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Abstract

Feasibility of common framework for the data assimilation and downscaling methods is investigated
and discussed. Assimilation of measurements from ground level ozone stations with limited representa-
tivity to chemistry transport model is selected as an example and first results with simple decomposition
to the local and background component are presented.

1. Introduction

Traditionally, data assimilation in environmental models is developed in the context of single scale. Reso-
lution of a numerical model is given by the time discretization and grid spacing. Our typical objective is to
find the ‘analysis’, which is as good estimate of reality as possible. In modern data assimilation techniques
we usually combine information given by numerical model and by observations, as well as information
about statistics of model and observational errors. Resulting analysis is defined on grid of numerical model
and can be used, e.g., for further time integration or as initial and/or boundary condition for another coupled
model.

Our efforts go beyond classical data assimilation – we don’t want to have an estimate of model state as
good as possible, but we also want to use information about model, observations and their respective errors
for improved local predictions. This subject is often treated by downscaling methods or the model output
statistics, but while some of these methods can utilize current observations, they don’t use them to improve
prediction of (coarse) numerical model and they don’t use coarse model error statistics.

Local prediction is useful in number of cases. Here are some examples:

1. Wind direction and speed in location of wind farm or even specific wind turbine.

2. Prediction of road ice in given location.

3. Prediction of pollutant concentration in a specified place in an urban area.

4. Short-term prediction of wind field and of tracer dispersion in the vicinity of accidental release during
dangerous goods transport.
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All four cases are very useful applications of enviromental modelling that show several common features.
We are interested in local properties of atmosphere and locality is of essential importance in these cases.
While mesoscale NWP (Numerical Weather Prediction) models and/or CTM (Chemistry Transport Models)
are the best sources of information available, they lack required space resolution. We need another model on
top of mesoscale model(s) whose role is to downscale the prediction to the required location and resolution.

Models used for the downscaling vary depending on application and available data. The most widely
investigated case of model output statistics is perhaps the first case above and models used in literature
range from purely statistical regression and neural networks models to fine resolution CFD (Computer
Fluid Dynamics) models.

Important aspect of aforesaid problems is that the finer the scale is, the more relevant is to predict the value
togetherwith its confidence interval or even to predict the whole probability distribution for non-gaussian
quantities (e.g., road ice). Since the predicted quantity can be highly sensitive to the state of atmosphere
(in atmospheric chemistry for example) and we lack the space averaging that helps in mesoscale models,
the prediction errors might be very large in some cases. This means that sometimes the information about
prediction error is even more important than the value itself.

Data assimilation framework gives us two basic benefits for downscaling. It gives us information about
mesoscale state error statistics – this is especially straightforward for data assimilation based on ensemble
methods. The simplest approach would be to perform downscaling for each ensemble member and regard
the output as a sample from downscaled prediction. This approach is perhaps oversimplified because the
resulting ensemble will lack information about error statistics of downscaling model, but there should be a
remedy to this problem. The second benefit of data assimilation framework is the possibility to feed back
the measurements into either mesoscale or downscaling model. This possibility is perhaps less pronounced
for mesoscale NWP models where the analyses usually use so many various observations and quality is
so high that assimilation of local observation might even deteriorate rather than improve the prediction.
Usefulness of assimilation together with downscaling in mesoscale air quality model will be demonstrated
in the next section and other possibilities of data assimilation also in downscaling model will be discussed
in conclusion.

The first of listed cases is the example where a number of classical methods of downscaling is being used in
practice. Assimilation of measurements (of wind or power production) back to the models is probably not
important. Prediction of power production for a number of spatially distributed wind turbines can even help
to cancel local wind turbulation and improve the forecast skill. Prediction is useful even without confidence
intervals but probabilistic forecast would be certainly an enhancement.

Importance of probabilistic forecast is the main difference between the first and the second case. We are
definitely interested in probability of road ice and a statistical model based on meteorological precursors
could be appropriate solution. The design of a statistical model will depend on availibility of historical
measurements and it could take into account the uncertainity in meteorological data.

The third case is an example when it makes sense to assimilate local measurements back into the mesoscale
model. Exact method and the first results are selected as a demonstration of downscaling in data assimilation
framework and will be main topic of the next section.

Final example is the most difficult among listed cases. There is usually not enough information to construct
either deterministic or statistical downscaling model. There is no fine resolution model of terrain for CFD
modelling and there is no history of model and observation values for statistical models – at least not at
time of occurrence of an accident. Classical downscaling methods are therefore not applicable in this case.
Design of model for local prediction in this case is a matter of further investigation.
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2. Local observations in the air quality data assimilation

Data assimilating systems for tropospheric ozone modelling and prediction are currently being proposed
and developed [1, 2]. The most common source of observations for air quality data assimilation are ground
level stations that measure in situ concentrations of important pollutants. However, the spatial represen-
tativity of measurements differs greatly from station to station and can vary from order of102m to 105m.
Current practice is therefore only to assimilate the stations with the largest representativities – usually ru-
ral background stations, since only those stations have measurements aplicable on the scale of CTM. On
the other hand most of stations are in urban areas where the air quality has the biggest impact and where
mesoscale models are not suitable for modelling and forecasts of pollutant concentrations.

