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Zdeněk Fabián

Technical report No. 978

October 2006
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Abstract:

A scalar inference function introduced in Fabián (2001) is generalized for a larger class of continuous
distributions. Its first two moments are used for introduction of measures of the central tendency and
the variability of the distribution. The number of examples shows that the new measures are plausible for
continuous distribution, even for such for which the mean and/or the variance do not exist. They can be
estimated from the data through the maximum likelihood estimates of the parameters; the estimates are
expressed in particular cases by algebraic formulas without need to estimate the parameters.
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1 Introduction and statement of the problem

Let F be a distribution function of the continuous probability distribution with density

f(x)
{

> 0 if x ∈ X
= 0 if x ∈ R�X

where X ⊆ R is an open interval (support). Its commonly used numerical characteristics are the
moments

νk =
∫

X
xk dF (x), k = 2, ... (1.1)

Particularly, the mean m = ν1 is taken as a measure of the central tendency of F and variance
σ2 = ν2−ν2

1 as a measure of the variability of the values around the mean. However, for many simple
and frequently used distributions, the integrals (1.1) are infinite. An often quoted example is the
Cauchy distribution having neither mean nor variance, but there are many parametric distributions
with support X = (0,∞) for which (1.1) converge in a limited range of parameters only, for instance
the log-logistic, Fréchet, Pareto, log-Cauchy, beta-prime, Fisher-Snedecor and Burr XII distributions.
The sample mean and sample variance of data samples taken from these distributions characterize
neither a ’center’ nor the dispersion of the data.

On the other hand, let m be an integer and Θ ⊂ Rm a space of parameters and Fθ, θ ∈ Θ a
parametric distribution with density fθ(x) = dFθ(x)/dx. The classical inference function, the vector
of likelihood scores

U(θ) = [
∂

∂θ1
log fθ(x), ...,

∂

∂θm
log fθ(x)],

is too complicated to offer simple numerical characteristics. Vector of estimates of the parameters do
not often contain any component which could characterize the ’center’ and/or the dispersion of the
data. We find that the central tendency and dispersion of continuous distributions can be characterized
by the first and second moment of a scalar inference function S(x), the moments of which

ESk =
∫

X
Sk(x) dF (x), k = 1, 2, ... (1.2)

exist independently of the speed with which the density approaches to zero.
A function of these properties is well-known for distributions supported by R. Let G be such

distribution with density g continuously differentiable according to the variable and let

Q(x) = −g′(x)
g(x)

(1.3)

be its score function. Let Θ = R × Θm−1 and Gµ be the set of distributions Gµ for which θ = (µ, θ̃)
where µ ∈ R is the location parameter and θ̃ ∈ Θm−1. Here and in the sequel, we did not explicitly
indicate a possible dependance on θ̃. Let Gµ have density

gµ(x) = g(x− µ). (1.4)

Its score function

Qµ(x) = − 1
g(x− µ)

dg(x− µ)
dx

=
∂

∂µ
log gµ(x) (1.5)

is equal to the likelihood score for location, which is the most important parameter of Gµ expressing
its central tendency. We conclude that for distributions with ’full support’ R function

S(x) = Q(x) (1.6)

appears to be a suitable scalar inference function. Obviously,

EQ = 0. (1.7)
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Let us further assume that

EQ2 =
∫ ∞

−∞

(g′(x))2

g(x)
dx < ∞. (1.8)

Condition (1.8) is weak and corresponds to the usual conditions of regularity.
Relation (1.6) cannot be used, however, in cases of distributions supported by X 6= R (with ’partial

support’). For instance, for exponential distribution Q(x) = 1 and for uniform distribution Q(x) = 0.
It may be thought that a suitable S could be the likelihood score for the most important parameter,
but this is not a plausible idea since it is not clear which of the parameters of distribution with partial
support could represent a measure of the central tendency.

Based on the fifty-year-old idea of Johnson (1949), Fabián (2001) suggested to view any distribution
F with partial support X = (a, b) 6= R as transformed ’prototype’, that is, as if it be in form

F (x) = G(η(x)), (1.9)

where G is a distribution supported by R (a prototype) and η−1 : R → (a, b) a suitable mapping. It
appeared that for many model distributions suits the inverse of the Johnson transformation (Johnson,
1949) adapted for arbitrary support

η(x) =





x if (a, b) = R
log(x− a) if −∞ < a < b = ∞
log (x− a)

(b− x) if −∞ < a < b < ∞
log(b− x) if −∞ = a < b < ∞.

