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ČVUT
Trojanova 13
120 00 Praha 2

Czech Republic

Institute of Computer Science
Academy of Sciences of the Czech Republic
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Abstract

The aim of the paper is to present a novel, general approach to preference modelling in the framework
of the relational data model. To allow nonmonotonic operations, the preferences are defined between
sets of relational instances. The aim is the generalization of the relational algebra that is as minimal as
possible, in the sense that the formal fundamentlas of the relational data model are preserved. At the same
time, the extended model should be formal enough to provide a sound basis for the investigation of other
new preference constructors and operations and for new possible applications.

1. Related Work

Lacroix and Lavency [1] originated the study of preference queries. They proposed an extension of the
relational calculus in which preferences for tuples satisfying given logical conditions can be expressed. For
instance, one could say: Pick up the tuples of R satisfyingQ∧P1∧P2; if the result is empty, pick the tuples
satisfyingQ∧P1∧¬P2; if the result is empty, pick the tuples satisfyingQ∧¬P1∧P2. The composition or
iteration of preferences, however, is not considered. Neither is addressed the issue of algebraic optimization
of preference queries.

Kießling et al. [2, 3, 4, 5, 6, 7] and Chomicki et al. [8, 9, 10, 11] proposed independently a similar
framework based on a formal language for formulating preference relations. The embedding (calledBest
Match Only– BMO andWinNow– WN respectively) into relational query languages they use is identical.
Many possible rewritings for preference queries are presented.

Kießling et al. [2, 6] introduce a number of base preference constructors and their combinators (Pareto
and lexicographic composition, intersection, disjoint union, and others). The possibility of having arbitrary
constraints in preference formulas is not considered.

The framework of Chomicki et al. [8] emphasizes the view of preferences as strict partial orders and
defines preferences more generally as arbitrary logical formulas. Intrinsic and extrinsic classes of preference
formulas are studied.

PhD Conference ’06 78 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0135721



Radim Nedbal General RDM with Preferences

Börzsönyi et al. [12] introduced the skyline operator and described several evaluation methods for this
operator. Skyline is a special case of WN and BMO. It is restricted to use an intrinsic preference formula
which is a conjunction of pairwise comparisons of corresponding tuple components. Some examples of
possible rewritings for skyline queries are given but no general rewriting rules are formulated.

Argawal and Wimmers [13] use quantitative preferences (scoring functions) in queries and focus on the
issues arising in combining such preferences. Hristidis et al. [14] explore in this context the problems of
efficient query processing using materialized views. As pointed out repeatedly in their paper, the approach
based on scoring functions is inherently less expressive than the one based on preference relations. In
particular, skyline queries cannot be captured using scoring functions. Moreover, since the quantitative
approach is based on comparing the scores of individual tuples under the given scoring functions, the
preferences represented in this way have to be intrinsic. In addition, it is not clear how to compose scoring
functions to achieve an effect similar to various preference relation composition operations.

A more general approach is proposed in [15], where the relational data model is extended to incorporate
partial orderings into data domains. Within the extended model, the partially ordered relational algebra (the
PORA) is defined by allowing the ordering predicate to be used in formulae of the selection operation. The
PORA expresses exactly the set of all possible relations that are invariant under order-preserving automor-
phism of databases. This result characterizes the expressiveness of the PORA and justifies the development
of Ordered SQL (OSQL) as a query language for ordered databases. OSQL provides users with the capabil-
ity of capturing the semantics of ordered data in many advanced applications, such as those having temporal
or incomplete information.

A similar approach to preference modelling is presented in [16]. A declarative query interface for Web
repositories that supports complex expressive Web queries is defined. Such queries have two key charac-
teristics: (i) They view a Web repository simultaneously as a collection of text documents, as a navigable
directed graph, and as a set of relational tables storing properties of Web pages (length, URL, title, etc.).
(ii) The queries employ application-specific ranking and ordering relationships over pages and links to filter
out and retrieve only the “best” query results. The Web repository is modelled in terms of “Web relations”.
A description of an algebra for expressing complex Web queries is given. The algebra extends traditional
relational operations as well as graph navigation operations to uniformly handle plain, ranked, and ordered
Web relations. In addition, an overview of the cost-based optimizer and execution engine is presented.

In [17], actual values of an arbitrary attribute are allowed to be partially ordered as well. Accordingly,
relational algebra operations, aggregation functions and arithmetic are redefined. Thus, on one side, the
expressive power of the classical relational model is preserved, and, at the same time, as the new operations
operate on and return ordered relations, information of preference, which is represented by a partial order-
ing, can be handled. Nevertheless, the redefinition of the relational operations causes loss of some of their
common properties. For instance,A ∩ B = A− (A − B) does not hold. To rectify this weak point, more
general approach is needed.

