ,Γ,∆, q0, r0, ε, qaccept, qreject)
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where

• k ≥ 1 is the number of work tapes;

• Q×R is the finite set of states;

– Q is the set of working states with initial state q0 ∈ Q;
– R is the set of communication states also containing four distinguished states: initial com-

munication state r0, empty communication state ε and states qaccept, qreject which are
accepting and rejecting states, respectively;

• Σ is a finite input alphabet ( $ 6∈ Σ is an endmarker);

• Γ is a finite work tape alphabet (] ∈ Γ is the blank symbol, ] 6∈ Σ);

• ∆ ⊆ Q×R× (Σ∪{$})×Γk+1×Q×R× (Γ−{]})k+1×{−1, 0, 1}k+2 is the next move relation.

The elements of ∆ are called transitions. The machine has a read–only input tape with endmarkers,
one work tape and one channel tape. The work tape and the channel tape, jointly be referred to as
tapes, are initially blank. The tapes are unbounded to the right, with their cells numbered from 0.

Let δ = 〈q, r, x, a1, . . . , ak+1, q
′, r′, a′1, . . . , a

′
k+1, d1, . . . , dk+2〉 ∈ ∆ be a transition of M. According

to this transition in a single step M finding itself in working state q, in communication state r, reading
symbol x from the input tape and ai from the i-th tape, for i = 1, 2, . . . , k + 1, enters a new working
state q′, new communication state r′, writes symbol a′i on the i-th tape and moves each of the k + 2
heads by one tape cell to the left (if dj = −1), right (if dj = +1), or performs no head move at all (if
dj = 0), for j = 1, 2, . . . , k + 2.

A configuration of a WPTM M is an element of C = Q×R×Σ∗×((Γ−{]})∗)k+1×Nk+2 representing
the working and communication state of the finite control, the input, the non–blank contents of k + 1
tapes, and k + 2 head positions on all tapes.

A head configuration of M is an element of Q × R × (Σ ∪ {$}) × Γk+1 representing the working
and communication state of the finite control and the contents of cells scanned by each head.

We say that a transition with the new communication state r′ 6= ε broadcasts state r′ ∈ R. Such
a transition is called a broadcasting transition. For broadcasting transitions there is one syntactic
restriction called “unanimous broadcast rule”: the broadcasting transitions pertinent to the same head
configuration must all broadcast the same communication state. They can differ in the remaining parts,
i.e., they can prescribe entering different working states and different rewritings and movements. We
say that a configuration is tuned to channel c if it has string c written to the left from the current
channel tape head position. If c is a non–empty string, then it is also called a channel number. A
configuration tuned to c to which a transition with the new communication state r′ 6= ε applies is
said to broadcast r′ on channel c. A configuration broadcasting ε is effectively considered as no–
broadcasting (or silent) configuration (cf. the definition of a transition modified by a broadcasting
below). The silent transitions are useful in situations when a process “does not want” to broadcast
any information, e.g., when re–tuning its channel.

A configuration β is a δ–successor of a configuration α with respect to transition δ ∈ ∆ (written
as α `δ β, or as β = δ(α)) if β follows from α in one step, according to transition δ. The move α `δ β
is called a simple step of M.

A configuration without successors is called a terminal configuration. Note that a configuration
can have several different δ–successors.

In order to formally define a computation of M we need a couple of further preliminary definitions.
Function Tuned : C → (Γ− {]})∗ assigns to each configuration its channel number.
In a similar vein we define function Broadcast : C → R returning to each configuration the

unique state broadcasted by the transition applicable to that configuration (remember the “unanimous
broadcast rule”). With a slight abuse of notation this function will naturally be extended to a set
L 6= ∅ of configurations as follows:

Broadcast(L) =





b iff for all α, β ∈ L, Tuned(α) = Tuned(β)
and Broadcast(α) = b

⊥ otherwise
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Accepting nodes

Depth d

Depth d+1

A node tuned to channel c1

A node tuned to 
channel c2

Spawning

The root

Broadcasting edge

Figure 2.1: The computational graph of M

(symbol ⊥ denotes an undefined value).
Finally, we define projection Comm : C → R assigning to each configuration its communication

state.
To formalize the action of broadcasting/receiving a message, let Comm(α) = u and let α|u:=v

denote the configuration α in which communication state u is changed to v. Let Ce ⊆ C be the subset
of all configurations from C tuned to e, let α, β ∈ Ce and α `δ β a simple step. Then configuration γ,
so–called δCe–successor of α w.r.t. transition δ modified by broadcasting from Ce (denoted as α `δCe γ),
is defined as follows (configuration γ is ∆Ce–successor of α if there exists δ ∈ ∆ : α `δCe γ):

