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Abstract

This paper reviews different combinations between the most widely used type of neural networks –
a multi-layer perceptron – and evolutionary algorithms. Methods to train the neural network are tested
using a real-world classification problems from Proben1 benchmark suite. It is shown, that combining
evolutionary algorithms with neural networks can lead to better results than relying on neural networks
alone. Searching for a suitable architecture can help to find neural networks with improved performance.

1. Introduction

Artificial neural networks (ANNs) are a computational paradigm modeled on the human brain that have
been applied to a variety of classification and learning tasks for a few reasons. Despite their simple structure,
they provide very general computational capabilities and they can adapt themselves to different tasks, i. e.
they are able to learn.

Evolutionary algorithms can be viewed as an alternative to classical optimization techniques, based on
a biological metaphor: over many generations, natural populations evolve according to the principles of
natural selection and ”survival of the fittest”, first clearly stated by Charles Darwin in The Origin of Species
[1]. The basic principles of Evolutionary algorithms were first laid down rigorously by Holland [2].

In this paper, we present a comparison of different approaches to ANN learning problem. We will focus on
combination of gradient and evolutionary techniques, and we will try to find optimal weights and topology
of neural networks. Several experiments will be carried out on data taken from Proben1 [3] benchmark
collection.

The organization of this paper is as follows. First we briefly describe perceptron networks and the core
of genetic we have used. Then, the two main approaches — evolutionary learning of the weights, and
evolution of network architecture — are presented. Finally, the experiments are reported and discussed.

2. Multilayer perceptron network

An ANN is an interconnected network of simple computing units calledneurons[4]. Each neuron hasn real
inputs, and each inputxi has assigned a real weightwi.

The outputy(x) of a neuron is defined in equation 1:

y(x) = g

(
n∑

i=1

wixi

)
, (1)
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wherex is the neuron withn input dendrites (x0 ... xn), one output axony(x), (w0 ... wn) are weights and
g : ℜ → ℜ is the activation function that determines how powerful the output (if any) should be from the
neuron, based on the weight sum of the input.

One of the most common activation function is a logistic sigmoid function 2

σ(ξ) = 1/(1 + e−ξt), (2)

wheret determines its steepness. Very important property of the sigmoid function is smoothness and the
fact, that it has an easily calculated derivative.

In amultilayer feedforwardANN, the neurons are ordered in layers, starting with aninput layerand ending
with an output layer. Between these two layers there can be a number ofhidden layers. Connections in
this kind of networks only go forward from one layer to the next. Neurons in input layer are calledinput
neurons, similarly neurons in output layer are calledoutput neurons. Let us denotenI , nO, nH number of
input, output and all hidden neurons, respectively.

Multilayer feedforward ANNs work in two different phases: In atraining phase(learning phase) the ANN
is trained to return a specific output given a specific input. In theexecution phasethe input is presented to
the input layer, propagated through all the layers (using equation 1) until it reaches the output layer, where
the output is returned. Thearchitectureof ANN defines the number of layers, number of neurons in each
layer and connections between neurons.

We will focus on a learning situation known as asupervised learning, in which a set of input/desired-
output patterns is available. The training process can be seen as an optimization problem, where we wish
to minimize themean square error(EMSE) of the entire set of training data.EMSE is defined as the squared
error of the ANN for a set of patterns:

EMSE =

p∑

k=1

Ek(w) (3)

Ek(w) =
1

2

∑

j∈Y

(yj(w, xk)− dkj)
2, (4)

whereY is a set of output neurons,p is the number of patterns in the set,yj is an output of neuronj given
weight vectorw andk-th input patternxk, anddkj

is desired output of output neuronj for input patternk.

Theclassification problemis that of assigning an input vector to one ofM classes. Each pattern from the
training pattern set contains an input vector and its desired output vector. The output of the network must
be interpreted as a class. Such interpretation can be performed in different ways. One of them consists in
assigning an output neuron to each class — when an input vector is presented to the network, the network
response is the class associated with the output neuron with the largest output value. This method is known
as thewinner-takes-allapproach.

For classification problems,ECLAS reports — in a high-level manner — the quality of the trained ANN and
is defined as a percentage of incorrectly classified patterns.

