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Supervisor:

DOC. PHDR. PETR JIRKŮ, CSC.
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Abstract

The classical notion of relative interpretation (also known as direct syntactic model) is adapted for
multi-sorted first-order fuzzy logics. The level of generality is chosen to suit the needs of its applications
in Fuzzy Class Theory.

In formal logic, relative interpretations are a powerful tool that can be used not only for the proofs of
relative consistency, but also for direct syntactic constructions of notions of one theory in another. Here
we adapt the notion for fuzzy logic and show the analogs of key classical metatheorems. These results
allow using relative interpretations of fuzzy theories in essentially the same way they are used in classical
metamathematics.

Relative interpretations can be defined at varying levels of generality, the price for greater generality being
more preconditions in theorems on invariance under an interpretation. The level of generality chosen here
follows the needs of the paper [3]. For relative interpretations see [9]; we follow and slightly generalize the
exposition given in [8].

Multi-sorted first-order fuzzy logic with subsumption of sorts has been introduced in [1] for the logic ŁΠ
[6, 4]. It is nevertheless obvious that the definitions and proofs of [1] work over any fuzzy logic that
axiomatically expands MTL or MTL∆ [5]. In what follows, by “fuzzy logic” we shall therefore mean
any logic that in this sense contains MTL; we shall only require that all of its propositional connectives
be extensional w.r.t. provable equivalence (otherwise some of the metatheorems below could fail). Crisp
identity is assumed in the first-order fuzzy logic under consideration; in models it is always realized as the
identity of elements and it can be axiomatized e.g. by the axioms of reflexivityx = x and intersubstitutivity
salva veritatex = y → (ϕ(x)↔ ϕ(y)) for any formulaϕ (for details see [1]).

Besides the theorems of first-order MTL that are listed in [5], we shall need a few more (meta)lemmata. The
following lemma shows that it is possible to bind only some occurrences of a term in the existentialization
of a formula:

Lemma 1 Let ϕ(x, y) be a formula andt a term substitutable for bothx and y in ϕ. Thenϕ(t, t) →
(∃x)ϕ(x, t).

Proof: Directly by existentialization onx in ϕ. QED
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Lemma 2 For an arbitrary termt substitutable forx in ϕ(x) it is provable that

ϕ(t) ↔ (∀x)(x = t→ ϕ(x)) (1)

ϕ(t) ↔ (∃x)(x = t & ϕ(x)) (2)

Proof: (1) Left to right: from the identity axiomϕ(t) → (x = t → ϕ(x)) by generalization onx and
shifting the quantifier. Right to left: by specification ofx to t.

(2) Left to right: ϕ(t) implies t = t & ϕ(t), which by Lemma 1 implies(∃x)(x = t & ϕ(x)). Right to
left: from the identity axiomx = t & ϕ(x)→ ϕ(t) by generalization onx and shifting the quantifier to the
antecedent. QED

Corollary 3 Any formula is equivalent to a formula in which logical functions are applied only to variables
and occur only in atomic subformulae of the formy = F (x1, . . . , xk).

Proof: Using Lemma 2, inductively decompose nested termss(t) by ϕ(s(t)) ↔ (∃x)(x = t & ϕ(s(x)))
and finally byϕ(F (x1, . . . , xk))↔ (∃y)(y = F (x1, . . . , xk) & ϕ(y)) for all F . QED

Recall from [1] that the language of a multi-sorted first-order fuzzy logic is a quintuple(S,�,P,F,A),
whereS is a non-empty set of sorts,� is a partial ordering ofS indicating the subsumption of sorts,P

andF are disjoint sets of predicate resp. function symbols, andA is an arity function that assigns a finite
sequence of sorts to each element ofP∪F (the sequence must be non-empty for elements ofF). If P ∈ P

andA(P ) = (s1, . . . , sk), thenP (t1, . . . , tk) is a well-formed atomic formula iff the termti is of sortsi

for all i = 1, . . . , k. If A(F ) = (s1, . . . , sk, sk+1), thenF (t1, . . . , tk) is a well-formed term, of sortsk+1,
iff the termti is of sortsi for all i = 1, . . . , k. For more details on multi-sorted first-order fuzzy logics see
[1, §2.2].