A comprehensive work on partial order in databases is [18]. It presents the partially ordered sets as the
basic construct for modelling data. Collection of algebraic operations for manipulating ordered sets is
investigated, and their implementation based on the use of realizers as a data structure is presented. An
algorithm for generating realizers for arbitrary finite partial orders is provided.

Various kinds of ordering on powerdomains have been considered in context of modelling incomplete in-
formation. A very extensive and general study is provided in [19].

In the context of financial and statistical applications, systems such as SEQUIN [20], SRQL [21], and more
recently Aquery [22, 23] have proposed SQL extensions to incorporate ordering.
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2. Proposed Approach

All the above approaches miss out defining nonmonotonic operations, e.g. set difference, on relations with
partial ordering incorporated into attribute or relation domains. An exception is [17] whose generalized
difference operation, however, does not preserve common algebraical equalities. Obviously, a more general
model is needed. The proposed solution is to take all relational instances into account instead of mere
tuples. To see why, refer to the following paragraph and the following example.

The framework of relational instances with ordered tuples can be understood as a generalization offuzzy
sets-based model[24, 25] of uncertainty. The same way as a fuzzy relational instance can be described by
its alfa cuts, an instanceR∗ of an arbitrary relationR with an ordering�R∗

can be described by its subset
containing appropriate tuples. The intuition suggests considering tuples according to their preferences. That
is to say, we take into account the more preferred tuples ahead of those with lower preference. Thus, for
each tuple,ti, we take into account a set,ti↑, containing this tuple and all the tuples with higher preferences:

ti↑= {t | t ∈ R
∗ ∧ ti �

R∗

t}

Note thatti↑∈ I (R). Next, considering a unary relational operation

Ou : I (R)→ I (Q),

which is a mapping from a set of relational instances ofR into a set of relational instances of resulting
relationQ, it is applied to each setti↑. Note thatOu(ti↑) ∈ I (Q). Finally, the order�I (Q) on the
resulting collection

{Ou(ti↑) | ti ∈ R
∗} ⊆ I (Q)

of sets is to be determined.

Example 1 Consider a set{Ou(ti↑) | ti ∈ R∗} ⊆ I (Q) with a relation⊑ implied by preference�R∗

on
R∗:

Ou(ti↑) ⊑ Ou(tj↑)⇔ ti �
R∗

tj

Marie,David

David Petr

David

David,
Adam, Patrik

Filip

David

David,
Patrik Petr

Figure 1: {Ou(ti↑) | ti ∈ R∗} ⊆ I (Q) with a relation⊑

Note thatOu generally is not an injection. In other words,Ou(ti↑) = Ou(tj↑) for someti↑6= tj↑. In
particular,Ou(ti↑) = Ou(tj↑) = “Petr” andOu(tk↑) = Ou(tl↑) = Ou(tm↑) = “David”. To get an ordering,
we need to resolve these duplicities:

• First, as the occurrences of “Petr” are in the relation⊑, we drop the less “preferred” one.

• In the case of the triplet of occurrences of “David”, we are unable to determine the one with the
highest “preference”. Nevertheless, notice that:

– The set{Marie, David} is preferred to any of the occurrences of “David”. In other words,
whichever the most preferred occurrence of “David” is, it is less preferred then the set
{Marie, David}.
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– There is a unique occurrence of “Filip”, for which we can find an occurrence of “David” with
a higher preference. In other words, whichever the most preferred occurrence of “David” is,
it is preferred more then the occurrence of “Filip”. The same rationale applies for the sets
{David, Adam, Patrik} and{David, Patrik}.

Thus, we get the resulting order, depicted in the following figure:

Marie,David

David Petr

David,
Adam, Patrik

Filip
David,
Patrik

Figure 2: Ordering�I (Q) on{Ou(ti↑) | ti ∈ R∗} ⊆ I (Q)
�

To sum up, the order�I (Q) on the resulting collection{Ou(ti↑) | ti ∈ R∗} ⊆ I (Q) of sets is defined as:

Ou(ti↑) �
I (Q) Ou(tj↑)⇔

(∀tk ∈ R
∗)
(
[Ou(tk↑) = Ou(ti↑)]⇒ (∃tl ∈ R

∗)[Ou(tl↑) = Ou(tj↑) ∧ tk �
R∗

tl]
)

As the minimal set of relational algebra operations consists of two unary (restriction and projection) and
three binary operations (set difference, set union, and cartesian product), a binary operations need also to
be considered. In general, a binary operation

Ob : I (R)×I (R′)→ I (Q)

is a mapping from a couple of sets of relational instances ofR andR′ into a set of relational instances of
resulting relationQ. As in the foregoing example, we get a resulting collection