γ :=





β iff ∀ϕ ∈ Ce : Broadcast(ϕ) = ε

β|Comm(β):=b iff ∃ϕ ∈ Ce : Broadcast(ϕ) = b
and ∀ϕ ∈ Ce : Broadcast(ϕ) ∈ {b, ε}

⊥ otherwise

Note that there can be several computational steps possible from a given α. This occurs when there
are several transitions applicable to α. If this is the case we say that α spawns all configurations γi

for which there exists δi ∈ ∆ such that α `(δi)C γi, for some r ≥ 1 and 1 ≤ i ≤ r. Formally, spawning
corresponds to the universal branching in ATMs.

For any input w to M the computational graph G(w) of M on that input is a rooted, directed,
possibly infinite acyclic multigraph whose nodes are configurations of M and edges correspond to
transition and communication links (Fig. 2.1). The depth of a node in G(w) is its distance from the
root. This graph is defined inductively:

1. The initial configuration cinit = (q0, ε, w, ν, . . . , ν︸ ︷︷ ︸
k+1

, 0, . . . , 0︸ ︷︷ ︸
k+2

) with ν being the null string, is the

root of G(w) at depth d = 0.

2. Let Cd be the set of configurations in G(w) at depth d ≥ 0. Then for all non–terminal configu-
rations α ∈ Cd, set Cd+1 contains all ∆Cd

–successors of α, i.e., all configurations spawned by α.
If some of the ∆Cd

–successors of α is undefined, then the whole graph G(w) is undefined.

3. In G(w) there are two kinds of edges: transition edges leading from each α ∈ Cd to each of its
∆Cd

–successors γ ∈ Cd+1 and broadcasting edges leading from each broadcasting configuration
α ∈ Cd to each configuration β ∈ Cd+1, with Tuned(α) = Tuned(β).

Configuration c ∈ Cd is called reachable at depth d. The nodes of G(w) without successors are
called leaves of G(w). Note that the computational graph is built in an entirely deterministic manner.

Definition 2 A computational graph G(w) of M is a computational graph accepting input w if it
satisfies the following conditions:
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1. Finiteness: G(w) is a finite graph;

2. Acceptance agreement: all leaves of G(w) are terminal configurations in communication state
qaccept tuned to the same channel.

¿From practical point of view the acceptance agreement means that all processes share the infor-
mation that all of them have accepted the input.

We say that M accepts w if M ’s computational graph accepts w; we define L(M) to be the set of
strings accepted by M.

The space complexity of a configuration is the maximum of lengths of the non–blank contents of
all tapes. The space of a computational graph G is the maximum space of any configuration in G;
the channel space of G is defined similarly. The time of G is the maximum length of any path in G.

A WPTM M operates in space S(n) if for every string w ∈ L(M) of length n there is a compu-
tational graph of M of space at most S(n) that accepts w. Similarly, M operates in time T (n) if for
every string w ∈ L(M) of length n there is a computational graph of M of time at most T (n) that
accepts w.

When the transition relation becomes a function it is easily seen that a WPTM turns into the
classical deterministic Turing machine (in such a case, broadcasting does not make any sense). The
above described basic model can be extended in several ways. First of all, in order to be able to
study also computations with sub–linear times, we can extend our model by so–called index tape to
which non-negative binary numbers can be written. If there is a number i written in binary on the
index tape and the machine enters a special, so–called index state qindex, then the input head on the
input tape relocates itself in a single move to the i-th cell of that tape, for any 1 ≤ i ≤ n, and to the
(n+1)-st cell otherwise. For a similar mechanism in the context of ATMs, cf. [1]. In general, one can
also consider a model with several channel tapes and also nondeterministic versions of the previous
models.

3 Linear time-space simulation of wireless communication by
alternation

Now we will be interested in characterizing the computational efficiency of WPTMs. Since the under-
lying graph structure of a WPTM computation reminds a computational tree of an ATM computation
extended by additional links among communicating nodes, an ATM appears to be a good candidate
for investigating its relation to a WPTM.

In the sequel we will consider a model of a WPTM with k ≥ 1 working tapes and one channel
tape. In the proof of the following theorem we will need a couple of new notions.

Let GW be the computational graph of a WPTM W on input w, let Ci be the set of configurations
in GW at depth i ≥ 0 (we do not distinguish between configurations and the respective nodes in
GW ). A configuration c is reachable in GW at depth i if and only if c ∈ Ci. For any non–terminal
configuration c ∈ Ci, Succ(c) = {d|(∃δ ∈ ∆ : c `δ d and (LTuned(d) = ∅ or Broadcast(LTuned(d) =
ε))) or (∃δ ∈ ∆,∃e ∈ Ci : c `δ{e} d)} ⊆ Ci+1 is the set of all successors of c.