(1.10)

An interesting characteristic of F was shown by Fabián (2001) to be the transformed score function
of the prototype

T (x) = Q(η(x)), (1.11)

termed a core function. From (1.11) and relation

f(x) = g(η(x))η′(x) (1.12)

following from (1.9), a formula

T (x) =
1

f(x)
d

dx

(
− 1

η′(x)
f(x)

)
(1.13)

was derived showing that the core function of distribution with differentiable density can be determined
without reference to its prototype by - somewhat sophisticated - differentiating of the density according
to the variable.

An unusual feature of the core function is that it is ’support-dependent’, since η(x) is specific for
a given support. It follows from (1.11) and (1.10) that the core functions of the distributions with the
most frequent supports are

T (x) =





−f ′(x)/f(x) if X = R
−1− xf ′(x)/f(x) if X = (0,∞)

−1 + 2x− x(1− x)f ′(x)/f(x) if X = (0, 1).
(1.14)

For other (continuous and strictly monotone) mappings η : R → X one obtains different ’core func-
tions’. For instance, for distribution with support X = (−π/2, π/2) and density

f(x) =
1√

2π cos2 x
e−

1
2 tan2x,

the use of η(x) = tan x leads to a ’core function’ given by a simple formula. However, the logarithmic
transformation (1.10) is suitable for many frequently used model distributions. There are other sup-
porting reasons: under (1.10) the prototype of the lognormal distribution is the normal distribution
and the core function of the uniform distribution is linear.
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Consider a distribution with partial support X 6= R and with prototype Gµ ∈ Gµ. Let us denote
the image of the location of the prototype on X by

t = η−1(µ) (1.15)

and call it a Johnson parameter. Denote this distribution with parameter space Θ′ = X × Θm−1

by Ft and let Ft(X ) be the set of such distributions. A distributions Ft ∈ Ft(X ) has the following
important property: Let us set u = η(x)− η(t). By (1.12), (1.4) and (1.15), the density of Ft ∈ Ft(X )
is ft(x) = h(u)η′(x). Denoting by Tt(x) = Qη(t)(u), we have

∂

∂t
log ft(x) =

∂

∂t
log h(u)η′(x) = − 1

h(u)
dh(u)

du

∂u

∂t

so that
∂

∂t
log ft(x) = η′(t)Tt(x). (1.16)

Function
S(x) = η′(t)Tt(x) (1.17)

of distribution Ft ∈ F(X ) equals to the likelihood score for parameter t. Since t is the image of the
location of the prototype, it can be considered as expressing the central tendency of distributions from
F(X ).

Example 1.1 Gumbel distribution with support R, density

gµ(x) = ex−µe−ex−µ

and score function Qµ(x) = ex−µ − 1 is the prototype of distribution with density

ft(x) =
x

t
e−

x
t
1
x

=
1
t
e−

x
t (1.18)

which is exponential distribution. By (1.11), core function of (1.18) is Tt(x) = x/t − 1 and S(x) =
1
t Tt(x) equals to the likelihood score for t.

However, the density of distribution G with full support R does not need to have the location
parameter and the transformed distribution F (x) = G(η(x)) thus does not need to have the John-
son parameter. Actually, many distributions supported by X = (0,∞) are not members of the set
Ft(0,∞).

Example 1.2. Distribution GPB with support X = R, density

gPB(x) =
1

B(p, q)
epx

(ex + 1)p+q
(1.19)

where B is the beta function and with score function

Q(x) =
qex − p

ex + 1
(1.20)

has parameters p > 0, q > 0, neither of which is the location. (1.19) is the prototype of distribution
with support X = (0,∞) and density

f(x) =
1

xB(p, q)
xp

(x + 1)p+q , (1.21)

which is the standard form of the Pearson Type VI distribution, sometimes called the beta-prime or
beta II distribution. Neither of the parameters of (1.21) appears to be the Johnson parameter.

The problem how to generalize (1.17) for distributions without the Johnson parameter is solved
by Definition 1 in the next section.
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2 Main result: Definition of the Johnson score, Johnson mean
and Johnson variance

We realized that t (the ’image’ of the location of the prototype) in the term η′(t) in (1.17) is for
concrete Ft the value of the Johnson parameter for which Tt(t) = 0. (1.17) can be thus generalized
by replacing t by the the zero of the core function, which is the ’image’ of the mode of the prototype
distribution.