3. Evolutionary algorithm

Evolutionary algorithmhas been investigated by John Holland [2], with a marked increase of interest within
the last few years. Evolutionary search refers to a class of stochastic optimization techniques — loosely

PhD Conference ’06 157 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0135725
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based on processes believed to operate in biological evolution — in which a population of candidate solu-
tions (chromosomes) evolves under selection and random “genetic” diversification operators. The problem
is to find minimum or maximum offitness function. Every member of population is calledindividual and
represents a potential solution to a problem.

The algorithm 1 reveals skeleton of genetic algorithm used in our experiments. To fully describe genetic
algorithm, it is needed to define how each solution will be represented, how initial population will be created
and what genetic operators will be used in the Reproduction step.

Input : number of individuals in populationN , number of elitsE, maximum number of populationsGmax.
Output: the best found solution of a problem.

1. Start: Create initial population ofN individualsP (0) = {I1, ..., IN}, i = 0.

2. Evaluation of individuals: To compute fitness function for every individualI, build ANN correspond-
ing to I and computeEMSE for a training set. LetF(I) = EMSE.

3. Stop-condition: Ifi = Gmax, finish and return solution represented by individual with minimal value
of fitness function.

(a) Creation of new populationP (i+ 1) from populationP (i): Create empty populationP (i+ 1).

(b) Selection: ChooseE best individuals from populationP (i) and move them to populationP (i+
1). With chosen operator of selection chooseN − E individuals and insert them to population
P ′(i).

(c) Reproduction: Apply chosen operators on populationP ′(i), the result is populationP (i+ 1).

i. Application of binary operators: If populationP ′(i) contains odd number of individuals,
insert chromosome of the first individual from populationP ′(i) into populationP ′′(i).
From populationP ′(i) choose pairs of chromosomesC andD and apply on them repro-
duction operators, new chromosomesC′ andD′ insert to populationP ′′(i).

ii. Application of unary operators: On every chromosome from populationP ′′(i) apply cho-
sen unary operator, new chromosome insert to populationP (i+ 1).

4. New generation:i = i+ 1, Continue by step 2.

Table 1: Skeleton of the genetic algorithm.

We have used theroulette wheel selectionin all experiments. The selection operator performs the equivalent
role to natural selection — it chooses individuals for next population proportionally to their fitness values.
As we wanted to minimize the error function in all our experiments, the probabilitypi of selectioni-th
individual is defined by the equation 5

pi =
(1 + ε) ∗ C −F(Ii)

N ∗ (1 + ε) ∗ C −
∑N

j=1F(Ij)
, (5)

whereN is the number of individuals andC is the maximal fitness value in the population, andε is a small
positive constant, which ensures that probability of selection the worst individual will be non-zero.

4. Evolution of weights

Weight training in ANN is usually formulated as a minimization of error function, and is carried out by
some gradient descent algorithm such as Back-Propagation, or one of its many variants[5]. Due to its
use of gradient descent, these algorithms often get trapped in the local minimum of the error function,
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Figure 1: Example of ANN with seven hidden units in two hidden layers, three input and two output neurons.
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Figure 2: Example of encoded ANN from the previous figure.

and are incapable of finding global minimum. As the evolutionary algorithm need not to use the gradient
information and works with population of potential solutions, it has a better ability to avoid local minimum
trap. What more, evolutionary algorithm can be applied in situations, when gradient information is not
available at all, it can handle global search problem in a vast, complex and non-differentiable surface.
The evolutionary approach also makes it easier to generate ANNs with some special characteristics. For
example, ANNs complexity can be decreased and its generalization ability increased by including a special
term in the fitness function penalizing large networks.

4.1. Representation

The standard genetic algorithm uses binary strings to encode alternative solutions. In a such representation
scheme, each connection weight is represented by a number of bits of certain length. The advantages of this
representation are mainly simplicity and generality. It is possible to use well known crossover (such as one-
point crossover) or mutation operators for binary strings. Although there are several encoding methods, that
encode real numbers with different range and precision, trade off between precision and range often has to
be made. Real-world experiments demand big precision, what causes too long chromosome for which the
evolution process becomes non-efficient. Therefore, different encoding method is used. The chromosome
is interpreted as a matrix of dimensionsnH × n, wheren = nO + nH . In thei-th row and thej-th column
there is either a special symbol⊗, if neuronsi andj are not connected, or the weight of connection fromi
to j. The following connection matrix from figure 2 encodes the ANN from the figure 1. The chromosome
is then created by concatenating all the rows from the matrix. In case of feedforward ANNs, the entry on
i-th row andj-th column can be non-zero only fori < j. This reduces the length of the chromosome and
the evolutionary process becomes more effective.