Let δ ∈ ∆ be a simple transition. If c, c′ ∈ C are configurations such that c `δ c′, then δ−1 for
which c′ `δ−1

c is called the inverse transition to δ.
For any configuration c let Head(c) denote its head configuration. Let d be a configuration obtained

from c by “pruning” the contents of tapes represented in c from both ends, but not beyond the positions
of tape heads in c. If this is the case d is called a sub–configuration of c (or c is a super–configuration
of d) and we shall write d v c (c w d). Note that for any such d, Head(d) = Head(c) holds and
that (thus) the heads both in d and c scan the same symbols. Obviously, any sub–configuration is a
configuration and therefore transitions and inverse transitions can be applied to a sub–configuration
just like to complete configurations.

Finally, we will introduce a special kind of sub–configurations called kernels. A kernel of a con-
figuration c ∈ Q × R × Σ∗ × ((Γ − {]})∗)k+1 × Nk+2, denoted as Ker(c), is configuration Ker(c) ∈
Q × R × Σ × (Γ − {]})k × (Γ − {]})∗ × {1}k × N which is a sub–configuration of c representing the
working and the communication state of the finite control, the symbols scanned by the input and
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working tape heads, the non–blank contents of the channel tape, the working head positions and the
position of the channel–tape head which remains the same as in c. Note that in order to know what
instructions can be applied to a configuration c and on what channel c will broadcast it is enough to
know Ker(c) (or any sub–configuration of c). We will use this fact to our advantage in the following
simulation.

Theorem 1

(i) Let W be a single channel tape WPTM of time complexity T (n) ≥ n and of space complexity S(n).
Then W can be simulated by an alternating Turing machine A simultaneously in time O(T (n))
and in space O(T (n)).

(ii) Moreover, if S(n) is fully space constructible then A is of simultaneous time complexity O(T (n))
and space complexity O(S(n) + log T (n) + n).

(iii) Finally, if both A and W are equipped by the index tape, T (n) ≥ log n and S(n) is fully space
constructible, than A is of simultaneous time complexity O(T (n)) and space complexity O(S(n)+
log T (n)).

Sketch of the proof: Assume first that T (n) ≥ n and W is not equipped by the index tape. Let
GW be the computational graph of W on input w, let Ci be the set of configurations in GW at depth
i ≥ 0.

The simulating machine A will have the same number of working tapes as W plus one extra write-
once working tape called the false input tape. The latter tape will be used for reconstructing the
contents of the input tape. We also extend the working alphabet of A by a new distinguished symbol
c.

At the heart of simulation of W by A there is procedure Simulate (Fig. 3.1). It is a recursive
procedure which proceeds in rounds. In the i–th round, procedure Simulate computes Succ(c) ⊆ Ci+1

for any nonterminal c ∈ Ci. The procedure ends by reaching terminal configurations at depth at
most T (n) and returns true (false) if the configuration at hand is an accepting (rejecting) terminal
configuration.

The simulation is initiated by calling Simulate(0, cinit) where cinit is the initial configuration. In
general, for any configuration c at depth i Simulate(i, c) works as follows. It starts by testing whether
c is a terminal configuration. Due to the definition of a WPTM computation, such a configuration must
be achieved along any computational path in GW . If c is a terminal accepting (rejecting) configuration
then Simulate(i, c) returns true (false). If c is neither accepting nor rejecting terminal configuration
it returns ⊥ (undefined). Otherwise, there is a constant number of transitions applicable to c. In
the universal mode, all these transitions are applied to c. Let δ be one of them, with c `δ d. For
any such d Simulate proceeds as follows. It existentially splits into two branches, (a) and (b).
Branch (a) corresponds to the case when there was no broadcasting at channel Tuned(d) from any
configuration in Ci, i.e., δ was a simple transition. Therefore no modification of d’s communication
state is necessary. We merely split universally into two branches calling V erify(i+1, d) on one branch
and Simulate(i + 1, d) on the other branch. The task of the former procedure is to check whether
d ∈ Ci+1, indeed, since we have only assumed that there was no broadcasting to d, but the call to
V erify will check this fact.