Definition 2.1. Let F be distribution with interval support X ⊆ R and density f continuously
differentiable according to the variable except possibly a finite number of point. Let η : X → R be given
by (1.10), T (x) be core function (1.13) and the solution x∗ of equation

T (x) = 0 (2.1)

be unique. A Johnson score of distribution F is defined by

S(x) = η′(x∗)T (x). (2.2)

Definition 1 adjoins a unique scalar function S(x) to any distribution F with unimodal prototype.
S(x) is either the usual score function for F supported by R or the likelihood score for the Johnson
parameter for Ft ∈ Ft(X ) or a new function in other cases. We suppose that the meaning of new
functions is similar as in the previous cases: for a given x ∈ X , the value S(x) describes the sensitivity
of the construction of a measure of central tendency of F from the observed values (x1, ..., xn) to the
value x.

Example 1.2 (continues). By (1.11), core function of the beta-prime distribution is T (x) =
(qx− p)/(x + 1) so that

x∗ = p/q (2.3)

and the Johnson score (2.2) is

S(x) =
1
x∗

T (x) =
q

p

qx− p

x + 1
. (2.4)

Since (2.4) is a bounded function, the influence of an additional value S(x) to the average
∑n

i=1 S(xi)
is limited and this average is not sensitive to outliers in the data.

Proposition 2.1. Let F have prototype G satisfying condition (1.8) and Johnson score S. Than
ES = 0, ES2 < ∞.

Proof. By (1.11), (1.12) and (1.3)

ESk =
∫ b

a

Sk(x)f(x) dx

= (η′(x∗))k

∫ b

a

Qk(η(x))g(η(x))η′(x) dx

= (η′(x∗))k

∫ ∞

−∞
Qk(y)g(y) dy.

The assertions then follows from (1.7) and (1.8). 2

By (1.16), if Ft ∈ Ft(X ), value ES2 is the Fisher information for t. Value EQ2 of distributions with
support R is called by Cover and Thomas (1991, pp.494) the Fisher information of the distribution.
Analogically, we can call ES2 the Fisher information of distribution F (with arbitrary partial support).
Furthermore, since η′(x) > 0, it follows from Definition 1 that

S(x∗) = 0. (2.5)

Definition 3.2. Let the assumptions of Definition 2.1 hold for distribution F with Johnson score
S. The value x∗ given by (2.5) will be called a Johnson mean and the value

ω2 = (ES2)−1 (2.6)
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a Johnson variance of distribution F.
Proposition 2.2. For distributions with support X = (0,∞)

ω2 =
(x∗)2

ET 2
. (2.7)

Proof. Clear from (2.6), (2.2) and (1.10). 2

By relations (2.5) and (2.6), the alternative measures of the central tendency and variability are
assigned to any distribution with regular and unimodal prototype. If the prototype is not unimodal,
some subsidiary construction for determining its measure of central tendency have to be used. These
cases are not considered.

3 Examples

In this section we derive expressions for the Johnson mean and Johnson variance of some frequently
used distributions (see Johnson, Kotz and Balakrishnan, 1994, 1995). We show that the Johnson
characteristics can serve as measures of central tendency and dispersion of the values around the
Johnson mean not only of distributions, the mean and the variance of which are given by formulas
valid only in certain ranges of parameters, but even for distributions having the usual mean and
variance.

Normal distribution N(µ, s) has a score function

Q(x) =
x− µ

s2

with x∗ = µ. Since EQ2 = 1/s2, Johnson mean and Johnson variance are identical with the mean and
variance.

Distributions from Ft(0,∞) has Johnson mean x∗ = t, Johnson score S(x) = t−1T (x) equal to the
likelihood score for t and Johnson variance

ω2 = t2/β2. (3.1)

An example is the Weibull distribution with density

f(x) =
β

x
(x/t)β

e−(x/t)β

and Johnson score
S(x) =

β

t
[(x/t)β − 1].