4.2. Initial population and operators

Initial population consists of fully connected neural networks with randomly initialized values. To each
connection a weight from[−1.0, 1.0] interval is assigned.

For training the weights of ANN, we experimented with operatorBiased-Weights-Mutation[6], which adds
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Figure 3: Schema of evolutionary algorithm searching optimal architecture of ANN.

to the weights of randomly selected connections in the parent network with values chosen randomly from
the same probability distribution used for initialization.Weights-Crossoverperforms uniform crossover
with the basic units exchanged being the set of all incoming weights of a particular node.

5. Evolution of architecture

In the previous section, we have assumed that the evolved ANN has a fixed architecture. Selection of a
good architecture is state of art — although it has significant impact on network’s information processing
capabilities, there are not known satisfiable rules, on how to choose a good one for a particular task. ANN
with only a few connections may not be able to satisfiable learn the task because of its limited capacity, while
ANN with large number of connections and neurons may over fit and fail to have a good generalization
ability.

Similarly to previous section, the problem of determining optimal architecture for a particular task can be
formulated as an optimization problem. As stated in [7], evolutionary algorithms are a good method for
searching in such a complex surfaces. In the case ofsimultaneous evolution of weights and architecture
both weights and characteristics of architecture are encoded in the chromosome. As shown on figure 3, this
method contains the previously solved problem of determining optimal set of weights as a subtask. On the
other side, the problem ofseparated evolution of weights and architecturesis the noisy fitness evaluation,
caused by random initialization of weights. Only architecture is encoded in chromosome, weights have to
be learned later. The fact that an individual gained better fitness value does not mean that this individual
is really better — in is necessary to repeat the evaluation and average the obtained values. This way, the
computation time increases dramatically.

5.1. Representation

We used theindirect encoding schemein our experiments [7]. Chromosome consists of several sections,
which hold information about some important characteristic of ANN’s architecture. In the first section is
stored the number of hidden layers, follows section with information about the number of neurons in each
hidden layer and in the case of simultaneous evolution of weights and architecture, the section with connec-
tion matrix is appended. The operators used in evolutionary algorithm must be aware of this representation
— operators from previous section are allowed to modify only the last section of the chromosome. To
modify the remaining parts, new operators are introduced.

5.2. Operators

There are two operators that work on the level of units. TheRemove-Neuronoperator removes randomly
selected neurons. Creation of new neurons is done by theDuplicate-Neuronoperator, which selects ran-
dom neuron and duplicates it. Similarly, there are two operators working on connections, theRemove-
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Number of hidden layers.
Number of neurons in the first hidden layer.

...
Number of neurons in the last hidden layer.

Connection matrix.

Table 2: Chromosome for evolving architectures of ANN.

Connectionoperator removes random number of connections from each neuron,while theAdd-Connection
operator randomly adds connection between two neurons.

6. Experiments

A set of experiments has been carried out on several data sets from the Proben1 [3, 8, 9] benchmark. This
way we are able not only to provide relative comparison, but also to explore the efficiency of the algorithms
with respect to the best results obtained by other methods and authors. In the following we briefly describe
several experiments and try to generalize the results.

We have chosen four classification problems: The goal of ANN is to classify tumor as either benign or
malignant in the Cancer problem, diagnose diabetes of Pima indians in Diabetes problem, predict the heart
disease in Heart problem and recognize one of 19 different diseases of soybean in Soybean problem. Char-
acteristics of each data set are shown in table 3.

Classes Examples b c n Tot. b c m Tot.
Cancer 0 9 0 9 0 9 0 9 2 699

Diabetes 0 8 0 8 0 8 0 8 2 768
Heart 1 6 6 13 18 6 11 35 2 920

Soybean 16 6 13 35 46 9 27 82 19 683

Table 3: Problems and the number of binary, continuous, and nominal attributes in the original dataset, number of
binary and continuous network inputs, number of network inputs used to represent missing values, number
of classes, number of examples.

The results of experiments are reported in terms of the values of the two errors,EMSE andECLAS measured
both on the training set and previously unseen test set. In the following tables we use symbolsMt (orMs)
for EMSE over training (or testing) set, andCt (andCs) for ECLAS over training (testing, respectively) set.