Branch (b) corresponds to the case when there was a broadcasting at channel Tuned(d) from a
configuration e, say, with e ∈ Ci. That is, δ was a transition modified by communication state r ∈ R,
say, r 6= ε. Thus, c `δ{e} d|Comm(d):=r. In this case we proceed as follows: we existentially split for each
r ∈ R, r 6= ε. At each branch, we universally split into two branches and call V erify(i+1, d|Comm(d):=r)
and Simulate(i+1, d|Comm(d):=r), respectively, on each of them. Note again that we have only assumed
here state r was broadcasted to d and it is the task of V erify to confirm this assumption. Thus, if
the call to V erify returns true we could again conclude that d|Comm(d):=r ∈ Ci+1.

Hencefore, no matter whether case (a) or (b) will occur, for any c ∈ Ci procedure Simulate
computes set Succ(c) ⊆ Ci+1 because the procedure it verifies all members of Succ(c) by trying to
apply every δ ∈ ∆ to c. Subsequently, for all configurations in Succ(c) the next recursive calls of
Simulate can be launched.
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alternating procedure Simulate(i, c);
{returns true if from c ∈ Ci an accepting configuration in GW is reachable}

if c = terminal configuration then
if c is accepting then return(true) fi;
if c is rejecting then return(false) fi;
if c is neither accepting nor rejecting then return(⊥) fi

else
universally branch on each δ ∈ ∆ applicable to c:

compute d = δ(c);
existentially branch on (a) or (b) :
(a) {there is no broadcasting to d – assume and verify}

universally branching on two processes:
return((Simulate(i + 1, d)) ∧ (V erify(i + 1, d))) ;

(b) {there is a broadcast to d – assume and verify}
existentially branch on each r ∈ R, r 6= ε :

compute d′ := d|Comm(d):=r

universally branching on two processes :
return(Simulate(i + 1, d′) ∧ V erify(i + 1, d′)) ;

fi

Figure 3.1: Sketch of the procedure Simulate. Simulate(i, c) returns true iff from c ∈ Ci an accepting
configuration in GW is reachable. Procedure V erify(i + 1, d′) returns true iff there exists g ∈ Ci+1

such that g w d′

Now we describe the verification procedure.
As mentioned above, the goal of procedure V erify(j, f) (Fig. 3.2) is to check for any j ∈ N and

any syntactically correctly constructed configuration f ∈ C of W (i.e., f need not necessarily be a
configuration reachable in GW on a given input), whether there exists g ∈ Cj such that g w f.

Note that in order to learn that for a given configuration f there exists some super–configuration
g ∈ Cj with g w f it is enough to find a subgraph F of GW rooted at cinit such that F contains
all paths of length j leading from cinit to a configuration whose sub–configuration is f. Then g could
be constructed (i.e., computed) if we followed the respective paths from cinit in F. However, for us a
sub–configuration will be sufficient since we are interested merely in the action of the machine when
reaching the corresponding full configuration — what symbol is broadcasted (if any) and on what
channel. As remarked in the beginning of this section this action is entirely determined by any sub–
configuration (and in particular, by the kernel) of the corresponding full configuration. Thus, the
idea of procedure V erify is to check that a subgraph F exists (note that for given f there can be
several such subgraphs in GW , each corresponding to a different full configuration g w f), by starting
at f and by recursively climbing against the directed edges of GW towards its root level by level, by
guessing and applying the inverse transitions to intermediate configurations until eventually cinit is
reached. The recursive reverse traversal of paths GW is possible thanks to the uniqueness of these
paths.

Procedure V erify starts by checking, whether j = 0 and f equals to a prefix of cinit. By a prefix
of the initial configuration we mean a configuration describing any prefix of the input on the false
input tape, with all other tapes empty and with the heads on all tapes in their leftmost positions. In
the before mentioned test we do not consider the entire initial configuration because a computational
path in GW can terminate without having read the entire input, and therefore the reverse verification
process (see in the sequel) can reconstruct only the respective prefix of the input. Clearly, if j = 0
and f equals to a prefix of cinit, then f v cinit. Because cinit ∈ C0, V erify accepts. If j = 0 and
f is not equal to a prefix of cinit V erify rejects. Otherwise, for any j > 0 we guess whether g has
emerged by applying a simple or a modified (by broadcasting) transition to g’s predecessor.