Fig. 1 shows densities and Johnson scores of three particular cases of the Weibull distribution with
β = 1 (exponential distribution), β = 2 (Rayleigh distribution) and β = 3 (Maxwell distribution).
Johnson means of all three distributions are x∗ = 1, the means are near (and in the case β = 1 equal)
to x∗.
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0 1 2.5
0

1.4

1 3
2 

a 

0 1 2.5
−5

0 

10

1 

3 2 b 

Fig. 1. Densities (a) and Johnson scores (b) of Weibull distributions with t = 1, β = 1, 2, 3. The
means m(β) are denoted by stars. m(1) = 1,m(2) = 0.885,m(3) = 0.893.

Another example of a distribution from Ft(0,∞) is the Fréchet distribution with density

f(x) =
β

x
(x/t)−β

e−(x/t)−β

.

The mean m = tΓ(1− 1/β) and the variance σ2 = t2[Γ(1− 2/β)−Γ2(1− 1/β)] of the distribution do
not exist if β ≤ 1 and β ≤ 2, respectively. Johnson score is

S(x) =
β

t
[1− (x/t)−β ],

so that x∗ = t and ω2 is given by (3.1). Fig. 2 shows the standard deviation and the square root of ω2

as functions of 1/β. Whereas σ blows up at 1/β = 1/2, ω is comparable with the simulated average
MAD (median absolute deviation, Hampel et al. (1986), dotted curve).

0  0.5 2.5
0

4.5
1 

2 

1/β

3

Fig. 2. Square root of Johnson variance of the Fréchet distribution. 1 - σ, 2 - ω = t/β, 3 - MAD.

Fig. 3 shows densities of the Fréchet distributions with various Johnson means. The variability of
the values around the Johnson mean is apparently similar to all four distributions. Indeed, they have
the same Johnson variance ω2 = 1.
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0.7
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2 3 
4 

Fig. 3. Densities of Fréchet distributions, t = 1, 2, 3, 4, ω = 1.

Let us mention two more distributions from Ft(0,∞), the lognormal distribution with density

f(x) =
β√
2πx

e−
1
2 ln2(x/t)β

and Johnson score S(x) = β
t ln(x/t)β and the log-logistic distribution with density

f(x) =
β

x

(x/t)β

((x/t)β + 1)2

and Johnson score

S(x) =
β

t

(x/t)β − 1
(x/t)β + 1

.

The mean m = t[Γ(1 + 1/β)Γ(1 − 1/β] and variance σ2 = t2[Γ(1 + 2/β)Γ(1 − 2/β)] −m2 of the log-
logistic distribution do not exist if β ≤ 1 and β ≤ 2, respectively. Johnson mean of both distributions
is x∗ = t and Johnson variance is given by (3.1).

Let us now present some distributions with support (0,∞) which are not members of Ft(0,∞).
Gamma distribution with density

f(x) =
γα

Γ(α)
xα−1e−γx

has parameters α > 0, γ > 0 neither of which appears to be the Johnson parameter. By (1.11), its
core function is T (x) = γx− α. The solution of T (x∗) = 0 is x∗ = α/γ so that the Johnson score

S(x) =
1
x∗

T (x) = γ

(
x

α/γ
− 1

)
. (3.2)

(3.2) is a linear function. Since ET 2 = α, ω2 = (x∗)2/α = α/γ2. Johnson mean and Johnson variance
of the gamma distribution are the usual mean and variance.

Burr XII distribution has density

f(x) = αβ
xβ−1

(xβ + 1)α+1
.

Its mean m = αB(1 + 1/β), α − 1/β) and variance σ2 = α2B(1 + 2/β, α − 2/β)−m2 do not exist if
βα ≤ 1 and βα ≤ 2, respectively. Since

T (x) = −1− x
f ′(x)
f(x)

= β
αxβ − 1
xβ + 1

,

Johnson mean x∗ = α−1/β and Johnson score

S(x) = α1/ββ
αxβ − 1
xβ + 1

. (3.3)
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After computing ES2 we obtain

ω2 = (ES2)−1 =
1

β2α2/β

α + 2
α

. (3.4)

Fig. 4 shows the densities and Johnson scores of the Burr XII distributions. The mean of the
distribution with β = 1 does not exist, the means of other two distributions, denoted by stars, do
not provide a reasonable description of their central tendency. All three distribution has the same
Johnson mean x∗ = 1.

1 3
0

1.5

1 

3
2 

a 

1 3
−5

0

5

1 

3 2 b 

Fig. 4. Densities (a) and Johnson scores (b) of Burr XII distributions with x∗ = 1, β = 1, 2, 3. The
means m(β) are denoted by stars. m(1) does not exist.