{Ob(ti↑, t
′
k↑) | (ti, t

′
k) ∈ R∗ ×R′∗} ⊆ I (Q)

of sets, and the order�I (Q) definition:

Ob(ti↑, t
′
k↑) �

I (Q) Ob(tj↑, t
′
l↑)⇔

[∀(tm, t
′
p) ∈ R

∗ ×R′∗]
(
[Ob(tm↑, t

′
p↑) = Ob(ti↑, t

′
k↑)]⇒

[∃(tn, t
′
q) ∈ R

∗ ×R′∗][Ob(tn↑, t
′
q↑) = Ob(tj↑, t

′
l↑) ∧ tm �

R∗

tn ∧ t′p �
R′∗

t′q]
)

What are the consequences of this approach? Generally

Ob(ti↑, t
′
k↑) �

I (Q) Ob(tj↑, t
′
l↑)⇒ Ob(ti↑, t

′
k↑) ⊇ Ob(tj↑, t

′
l↑)

does not hold for nonmonotonic operations (consider the relational operation of difference). With respect
to the relational property ofclosure, it is clear that the framework for defining preference on the tuples of
relational instances needs to be generalized. We need to express the preference structure on the powerset
I (R) of all possible instancesR∗ of a relationR.

The foregoing definitions of orderings on sets correspond to Hoare’s ordering. It is one of the orderings pro-
vided by the study of semantics of non-determinism [26, 19]. Possibility of employing another semantics,
however, needs further investigation.
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3. Summary and Future Work

A framework for relational algebra with preferences is proposed. It should present a basis for semantically
rich, easy to handle and flexible preference model aiming at deep personalization of database queries. It
differs from the other above mentioned approaches in that the preferences are not part of the queries but
part of relational instances. Is is shown that they need to be defined between sets of elements – relational
instances. This approach is strictly more general allowing to model nonmonotonic operations.

It can also be shown that the proposed approach generalizes the fuzzy sets-based approach to modelling
uncertainty in database systems. The reason is that there exists a homomorphism (A andB stand for sets
of attributes of relationsR):
({

IF

(
R(A∪B)

)
∪IF

(
R(A)

)
∪IF

(
R(B)

)}
; ΩF

)
−→

({
IO

(
R(A∪B)

)
∪IO

(
R(A)

)
∪IO

(
R(B)

)}
; ΩO

)

of the algebra consisting of

• the support comprising all the fuzzy relation instances that can arise by means of monotonic fuzzy
relational algebra operations applied on relationsR(A ∪B), R(A), R(B), and of

• monotonic fuzzy relational algebra operationsΩF

into the algebra consisting of

• the support comprising all the relation instances with ordering that can arise and whose order-
ing is defined by means of monotonic preference algebra operations applied on relationsR(A ∪
B), R(A), R(B), and of

• monotonic preference relational algebra operationsΩO

Moreover, this homomorphism is unique for all t-norms.

Furthermore, it can be shown that associativity and commutativity of the original union, product, restrict,
and project operations are retained. Specifically for the generalized restrict operation, the following equiv-
alences, which hold for the classical restrict operation, are retained:

σϕ1∨ϕ2(R) ≡ σϕ1(R) ∪ σϕ2(R)

σϕ1∧ϕ2(R) ≡ σϕ1(R) ∩ σϕ2(R)

σ¬ϕ(R) ≡ R− σϕ(R)

Using the proposed approach, other relational operations (intersect, join, and divide), also, retain the usual
properties of their classical relational counterparts:

R ∩ S ≡ R− (R − S)

R÷ S ≡ πA−B(R)− πA−B

((
πA−B(R)× S

)
−R

)

R ⊲⊳ S ≡ πA∪B

(
σϕ(R× S)

)

These results are promising for many query optimization issues, which present many open problems. In
particular, evaluation and optimization of preference queries, including cost-base optimization need to be
addressed.

Another open problem is how the proposed framework fits into the relational data model. A promising
approach seems to be an array-based data model proposed by [22, 23]. The key component of this model
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is an ordered data structure called anarrable, for array-table. Informally, it is a collection of named arrays
that, in their simplest form, are vectors of elements of base type. In this form, an arrable is essentially a
table organized by columns. Among others, arrable facilitates the implementation of algebraic operators by
means ofrealizers[18] – a set of linear extensions uniquely characterizing a given partial order. Realizers
offer an effective way to implement relational operations with ordering. Nevertheless, a comparison with
other possibly effective implementations of relational operations needs further investigation.

List of symbols

Π(R∗) {A | A is a fuzzy subset ofR∗},

I (R) set of all possible instancesR∗ of a relationR

IF (R) set of all possible fuzzy instancesRF∗ of a relationR

IO(R) set of all possible ordered instances of a relationR
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