In the former case, a transition δ is guessed, the predecessor δ−1(f) of f is computed and the
procedure is applied to this predecessor. In parallel it is checked whether there was no broadcasting
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alternating procedure V erify(j, f);
{returns true iff there exists g ∈ Cj such that g w f}

if j = 0 then return(f = Prefix(cinit))
else existentially branch on (a) or (b):
(a) {f has not been modified by broadcasting}

universally branch on (a1) and (a2):
(a1) existentially branch on each δ ∈ ∆:

if δ−1(f) = f ′ is defined then return(V erify(j − 1, f ′))
else return(false) fi;

(a2) universally branch on each kernel h tuned to Tuned(f):
if Broadcast(h) 6= ε then return(¬V erify(j − 1, h))
else return(true) fi;

(b) {f has been modified by broadcasting, r is its original communication state}
existentially branch on each (r, δ) such that

r ∈ {ε, Comm(f)}, f1 = δ−1(f |Comm(f):=r) defined:
universally branch on (b1) and (b2) and (b3):
(b1) return(V erify(j − 1, f1));
(b2) existentially branch on each kernel h tuned to Tuned(f):

if Broadcast(h) = Comm(f) then return(V erify(j − 1, h) fi;
(b3) universally branch on each kernel h tuned to Tuned(f):

if Broadcast(k) /∈ {Comm(f), ε} then return(¬V erify(j − 1, k)) fi
fi;

Figure 3.2: Sketch of the procedure Verify. Procedure V erify(j, f) returns true iff there exists g ∈ Cj

such that g w f .

to f from any configuration in Cj−1, indeed. In order to do so, the kernels of all configurations tuned
to Tuned(f) are guessed (note that there is but a constant number of such kernels) and in case that
a kernel h broadcasts a state different from ε it is verified that h is not reachable in GW . This is
determined by checking whether V erify(j − 1, h) returns false in such a case.

In the latter case, the original communication state of f before its modification by broadcasting
is guessed. Let r be this original state. Thus, we can construct a configuration f |Comm(f):=r = f ′.
For this configuration there must exist a simple transition δ and two configurations f1, f2 ∈ Cj−1

such that f1 `δ f ′ and f1 `δ{f2} f. Note that Tuned(f) = Tuned(f2) = Tuned(Ker(f2)) and
Broadcast(f2) = Broadcast(Ker(f2)) = Comm(f). Similarly as before, knowing δ, f1 = δ−1(f ′)
is constructed and Ker(f2) tuned to Tuned(f) and broadcasting Comm(f) is guessed. Then, it is
verifies in parallel that both f1 and Ker(f2) are reachable in GW (by calling V erify(j − 1, f1) and
V erify(j − 1,Ker(f2)), respectively) and that there is no broadcasting conflict on Tuned(f). The
latter condition is confirmed by checking whether V erify(j − 1, h) returns false for each kernel h
broadcasting at Tuned(f) a state different from Comm(f) and ε. Note again that there is but a
constant number of such kernels.

In order to efficiently implement the previous algorithm we indicate how the kernels, or in general,
the sub–configurations, will be represented on the tapes of A in order to enable their efficient generation
and operations over them. Each kernel h will be generated from a configuration f in which A finds
itself in that time. Note that at all occasions when the kernels are constructed we always have the
situation that Tuned(h) = Tuned(f). Therefore, on the channel tape we mark the position of its head
(since the channel number is determined by the contents of the channel tape left to the head position)
and otherwise the channel tape in h remains as it was in f. Should we generate a kernel h = Ker(f),
then, clearly, the heads already point to the right symbols. However, in order to distinguish the
head configuration of h from the remaining symbols in f we embrace the symbol scanned at each
working tape by a pair of c symbols. During the subsequent computation, the “valid” part of (sub–
)configurations which keeps developing from the given kernel will always be embraced between the pair
of c symbols. Each time when a head of a simulated machine is about to enter a cell containing the
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left (right) c symbol this symbol is moved left (right) rewriting whatever symbol was there before and
leaving the blank symbol on the original position of the c symbol. The input symbols need a special
treatment since we cannot put marks on the input tape. Instead of the input tape we therefore make
use of the false input tape on which the input symbol scanned at time of a kernel creation is copied
at the first position. Then, as the configuration keeps evolving the additional symbols are placed to
this tape. Obviously, correct guesses must not rewrite the symbols once written to that tape, and
therefore the false input tape is a write–once tape. If at some occasion the head on any tape finds
itself at the leftmost tape position and is about to move left, then the standard solution — using the
second track on that tape — is used. A similar procedure is also used when generating a kernel that
is not the kernel of the current configuration c. The only difference is that now the symbols under the
input tape head and the working tape heads must be guessed.

When calling V erify(0, f), in order to realize the check f = Prefix(cinit) the contents of the false
input and the original input tape are compared. If and only if the former is a prefix of the latter, and
the other data in f and cinit coincide, the test is passed.