Beta-prime distribution with support X = (0,∞) and density (1.21) has mean m = p/(q − 1)
and variance

σ2 =
p(p + q + 1)

(q − 1)2(q − 2)
, (3.5)

which do not exist if q < 1 and q < 2. Since x∗ = p/q, its Johnson variance is by (3.10) (given below)
and Proposition 1

ω2 = (x∗)2/EQ2 =
p(p + q + 1)

q3
. (3.6)

(3.6) looks like (3.5) with corrected denominator.
Fig. 5 shows the standard deviation and the square root of the Johnson variance of beta-prime

distribution as functions of 1/q. Similarly, as in the case of the Fréchet distribution, standard deviation
blows up at 1/q = 1/2 whereas the Johnson ’standard deviation’ is comparable with the simulated
MAD.
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0  0.5 2.5
0

4.5

1/q 

3 

2 

1 

Fig. 5. Square root of Johnson variance of beta-prime distribution. 1 - σ, 2 - ω, 3 - MAD.

Let us present some distributions with other supports.
Pareto distribution has support X = (a,∞) and density

f(x) =
cac

xc+1
. (3.7)

Its mean m = ca/(c− 1) and variance

σ2 =
ca2

(c− 1)2(c− 2)
(3.8)

do not exist if c ≤ 1 and c ≤ 2, respectively. By (1.10), η′(x) = 1/(x−a). By (1.11), the core function
of the Pareto distribution is

T (x) = −1− (x− a)
f ′(x)
f(x)

= (c + 1)
x− a

x
− 1

so that the Johnson mean is
x∗ = a(c + 1)/c (3.9)

and Johnson score

S(x) =
1
x∗

T (x) =
c

a

[
x− a

x
− 1

c + 1

]
.

Since

ET 2 = (c + 1)2
∫ ∞

0

[
c

c + 1
− a

x

]2
cac

xc+1
dx =

(c + 1)2c
c + 2

,

Johnson variance of the Pareto distribution is

ω2 =
(c + 2)a2

c3

which, as in the case of the beta-prime distribution, looks like variance (3.8) with corrected denomi-
nator.

Prototype beta distribution GPB (1.19) with support R and score function (1.20) has the second
score moment

EQ2 =
pq

p + q + 1
(3.10)

and Johnson variance ω2 = (EQ2)−1. Let us find from (3.10) a symmetric (p = q) prototype beta
distribution with ω = π/

√
3 : the solution is q = k = (1 + π/

√
3)/π2). In Fig. 6 are compared

gPB
k,k with gPB

1,1 which has σ = π/
√

3 and with the density of the standard normal distribution with
σ = π/

√
3. Johnson variance of the prototype beta distribution corresponds to the variance of the

normal distribution.
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−6 0 6
0

0.25

Fig. 6. Densities of prototype beta with ω = π/
√

3 (full line), prototype beta with σ = π/
√

3
(dashed line) and standard normal with ω = π/

√
3 (dotted line).

Generalized Student distribution has support R and density

fµ,s,ν(x) =
νν/2

sB(1/2, ν/2)
1

(
ν +

(
x−µ

s

)2
) ν+1

2

. (3.11)

Particularly, fµ,s,1 is the Cauchy distribution, having neither mean nor variance and f0,1,n is the
Student distribution with n degrees of freedom. Its mean m = 0 and variance σ2 = n/(n − 2) exist
only if n > 1 and n > 2, respectively. The distribution has score function

S(x) =
ν + 1

s

(x− µ)/s

ν +
(

x−µ
s

)2 .

Since

ES2 =
(

ν + 1
s

)2
νν/2

B(1/2, ν/2)

∫ ∞

−∞

ξ2dξ

(ν + ξ2)(
ν+1
2 +2)

,

we obtain by the use of the table integral
∫ ∞

−∞

x2dx

(ν + x2)λ
=

ν1/2B(1/2, λ− 3/2)
2(λ− 1)νλ−1

,

the second core moment

ES2 =
(ν + 1)2

s2

1
ν(ν + 3)

ν

ν + 1
and Johnson variance

ω2 =
ν + 3
ν + 1

s2.