6.1. Searching for suitable connections

This experiment tested the separated evolution of architecture and weights. Thus, the algorithm consists
of two steps - in the first one the direct architecture encoding described in Tab. 2 is used and evolved. To
determine a fitness of such an individual, several (30 in our case) randomly initiated runs of rprop algorithm
are carried. In the second step, the evolved architecture is trained by full-fledged run of a back propagation
algorithm (10 times for different random weights initializations). Results can be compared to Tab. 4, which
gathers results of the classical back propagation, the rprop gradient learning algorithm and GA using the
Biased-Weights-Mutation and Weights-Crossover (cf. Tab. 4). Typically we ran the gradient algorithm for
5000-25000 epochs, while the GA ran for 1000-2000 generations (with population of 300 individuals).

Results of this experiment were quite satisfiable (cf. Tab. 5): GA was able to find better architectures,
containing less connections, and achieving better training error. As a side effect, these specialized architec-
tures usually achieved worse generalization error, in comparison to fully connected architectures, which is
understandable (compare Tab. 4 and Tab. 5).
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Diabetes Cancer
BP RP GA BP RP GA

Mt 0.2675 0.2473 0.2882 0.0463 0.0390 0.0484
Ct 0.2645 0.2616 0.2083 0.0280 0.0438 0.0286
Ms 0.3217 0.3154 0.3268 0.0242 0.0180 0.0159
Cs 0.2645 0.2615 0.2266 0.0280 0.0438 0.0057

Soybean Heart
BP RP GA BP RP GA

Mt 0.0150 0.2112 0.7416 0.1840 0.0904 0.2372
Ct 0.2536 0.3080 0.5585 0.2033 0.2079 0.1536
Ms 0.1196 0.2907 0.7474 0.2574 0.2559 0.2904
Cs 0.2536 0.3078 0.5513 0.2033 0.2077 0.1913

Table 4: Error comparison for back propagation (BP), rprop (RP) and genetic algorithm (GA) used for weights
learning.

Diabetes Cancer Soybean Heart
Mt 0.4541 0.0436 0.0069 0.0566
Ct 0.3516 0.0157 0.1615 0.1764
Ms 0.4568 0.0238 0.1369 0.2501
Cs 0.3516 0.0157 0.1615 0.1764

Table 5: Search for connections: Error results for architectures recommended by GA.

6.2. Searching for a suitable architecture

The goal of the second experiment was to combine the search for architecture with the evolution of weights
in one GA. We have started with individuals with random number of hidden layers (between 1–4), which
remained constant during the algorithm. However, the number of neurons and connections were varying, as
well as the values of weights. The following genetic operators we used:

operator pm

Duplicate-Neuron 0.05
Remove-Neuron 0.05
Add-Connection 0.05

Remove-Connection 0.05
Biased-Weights-Mutation 0.1

Table 6: Operators probability.

The overall results were very satisfiable (cf. Tab. 7, compare with Tab. 4). The GA was able to evolve
suitable architectures for a given task. It is interesting, that most of the solutions had just one hidden layer,
some of them had two. In some papers authors use penalization for more complex solutions, which was
not necessary here, because the evolution tends to exclude more complex networks based on their fitness
anyways. The architectures recommended by the GA provided even better results than the ones reported as
best (found by human) in [3].

7. Conclusions

As shown, evolution can be introduced into ANN learning problem at different levels. Suggested algo-
rithms were tested on real-world problems from Proben1 benchmark suite. The evolutionary algorithm is a
complex and robust method, which can be used to search both optimal weights and architecture of ANN.
Although the evolutionary process can be easily parallelized, computation is always very time consuming.
The results obtained by simultaneous evolution of weights and architecture were surprisingly good. Not
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Diabetes Cancer Soybean Heart
Mt 0.2679 0.0382 0.0176 0.1025
Ct 0.1927 0.0190 0.0088 0.0551
Ms 0.3108 0.0184 0.0989 0.2342
Cs 0.2266 0.0057 0.0616 0.1435

Table 7: Search for an architecture and weights: Error results for genetically evolved network architectures.

only the resulting ANNs gained excellent results on the training set, they showed a good generalization
ability. The complexity of found architecture for a particular task mirrored it’s real difficulty.

The combination of evolutionary techniques and ANNs can lead to better intelligent systems, than relying
on ANNs alone. With the increasing power of parallel computers, the evolution of large ANNs becomes
feasible.
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