Definition 4 (Interpretation of a language) Let L = (S,�,P,F,A) and L′ = (S′,�′,P′,F′,A′) be
two multi-sorted first-order languages. Aninterpretation of the languageL in the languageL′ is a
(metamathematical) mapping⋆ which assigns to each sorts ∈ S a function symbolF ⋆

s ∈ F′ of arity
A′(F ⋆

s ) = (s⋆, s
⋆) for somes⋆, s

⋆ ∈ S′, to each predicate symbolP ∈ P a predicate symbolP ⋆ ∈ P′,
and to each function symbolF ∈ F a function symbolF ⋆ ∈ F′, and which satisfies the following condi-
tions:

• For all s, r ∈ S, if s � r thens⋆ � r⋆.

• For all P ∈ P, if A(P ) = (s1, . . . , sk) andA′(P ⋆) = (r1, . . . , rk) thens⋆
i � ri for all i = 1, . . . , k.

• For all F ∈ F, if A(F ) = (s1, . . . , sk+1) and A′(F ⋆) = (r1, . . . , rk+1), thens⋆
i � ri for all

i = 1, . . . , k andrk+1 � s⋆
k+1.

An interpretation⋆ of L in L′ extends by metamathematical induction on the complexity of terms and
formulae ofL to a mapping (also denoted by⋆) which assigns to each termt of L a termt⋆ of L′ and to
each formulaϕ of L a formulaϕ⋆ of L′ as follows:

• Thei-th variablexs
i of each sorts in L is assigned the termF ⋆

s (xs⋆

i ) of sorts⋆, wherexs⋆

i is thei-th
variable of sorts⋆.

• Each termF (t1, . . . , tk) of L is assigned the termF ⋆(t⋆1, . . . , t
⋆
k).

• Each formulaP (t1, . . . , tk) of L is assigned the formulaP ⋆(t⋆1, . . . , t
⋆
k).

• Each formulax = y of L is assigned the formulax⋆ = y⋆.

PhD Conference ’06 6 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0135715
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• For all k-ary propositional connectivesc, each formulac(ϕ1, . . . , ϕk) of L is assigned the formula
c(ϕ⋆

1, . . . , ϕ
⋆
k).

• Each formula(∀xs)ϕ resp.(∃xs)ϕ of L is assigned the formula(∀xs⋆)ϕ⋆ resp.(∃xs⋆)ϕ⋆.

Remark 5 Notice that we allow reinterpretingvariablesof sort s by functionsfrom s⋆ to s⋆. This is
necessitated by the applications in [3], where we need to interpret variables by functional terms (e.g., when
identifyingx with the pair〈x, 0〉). A straightforward interpretation of a sorts by another sortr is covered
by this definition, taking the identity function on sorts⋆ for F ⋆

s ands⋆ = s⋆ = r.

Remark 6 In Definition 4, the logical symbols (except for variables) are left unaffected by the transla-
tion ⋆. The notion of interpretation can be defined more generally to include also the specification of the
translations of[(∀x)ϕ]⋆, [(∃x)ϕ]⋆, (x = y)⋆, and[c(ϕ1, . . . , ϕk)]⋆ for each propositional connectivec. In
Definition 9 we would then require the provability of the interpreted logical axioms and rules.

Notice that in the latter case, the background logic of the interpreted language or theory may be allowed
to differ from the background logic of the original language or theory. For empty theories, we then get an
interpretation of one logic in another. An example of such kind is the interpretation of the logicPC(∗) of a
particular ŁΠ-representable t-norm∗ in ŁΠ, which takes→ of PC(∗) to→∗ of ŁΠ, & of PC(∗) to &∗ of
ŁΠ, etc. By a recent result (oral presentation by Marchioni and Montagna at IPMU’06), the interpretation
is faithful, i.e.,PC(∗) ⊢ ϕ iff Ł Π ⊢ ϕ∗, for any formulaϕ of PC(∗). Another example of this kind are
Gödel-style interpretations, e.g., the¬¬-interpretation of classical logic in SMTL (or stronger) or the∆-
interpretation of classical logic in MTL∆ (or stronger). (Notice that Gödel-style interpretations require a
further generalization of the rule for the interpretation of atomic formulae.) In this paper, however, we shall
only use interpretations which leave the logical symbols absolute, and thus do not change the underlying
logic.