Fig. 7 shows densities of distributions (3.11) with µ = 0, ν = 1, 1.5, 3 and s such that the Johnson
variance of all three distributions is ω2 = 3. Variances of the first two distributions do not exist, the
variance of the distribution denoted by 3 is equal to the Johnson variance.

−6 0 6
0

0.3

1

3

Fig. 7. Densities of generalized Student distributions with Johnson variance ω2 = 3. 1: ν = 1, 3:
ν = 3, without number: ν = 1.5.
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Distributions from Ft(0, 1) have Johnson mean x∗ = t(1−t), Johnson score S(x) = (t(1−t))−1T (x)
equal to the likelihood score for t and Johnson variance

ω2 = (t(1− t))2/β2.

An example is the Johnson’s UB distribution, the prototype of which is normal distribution, with
density

f(x) =
β√

2πx(1− x)
e−

1
2 ln2(x(1−t)/(1−x)t)β

and core function T (x) = β ln
(

x(1−t)
(1−x)t

)β

.

We mention two distributions with support (0, 1) which are not members of Ft(0, 1).
Beta distribution with density

fp,q(x) =
1

B(p, q)
xp−1(1− x)q−1 (3.12)

has common prototype (1.19) with beta-prime distribution. The core function of distribution T (x) =
(p + q)x− p has zero x∗ = p/(p + q) so that the Johnson score is

S(x) =
1

x∗(1− x∗)
T (x) =

(p + q)3

pq

(
x− p

p + q

)
, (3.13)

which is a linear function bounded on the support. Johnson mean x∗ is equal to the mean, but the
Johnson variance

ω2 = [(x∗(1− x∗)]2EQ−2 =
pq(p + q + 1)

(p + q)4

and variance σ2 = pq/[(p + q)2(p + q + 1)] are different. If p = q → 0, σ2 → 1/4 whereas ω2 grows
to infinity, giving thus greater ’weight’ to the observations from the ends of the support of U-shaped
beta distributions.

Triangular distribution with density

f(x) =
{ 2x

t if 0 < x ≤ t
2(1−x)

1−t if t < x < 1.

has Johnson mean x∗ = t and its core function is, by (1.14),

T (x) =
{

3x− 2 if 0 < x ≤ t
3x− 1 if t < x < 1.

(3.14)

The Fisher information of triangular distribution is given in Fabián (1997).

4 Estimates

Consider a realization x = (x1, ..., xn) of independent random variables X1, ..., Xn identically dis-
tributed (i.i.d.) according to F with unknown Johnson point x∗ and unknown Johnson variance ω2.
Both x∗ = x∗(θ) and ω2 = ω2(θ) are functions of θ and can thus be constructed from the maximum
likelihood estimate θ̂ML of θ. Let θ̂ML be asymptotically normal AN(θ, n−1Σ2) and h(θ) be a func-
tion continuously differentiable at θ. h(θ̂) is the estimate of h(θ) consistent and AN(h(θ), n−1DΣD′)
where D = (∂h(θ)/∂θ1, ..., ∂h(θ)/∂θm), cf. Serfling (1980, pp.122). Since ES2(θ) > 0, the numbers
x̂∗ML = x∗(θ̂ML) and ω̂2

ML = ω2(θ̂ML) characterize the ’center’ and dispersion of the data sample x,
the statistical properties of which can be easily determined.

Example 4.1. Let F be Pareto distribution (3.7) with a = 1 and ĉML be AN(c, σ2
c/n). By (3.9),

its Johnson mean is x∗ = 1 + 1/c so that x̂∗ML is AN(1 + 1/ĉML, σ2
c/nĉ4

ML).
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An alternative to the maximum likelihood method is the generalized moment method, i.e., esti-
mating θ as the solution of system

1
n

n∑

i=1

Sk(xi; θ) = ESk, k = 1, ..., m, (4.1)

where S is the Johnson score of distribution F. The method was introduced and partly studied in
Fabián (2001). In the rest of the section we show that system (4.1) gives, for particular distributions,
estimates of the Johnson mean or of the both Johnson characteristics as algebraic expressions, which
are not too worse as x̂∗ML and ω̂2

ML.
Writing Johnson score S(x) of distribution F in form S(x; x∗), let us now study estimates of x∗

obtained from the first equation of (4.1),

n∑

i=1

S(xi; x∗) = 0. (4.2)

Proposition 4.1 Sample Johnson mean x̂∗n estimated from equation (4.2) is consistent and asymp-
totically normal AN(x∗, ω2/n).