Now we sketch how to extend our simulation to the case when there is the index tape enabling to
achieve sublinear running times of form T (n) ≥ log n. Under the assumption of the constructibility of
S(n) we will treat the index tape in a similar way as the channel tape. I.e., while proceeding down in
graph GW in procedure Simulate the contents of the index tape is copied as well. In the verification
procedure, while climbing back to the root along the spawning edges, we can verify in on-line manner
the input symbols in accordance with the continuously retrospectively unfolded current contents of
the index tape. However, when ascending along the broadcasting edges, we do not know the contents
of the index tape in the broadcasting configuration since in general this contents is not related to
that in the receiving configuration. Therefore, being at level i > 1 we extend procedure V erify to
start guessing also the contents of the index tape at the “referential” depth iref = min{1, i − S(n)}.
The contents of the index tape at the referential depth is guessed bit by bit, at each level. Along
with it, on a special tape the actual movements (corresponding to the current depth j) of the head
on the index tape are guessed and stored. Once the referential depth is reached (and for determining
this depth, we will make use of the constructibility of S(n)), A can switch from the index and input
tape guessing mode to on-line checking mode. That is, from now on the contents of the input tape as
dictated by the index tape can be verified. Simultaneously, at the referential depth (for j = iref ), A
will in parallel (in universal mode) issue a special verification process whose task is to check whether
the symbols read by the previously guessed input head movements are the same as those on the input
tape. This, clearly, requires time of order O(S(n)) which, however, runs in parallel with the rest of
computation.

As far as the time complexity of the simulation is concerned, it is proportional to the number od
rounds multiplied by the complexity of actions needed to prepare the calls of Simulate and V erify.
There are T (n) rounds all together. Note that when using the kernel representation proposed above,
in order to prepare the parameters for each call only local changes in the vicinity of the current tape
heads positions are needed. Therefore, preparing the parameters for each recursive call of Simulate
or V erify takes a constant time. In a total, the entire simulation time of A is linear in terms of the
original running time of W.

As far as the space complexity is concerned, note that in the case that a kernel of a configuration
which is not reachable from the initial configuration is verified the decision about the termination
of V erify can occur as late as in depth T (n). In that time, the size of the computed predecessor of
that kernel can be of order O(T (n)) and this gives an upper bound on the space complexity of our
simulation as in case (i) in the statement of the theorem. However, in case (ii), if S(n) is known to be
fully space constructible then A can keep track of the size of intermediate configurations and abort
(and reject) the verification of the respective branch once a larger configuration was generated. In
this case, the depth counter of size O(log T (n) must be taken into account since its size need not be
absorbed by the O(S(n)) space bound. The size of the false input tape adds an other term of order
O(n). Finally, in case (iii) at most O(S(n)) space has been used on the false input tape since after
reaching the reference point, the input tape head had been relocated to its current position and from
now on, there is no need to record the symbol read from the input since these inputs can be verified
in an on–line manner. Thus, the space complexity remains bounded by O(S(n) + log T (n)).
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2

4 Linear time-space simulation of alternation by wireless com-
munication

Now we turn our attention to the reverse simulation, i.e., to the simulation of an ATM on a WPTM.
We assume that both machines are equipped by the index tapes.

Theorem 2 Let S(n) ≥ log n be a space constructible function. Let A be an ATM of time complexity
T (n) ≥ log n and space complexity S(n). The A can be simulated by a WPTM W simultaneously in
time O(T (n)) and in space O(S(n)).

Sketch of the proof: Assume that A is a machine with k ≥ 1 working tapes, with a separate input
tape and one index tape. For technical reasons we will assume that all branching instructions in A
are binary and that the transitions applicable to configurations with the same head configuration are
ordered. While simulating A on W we will represent tape contents of A straightforwardly on the
corresponding tapes of W. Moreover, W will have one additional working tape, called a configuration
tape, on which the current configuration, with the exception of the input tape contents (which is the
same in all configurations and written on the input tape in all processes), of A will be represented.
We will make use of two different forms of configuration representations: an explicit, and an implicit
one.

An explicit representation of A’s configuration will be an element of C (see the definition of a
configuration in Section 2). Note that in a configuration, the position of the input head determines
at the same time the contents of A’s index tape.

We say that configuration c2 is s > 0 steps apart from a given configuration c1 if and only if
c2 can be reached from c1 by applying s transitions δ1, δ2, . . . δs ∈ ∆ (in that order) to c1. If c1, c2

are as above, and c1 is given in its explicit form, then c2 in its implicit form w.r.t. c1 is given by
c1#δ1# . . . #δs.