Definition 7 (Absolute and invariant notions) Let ⋆ be an interpretation of the languageL in the lan-
guageL′ and letT′ be a theory in the languageL′. Let ϕ(x1, . . . , xk) be a formula ofL and let all
non-logical symbols ofϕ belong toL′ as well. Then the formulaϕ is calledabsolute(in the theoryT′

w.r.t. the interpretation⋆) iff T′ ⊢ ϕ(x⋆
1, . . . , x

⋆
k) ↔ ϕ⋆. Similarly, a predicateP or a functorF is called

absolute, if the formulaP (x1, . . . , xk) resp.y = F (x1, . . . , xk) is absolute.

Let furthermoreL′ contain the sorts of all variables that occur inϕ. Then we will callϕ invariant(in the
theoryT′ w.r.t. the interpretation⋆) iff T′ ⊢ ϕ ↔ ϕ⋆. A predicateP or a functorF is called invariant, if
the formulaP (x1, . . . , xk) resp.y = F (x1, . . . , xk) is invariant.

Observation 8 If ϕ is both absolute and invariant w.r.t.⋆ in T′, thenT′ ⊢ ϕ(x⋆
1, . . . , x

⋆
k) ↔ ϕ(x1,

. . . , xk).

Definition 9 (Interpretation of a theory) Let T be a theory in the languageL and T′ a theory in the
languageL′. An interpretation⋆ of L in L′ is called aninterpretation of the theoryT in the theoryT′ iff
T′ ⊢ ϕ⋆ for each formulaϕ which is a logical axiom of identity or an axiom of the theoryT.

The requirement in Definition 9 that the interpreted identity axioms be provable is automatically satisfied if
all functionsF ⋆

s together are injective:

Lemma 10 Let ⋆ be an interpretation of the languageL in the languageL′ and letT′ be a theory in the
languageL′. If T′ ⊢ F ⋆

s (xs⋆) = F ⋆
t (yt⋆)→ xs⋆ = yt⋆ for all sortss, t in L, then the interpreted axioms

of identity are provable inT′.

Proof: The axiom of reflexivityx = x translates intox⋆ = x⋆, which is an instance of the reflexivity
axiom of identity inT′. The intersubstitutivity axiomx = y → [ϕ(x) ↔ ϕ(y)] translates into the formula
of the form

F ⋆
s (xs⋆) = F ⋆

t (yt⋆)→ [ψ(xs⋆)↔ ψ(yt⋆)]
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which is provable inT′ by the assumption of the lemma and the instance forψ of the intersubstitutivity
axiom ofT′. QED

The usual theorems on interpretations known from classical logic remain valid for interpretations over fuzzy
logics as well. The following theorems give examples of such results.

Observation 11 A composition of two interpretations (between languages or theories) is an interpretation
(between languages or theories, respectively).

Since the composition is obviously associative and the identical mapping is always an interpretation of a
theory in itself, the languages or theories over a fuzzy logic form a category just like in classical logic,
allowing categorial constructions on fuzzy theories.

Theorem 12 Let ⋆ be an interpretation of the theoryT in the theoryT′. Then for any formulaϕ in the
language ofT, if T ⊢ ϕ thenT′ ⊢ ϕ⋆.

Proof: By induction on the proof ofϕ: by the requirement of Definition 9, the interpreted axioms ofT and
those of identity are provable inT′, and all other logical axioms and rules are translated by⋆ again into the
instances of logical axioms and rules (observe that the termt⋆ is substitutable forxs⋆ iff t is substitutable
for xs). QED

Definition 13 (Faithful interpretations) The interpretation⋆ of the theoryT in the theoryT′ is faithful
iff for all formulaeϕ in the language ofT it holds thatT ⊢ ϕ iff T′ ⊢ ϕ⋆.