We have proposed and evaluated a data assimilating system for tropospheric ozone prediction with assimi-
lation of rural background stations [3]. In this contribution we propose how to enhance system and how to
allow it assimilate stations with smaller representativity and also how to improve local predictions of ground
level ozone [4]. A test example of simple downscaling in data assimilation framework is also presented.

Our version of data assimilation is based on ensemble Kalman filter in square root formulation with local-
ization and inhomogenous model error representation [5, 6]. Traditional discretized stochastic model of
atmosphere evolution can be written as:

xt
k =M(xt

k−1) + νk (1)

yk = H(xt
k) + εk (2)

wherext
k is vector representing (inaccessible) discretized true state of atmosphere in timestepk on model

grid,M is model of atmosphere used for time integration of state equation andνk is model error in timestep
k. yk is the vector of observation in timestepk,H is observation operator connecting observation and model
state space andεk is its error in timestepk. εk is usually described as instrumental and representation error.

Observation operator in continuous space for a single observationyi has usually the form [7]

yi =

∫

R3

h(x)s(x, yi)dx+ ε(yi) (3)

whereh is function connecting observation with physical space, ands(x, yi) aperture function depending
on type of observation. For in situ observation iss(x, yi) = δ(x − yi) the Dirac delta function. For remote
instruments (e.g. radars, lidars, satelites) impliess(x, yi) weighted area averaging over its support. For
discretizated version it means thatH is usually weighted average over values in some set of gridpoints – set
of the nearest neighbours for in situ measurements or a larger set for remote observations.

We want to modify the equation (2) of stochastic model to employ a more general downscaling model
instead of observation equation. The basic idea is to decompose ozone concentration to mesoscale compo-
nent and local component. Decomposition is based on the assumption that part of ozone concentration have
origin in long range transport of precursors and mesoscale weather conditions, the second part is added or
substracted depending on local emmisions, deposition and other sub-mesoscale effects. The local compo-
nent was estimated by very simple statistical model as 7-day moving average of the model update for the
given hour of day – this reflects sometimes a strong diurnal cycle exhibited in ozone concentrations or a
persistent bias. Modified stochastic model of atmosphere is now:

xt
k =M(xt

k−1) + νk (4)

yk = H(xt
k) + zt

k + εk (5)

where the local component of ozonezt
k is modelled as

zt
k =

1

7

6∑

i=0

dt
k−24i + ηk (6)
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wheredt
k is model residual:

dt
k = yk −H(xt

k) (7)

We focus on testing the feasibility of the approach and do not try to find optimal solution forx andz simul-
taneously. We simplify solution by first estimating the local componentz at the location of observations and
then substituing our estimate into equation (5) and solving classical filtering problem. The solution gives
us an estimate of mesoscale state. We want to estimate a vector of target variablesqa

k (as e.g. local ozone
concentrations, probability of icing in specified point). For our testcase concerning ozone concetrations it
is simply a sum of mesoscale analysis and local componentqa

k = H(xa
k)+ za

k, where superscripta denotes
analysis. For linear observation operator and update equation for Kalman filter we can write:

qa
k = H(xa

k) + za
k = H(xf

k) +H(Kk(yk −H(xf
k)− za

k)) + za
k (8)

Superscriptf denotes forecast,Kk is Kalman gain matrix andKk(yk −H(xf
k)) is analysis increment.

Forecast of mesoscale component is done by the NWP and CTM couple, and forecast of local component
is done by persistent model, i.e. it repeats 24-hours old value. Indexp denotes prediction horizon(1 ≤ p ≤
24), andMp meansp successive applications of atmosphere modelM.

q
f
k+p = H(xf

k+p) + z
f
k+p = H(Mp(xa

k)) + za
k+p−24 (9)

Inspired by the equation (8) one could also alternatively try to predict analysis increment – in this case also
by a simple persistent model:

q
f
k+p = H(Mp(xa

k)) +H(Kk+p−24(yk+p−24 −H(xf
k+p−24)− za

k+p−24)) + za
k+p−24 (10)

3. Testcase and results

Testcase configuration was chosen to be as close as possible to operational system MEDARD [8] in the
Institute of Computer Science in Prague, because one of the goals is to make data assimilation usable in
operational mode. Selected NWP-CTM model couple was MM5 (PSU, NCAR) and CAMx (Environ) with
NCEP FNL analyses as initial and boundary conditions. Model grid is identical to the outer domain of
MEDARD system and has80 × 65 cells with 27 km horizontal resolution, covering western and central
Europe. CAMx model has 12 vertical levels and uses SAPRC-99 [9] chemistry mechanism.