Now we are ready to describe the simulation of A by W. Let T be the computational tree of A on
a given input. It is a binary tree of depth T (n) whose branches are ordered (due to our assumption on
instruction ordering) containing in its nodes configurations of A. First assume that T (n) is computable
in space S(n). The simulation will consist of two phases.
Phase 1 – descending the tree: W simulates A straightforwardly, by descending T and splitting at
each branching instruction of A, irrespectively whether this instruction was an existential or universal
one. Each reached configuration of A is represented in W by a process which corresponds to that
configuration of A by having the same tape contents on its working tapes, and on the index tape.
Consider arbitrary depth d and write it as d = iS(n) + j, for i = 1, 2 . . . and 0 ≤ j < S(n). For j = 0
the respective ds are called a reorganization times. Let c0, c1, . . . be the configurations of A along a
computational path in T at reorganization times t0, t1, . . . in chronological order. For any i ≥ 0 we
will want the following invariant to hold in W :

• for any depth d such that ti < d < ti+1, both at the configuration tape and the channel tape of
W, a configuration c of A is represented in its implicit form w.r.t. ci.

• for d = ti+1, (at the reorganization time), ci+1 is represented explicitly at the channel tape and
implicitly, w.r.t ci, on the configuration tape of W.

Moreover, from technical reasons we will require that information on each of the tapes mentioned
previously is prefixed by the value of ti. From now on, when speaking about a configuration at depth
d, with ti ≤ d < ti+1, we will always assume that this configuration is prefixed by ti.

For i = 0 we start at level 0 with c0 (initial configuration) written on both channel and configuration
tape of W. While descending the respective branch in T we represent the respective configurations
implicitly w.r.t c0 simply by adding the code of the instruction realized in that step behind the
representation of the configuration from the previous step. . Simultaneously, we count up to S(n) and
when reaching the next reorganization point, we rewrite the channel tape by the current configuration
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c1 of A. This is simply achieved by sequentially copying, in time O(S(n)), the contents of the remaining
tapes to the channel tape. Now the invariant at t1 is restored.

We proceed further down the tree. Assume that the invariant has been restored at some depth
di, with ci represented explicitly at the channel tape and implicitly, w.r.t ci−1, on the configuration
tape of W. In the next step, we copy the contents of the channel tape (i.e., ci) to the configuration
tape rewriting whatever was there. Then on both tapes we represent the current configuration of
A implicitly w.r.t. ci simply by adding the code of the instruction realized in that step behind the
rewritten part on both tapes. In this way we proceed until the next reorganization point is achieved.
Here we restore the invariant in the same way as before.

The tree descending process terminates in depth T (n) (in order to determine this moment, we
must keep a special counter counting up to T (n) in space O(S(n))).

Note that copying operations at reorganization points, and right after it, take time O(S(n)).
However, since these actions are done once per S(n) steps, this additional work gets amortized.
Phase 2 – ascending the tree: Configurations of A at depth T (n) represented in processes in W are
of three kinds: accepting, rejecting, and non-terminating. These kinds are called the quality of a
configuration. The respective processes start to send the respective qualities “upwards” in the tree, to
their parent configurations, which can compute their own quality depending on their type (which could
be either existential or universal one). The parent of a configuration is achievable at a channel whose
number is computed from the implicit configuration stored at the channel tape: if ti#ci#δ1# . . . #δs

for some s > 0 and i > 0 is the contents of the channel tape at that moment, then the father of that
configuration is tuned to ti#ci#δ1# . . . #δs−1. Thus, the necessary re–tuning can be done in constant
time simply by moving the head left over one transition. However, if s = 0, then on the channel tape
there is an explicit representation of configuration ci. We change it into an equivalent implicit form
by copying the contents of the configuration tape to the channel tape. This takes time O(S(n)), but
again, this time gets amortized. Then, in order to determine the parent of a configuration, we can
proceed as in the former case.

In general, a parent can have two sons. In order to prevent the broadcasting collisions, the sons
sent their quality to their parent one after the other, in the order implied by the ordering of the
instructions by which sons have been reached from their parent.

After sending their quality, the processes re–tune to channel 0.
In this way, the quality of tree nodes is evaluated, until eventually, after O(T (n)) steps, the root of

the tree gets its quality. Then also the root re–tunes to channel 0 and sends the accepting/nonaccepting
signal to all processes which can now terminate.