A faithful interpretation⋆ of T in itself such thatϕ⋆⋆ ≡ ϕ is called aduality.

Example 14 (Identical interpretation) If the theoryT′ in the languageL′ extends the theoryT in the
languageL, then the identical interpretation ofL in L′ (i.e.,x⋆ = x, P ⋆ = P , andF ⋆ = F for all sorts
and symbols) interpretsT in T′. The interpretation is faithful iffT′ extendsT conservatively.

The following lemma gives a method how to prove the faithfulness of an interpretation in some cases.

Lemma 15 Let⋆ interpretT in its extensionT′ and lets⋆ = s for all sorts inT. Let furthermore

T′ ⊢ P ⋆(F ⋆
s1

(xs1
1 ), . . . , F ⋆

sk
(xsk

k ))↔ P (xs1
1 , . . . , x

sk

k ) (3)

T′ ⊢ F ⋆
s (ys) = F ⋆(F ⋆

s1
(xs1

1 ), . . . , F ⋆
sk

(xsk

k ))↔ ys = F (xs1
1 , . . . , x

sk

k ) (4)

for all function symbolsF and predicate symbolsP in the language ofT (including the identity predicate).

ThenT′ ⊢ ϕ⋆ ↔ ϕ for all formulaeϕ in the language ofT (i.e., all notions in the language ofT are
invariant under⋆).

If furthermoreT′ extendsT conservatively, then⋆ is faithful.

Proof: The first claim is proved straightforwardly by induction on the subformulae ofϕ. By (3), (4)
and Corollary 3 we can assume thatT′ ⊢ ψ⋆ ↔ ψ holds for all atomic subformulaeψ in ϕ. Proposi-
tional combinations preserve the propertyT′ ⊢ ψ⋆ ↔ ψ, since our definition of interpretation leaves all
propositional connectives absolute and in the logics under consideration all connectives are extensional
w.r.t. provable equivalence. Forψ ≡ (∀xs)χ, sinces⋆ = s, its translationψ⋆ is (∀xs)χ⋆, and thus
T′ ⊢ (∀xs)χ⋆ ↔ (∀xs)χ follows from the induction hypothesisT′ ⊢ χ⋆ ↔ χ by the rules of MTL
(similarly for ∃).

The claim of faithfulness under conservativity:T′ ⊢ ϕ⋆ ↔ ϕ entails (T′ ⊢ ϕ⋆ iff T′ ⊢ ϕ), and by
conservativityT′ ⊢ ϕ iff T ⊢ ϕ; thusT′ ⊢ ϕ⋆ iff T ⊢ ϕ. QED
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Remark 16 Definition 4 requires that all sorts and symbols occurring in the definitions ofx⋆, P ⋆, andF ⋆

be present in the languageL′. Following the usual mathematical practice, we shall not distinguish between
a theory and its extensions by conservative definitions. Thus we shall allow givingx⋆, P ⋆, andF ⋆ by
the defining formulae or terms for the needed predicates, functors, and sorts, provided the definitions are
conservative.

For the conservative introduction of predicate and function symbols see [7]: the definition of a predicate
symbol by an axiomP (x1, . . . , xk) ↔ ϕ(x1, . . . , xk) is conservative and eliminable for any formulaϕ,
while the introduction of a function symbolF (x1, . . . , xk) by an axiomϕ(x1, . . . , xk, F (x1, . . . , xk)) is
conservative on condition that(∃xk+1)ϕ(x1, . . . , xk, xk+1) is provable in the theory; the definition is elim-
inable if the uniqueness of suchxk+1 is provable in the theory. (In multi-sorted languages, the obvious
conditions on the sorts of the arguments must be ensured.)