Ozone epizode modelled took place in 24–29 June 2001. Two previous weeks were used for model cal-
ibration and spinup. We assimilated observations ofO3, NO, andNO2 from the Airbase database [10].
640 stations was selected for the assimilation – among them also mountain stations and urban background
stations that are usually not assimilated due to representativity and/or bias problems.

We wanted to stay close to prospective operational mode and 24-hour tropospheric ozone prediction was
made for the analysis at 5 p.m. Typical behaviour of local forecast compared to observation on station is
illustrated in figures 1–5.
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Figure 1: Observations and forecasts for selected station (Graz, Austria). Crosses: observations, dash-dot curve: esti-
mate of local component, dash-curve: mesoscale model (H(xf )), solid curve: target variableqf

k containing
term for analysis increment prediction (equation (10)).

Figure 2: Observations and forecasts for selected station (Strasbourg, France). Crosses: observations, dash-dot curve:
estimate of local component, dash-curve: mesoscale model (H(xf )), solid curve: target variableqf

k con-
taining term for analysis increment prediction (equation (10)).
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Figure 3: Observations and forecasts for selected station (Chamonix, France). Crosses: observations, dash-dot curve:
estimate of local component, dash-curve: mesoscale model (H(xf )), solid curve: target variableqf

k con-
taining term for analysis increment prediction (equation (10)).

Figure 4: Observations and forecasts for selected station (Lienz, Austria). Crosses: observations, dash-dot curve: esti-
mate of local component, dash-curve: mesoscale model (H(xf )), solid curve: target variableqf

k containing
term for analysis increment prediction (equation (10)).
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Figure 5: Observations and forecasts for selected station (Wicken Fen, UK). Crosses: observations, dash-dot curve:
estimate of local component, dash-curve: mesoscale model (H(xf )), solid curve: target variableqf

k con-
taining term for analysis increment prediction (equation (10)).

Figures 1 and 2 belong to urban stations with strong diurnal cycle. This cycle is not sufficiently described by
mesoscale model. Model of local component rectifies this situation and local component increases with the
beginning of the ozone episode. Figures 3 and 4 represent mountain stations with high orographic error and
probably also inadequate traffic emmisions. Mesoscale model completely lacks the strong diurnal cycle that
must be modelled by downscaling model. High persistence of simple moving average model causes worse
performance in detection of the end of episode in the case of Lienz station. Figure 5 belongs to background
rural station that is already accurately modelled by mesoscale model. Local component is negligible in this
case.

First plot in figure 6 shows that forecast combining mesoscale model and downscaling model easily out-
performs pure mesoscale model in prediction of ozone concentrations in location of measurement stations.
Second boxplot shows that also classical statistical downscaling even with very simple statistical model
brings some improvement over the pure mesoscale forecast. Improvement is seen in last two days of
episode but not elsewhere. Last plot compares errors of classical statistical downscaling with statistical
downscaling inside of data assimilation framework. The latter method is better in all days except the last
one.

4. Conclusions and future work

Test case of data assimilation and downscaling in air quality model showed that for local forecasts even
simple downscaling model is much better than mesoscale model alone. Downscaling within data assimila-
tion framework exhibited better skill than model output statictics alone. The best results were obtained with
predictor containing also the forecast of analysis increment. This could be attributed to the systematic part
of air quality model bias. Combination of downscaling and mesoscale model also allowed us to use local
observations that are usually unusable in traditional data assimilation due to large representativity errors.
The testing period was quite short for a statistical verification but the first results are encouraging.
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Figure 6: Boxplots of mean absolute errors of forecasts. Left side descriptions belongs to thin full boxes, right side
belongs thick empty boxes. Center resp. bottom and top of boxes represent median resp. 1st and 3rd
quartile of the error distribution.Free runis 1 day ahead forecast of mesoscale model started from analysed
state. Free run,post. is 1 day ahead forecast of mesoscale model with separate downscaling from data
assimilation.Forecastis 1 day ahead forecast of mesoscale model with the models of local component and
analysis increment.

Our case demonstrated that combination of downscaling model, mesoscale model and data assimilation is
beneficial even for very simple downscaling model. There are many possibilities for further development
and improvement of presented methods. Downscaling model can be much more sofisticated. Explicit
forecasts of the error covariances and confidence intervals which were omitted in our testcase is another
topic that should be investigated. Analysis scheme can be improved to analyze simultaneously local and
mesoscale component and provide better approximation of the best estimate in sense of the least squares or
maximum likelihood. Careful modelling of error covariances is important in this case, since downscaling
and mesoscale model can interact and compete for the explanation of residual variance.

There are further possibilities to investigate that are more specific for different cases. For example in
case of nowcasting of accidental release (4th case in introduction), the model for downscaling can be a
simple model accounting for terrain and landuse forcing of wind field. This model can adapt and refine its
parameters with an increasing number of observations. Or the model for downscaling can be deterministic
large-eddy simulation model. Data assimilation in traditional sense can be then performed in both mesoscale
and large-eddy model.
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