This ends the description of the simulation algorithm for the case when T (n) is computable in
space S(n). If this is not the case, we modify the above–described algorithm as follows. Now, after
sending their signal to their parents the processes do not re–tune to channel 0. Instead, they re–tune
back to their original frequency. The idea of the modified algorithm is to try, after reaching each
reorganization point while descending the tree, to evaluate the tree of A’s computation computed till
that time. Thus, the signals proceed towards the root level by level, in a pipelined manner. Once an
acceptance signal had reached the root, the respective root process starts sending a signal at channel
0. In order to hear this signal, when reaching a reorganization point, while re–tuning from the explicit
to the implicit representation each process goes through the situation when it is tuned to channel 0.
At this occasion the process has the chance to learn that in fact the simulation has to terminate. If
this is the the case, the process stops spawning further processes. Instead of expecting quality of nodes
to arrive from the lower levels and sending it upwards, the process starts sending upwards a signal
informing the nodes above it to terminate and to re–tune to channel 1. When this signal reaches the
root, the root process sends on channel 1 the accepting/nonaccepting signal to all processes which can
now terminate.

As far as the correctness of the algorithm is concerned, note that the quality evaluation proceeds
for any d > 0 from level d to level d − 1 because d = ti + s is implicitly represented in the contents
ti#ci#δ1# . . . #δs stored at that time on the channel tape. The broadcasting conflicts have been
eliminated since processes belonging to a parent in a different configuration broadcast on different
frequencies. In the case when a process has two sons no conflict can arise thanks to the instruction
ordering. Note that in the process of tree ascending, the nodes of T corresponding to the same
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configurations of A get the qualities from their sons, irrespectively which son belonged to which parent.
Fortunately, this does not make any harm since the sons must have obtained the same quality, because
the history of computations “below” these sons in T must have been the same once the configuration
in sons were the same.

As far as the time complexity of the above-described algorithm is concerned, it clearly is O(T (n)
since either a (parallel) step performed in simulation is of constant time complexity, or is of complexity
O(S(n)), but such steps occur once in every S(n) steps. Clearly, the space complexity of simulation
is O(S(n)).

2

Let W − TISP(T(n),S(n)) denote the class of WPTM computations (with the index tape) of a
simultaneous time complexity T (n) and space complexity S(n), and A − TISP(T(n), S(n)) denote an
analogous class for ATMs. The following corollary characterizes the equivalence between WPTMs and
ATMs:

Corollary 4.1 Let S(n) ≥ log n be a space constructible function, let T (n) ≥ log n. Then W −
TISP(T(n),S(n)) = A− TISP(T(n), S(n)).

5 WPTMs and the uniform circuits

Let U− SIZE−DEPTH(S(n),T(n)) be the uniform family of bounded fan-in circuits of size S(n) and
depth T (n) (where U ∈ {UE,U∗E}, using the notation from [4]). It is known that A−TISP(T(n), S(n)) =
U−SIZE−DEPTH(2O(S(n)), T(n)), for S(n), T (n) ≥ log n deterministically computable in space S(n))
[4].

Let NCi =def U− SIZE−DEPTH(nO(1), (log n)i) be the class of all sets A ⊆ {0, 1}∗ for which there
is a uniform circuit family of polynomial size and of depth (log n)i, let NC =def ∪ i≥0 NCi.

By these relations we get further consequences of the previous result:

Corollary 5.1

(i) for S(n), T (n) ≥ log n which are deterministically computable in space S(n) we have W −
TISP(T(n),S(n)) = U− SIZE− DEPTH(2O(S(n)), T(n));

(ii) W − TISP((log n)i, log n) = NCi

(iii) W − TISP((log n)O(1), log n) = NC

Thus, simultaneously bounded WPTM computations characterize exactly uniformly bounded cir-
cuit families.

6 Conclusion

We have prolonged the studies of a recently introduced new model of wireless parallel Turing machines
whose design has been inspired by recent trends in wireless mobile networking. We have substantially
improved the originally known complexity relations between WPTMs and ATMs given in [6]. Namely,
we have shown that the time-space bounded computations on the WPTMs correspond to similarly
bounded computations of ATMs. Via the latter mentioned machines these results extend further to
uniform bounded fan-in circuit families, especially to classes NCi and NC. Our results offer an alterna-
tive model to alternating Turing machines; they provide an exact characterization of a computational
power of alternation in terms of parallel deterministic computations with broadcasting. This ranks the
WPTMs among the fundamental machine models. A study of WPTMs computations with a bounded
number of broadcasting steps, or with a bounded number of channels, seems to represent a challenging
area for future research. The results of this type can throw a further light on the nature of alternation
and basic relations among fundamental complexity classes.

11



Bibliography

[1] Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of the ACM, Vol. 28, pp. 114–133,
1981.

[2] Geffert, V.: A Communication Hierarchy of Parallel Computations. Theor. Comput. Sci., Vol
198, No. 1-2, pp. 99–130, 1998
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