For the definition of sorts, it is easy (but tedious) to check that a sorts subsumed in a sortt can be introduced
by an axiom(∃xs)(xt = xs)↔ ϕ(xt), which is conservative if the theory proves that(∃xt)ϕ(xt) and that
ϕ is crisp; if it is further required thats � s′ for any sorts′, the conservativity is ensured if the theory
further provesϕ(xt)→ (∃xs′

)(xt = xs′

).

The apparatus of relative interpretations is widely applicable in all sorts of formal fuzzy theories. Since
Fuzzy Class Theory FCT of [1] is proposed in [2] as a foundational theory for fuzzy mathematics, relative
interpretations of various fragments of FCT in itself are of special importance. In Example 17 I give an
incomplete list of such interpretations (the details will be given in a separate paper). Some of them (e.g.,
the upper shift or the relativization) prove important (even if often intuitively obvious) metamathematical
properties of FCT, while others codify constructions which either obviate some of the syntactic restrictions
of FCT (e.g., the singleton shift), or can be useful in various areas of fuzzy mathematics formalized in FCT
(e.g., the “×{0}” interpretation, employed in [3]).

Example 17 The following constructions are important interpretations ofFCT (or some of its fragments)
in FCT:

• Identical interpretations.Propositional fuzzy logic, classical theory of the identity of individuals,
the classical theory of identity of tuples, the theory of fuzzy classes, the theory of fuzzy relations,
and monadic Henkin-style higher-order fuzzy logic are all fragments ofFCT given by a suitable
restriction of the language (admitting only some sorts of variables). It can be shown that they can be
axiomatized by the axioms ofFCT restricted to the same language with an additional axiom stating
that the sorts for tuples do not exhaust the universal sort of the same order.FCTextends these theories
conservatively, and thus the identical interpretations of the respective fragments represent all of the
above theories faithfully inFCT.

• Upward shift.The translation♯ that consists in raising the order of all variables by1 is an interpre-
tation of FCT in itself (since the axioms ofFCT are invariant under♯). All definitions and theorems
of FCT can thus be propagated to all higher orders by iteration of♯.

• Relativization. Restricting all quantifiers to acrisp class (resp. its iterated crisp powers in higher
orders) is an interpretation ofFCT in itself. The domain of discourse thus can be arbitrarily chosen
from some basic universe (as long as it is crisp).

• Singleton shift. FCTdoes not allow classes to contain elements of different orders (e.g.,{x,X}).
Nevertheless, they can be simulated by means of faithful interpretations. It can be shown that the
interpretation{·} (“singleton shift”) which mapsx to {x} is a faithful interpretation of the theory
of identity (which exhausts the relevant features of atomic elements) in the theory of fuzzy classes.
The mixed class{x,X} thus can be “encoded” by the class{x{·}, X} = {{x}, X}. (Further
adjustments can be made in order to make the backward translation one-to-one and make it work
at all levels of the type hierarchy.) Thus by this interpretation, mixed classes of arbitrary orders are
available inFCT.
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• Transposition.Switching all pairs〈x, y〉 to 〈y, x〉 is a duality inFCT. Dual forms of the theorems on
fuzzy relations thus need not be proved (e.g.,dom(A×B) = A, follows fromrng(A×B) = B).

• Relational representation of classes.Fuzzy classes can be represented among fuzzy relations by
identifying atomic elementsx with pairs 〈x, 0〉 (for a fixed element0); any fuzzy classA is then
identified with the fuzzy relationA× {0}. This interpretation is employed in [3] for proving hosts of
theorems on fuzzy relations and classes at once.

Remark 18 The interpretations of Example 17 often state an “isomorphism” of some structures in FCT.
The need of using interpretations arises primarily from the fact that the notion of isomorphism (not even a
bijection) has not yet been developed inside FCT. (Since all notions in FCT are in general fuzzy, this notion
would need a careful analysis.) Nevertheless, since FCT is a formal syntactic theory, the metamathematical
apparatus of interpretations is very suitable for such tasks, and the “syntactic isomorphisms” obtained by
the method of interpretation are usually easier to prove than they would be inside the theory.
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