Proof. Since S is assumed to be continuous, the consistence of x̂∗ is obvious. Random variables
S(xi, x

∗) are i.i.d. with zero mean and finite variance ES2. According to the Lindeberg and Lévy
Central limit theorem, x̂∗n is AN(x∗, (ES2)−1/n) = AN(x∗, ω2/n) by (2.6). 2

For distributions F ∈ Ft(X ), equation (4.2) is by (1.16) identical to the maximum likelihood
equation for t. The sample Johnson mean of the lognormal distribution is thus x̂∗ = t̂ = (x1x2···xn)1/n,
which is the geometric mean, the sample Johnson mean of the Weibull distribution for a given β = p
is

x̂∗ = t̂ = (
1
n

n∑

i=1

xp
i )

1/p,

which is the pth mean (for exponential distribution the arithmetic mean), and the sample Johnson
mean of the Fréchet distribution for a given β = p is

x̂∗ = t̂ = 1/(
1
n

n∑

i=1

1/xp
i )

1/p,

which is in case p = 1 a harmonic mean. The sample Johnson mean of the log-logistic and other
distributions from Ft(0,∞) are to be found from (4.2) iteratively.

Let us consider some distributions which are not members of Ft.
The sample Johnson mean of the beta-prime distribution (1.21) is given by

n∑

i=1

qxi − p

xi + 1
= 0.

Since by (2.3) x∗ = p/q,

x̂∗ =

∑n
i=1

xi
1 + xi∑n

i=1
1

1 + xi

. (4.3)

In Table 1, average values of x̂∗ estimated from 5000 samples randomly generated from the distribution
are compared with average values of x̂∗ML = p̂ML/q̂ML.

n x̄∗ML x̄∗ σ(x̄∗ML) σ(x̄∗)
15 3.208 3.194 0.971 0.975
30 3.104 3.097 0.638 0.644
50 3.050 3.045 0.468 0.475

Table 1. Estimates of the Johnson mean of the beta-prime distribution.
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Both estimates are practically the same and have similar variances.
Equation (4.2) for Pareto distribution (3.7) is

1
n

n∑

i=1

(
c

c + 1
− a

xi

)
= 0. (4.4)

Since x∗ = a(c + 1)/c, it follows from 4.4 that

x̂∗ = (
1
n

n∑

i=1

1/xi)−1. (4.5)

The Johnson mean of the Pareto distribution is a harmonic mean. Let us compare x̂∗ computed
from (4.5) with x̂∗ML = a(ĉML + 1)/ĉML, where ĉML = n(

∑n
i=1 log(xi/a))−1. Average values of both

estimates for a = 1 are given in Table 2.

c x∗ x̄∗ML x̄∗ σ(x̄∗ML) σ(x̄∗)
2 1.5 1.498 1.504 0.091 0.098
1 2 2.001 2.025 0.182 0.222
0.5 3 2.997 3.084 0.366 0.541

Table 2. Estimates of the Johnson mean of the Pareto distribution, a = 1, n = 30.

The maximum likelihood estimates are somewhat better.
The first two equations (4.1) for gamma distribution are

n∑

i=1

(γxi − α) = 0

1
n

n∑

i=1

(γxi − α)2 = α,

from which x̂∗ = α/γ = 1
n

∑n
i=1 xi = x̄ and

ω̂2 = α/γ2 =
1
n

n∑

i=1

x2
i − x̄2. (4.6)

Both the sample Johnson mean and sample Johnson variance can thus be estimated directly from the
data without estimating the parameters. In Table 3, average values ω̄2 estimated by using (4.6) are
compared with ω̄2

ML = α̂ML/γ̂2
ML (x̂∗ and x̂∗ML are identical).

α γ ω2 ω̄2
ML ω̄2 σ(ω̄2

ML) σ(ω̄2)
2 2 0.5 0.489 0.483 0.033 0.036
1 1 1 0.996 0.968 0.080 0.091
0.5 0.5 2 2.049 1.907 0.212 0.229

Table 3. Estimates of the Johnson variance of the gamma distribution, n=30.

Both estimates are similar.
The first two equations (4.1) for the beta distribution are by (3.13) and Proposition 1

n∑

i=1

(xi − x∗) = 0

1
n

n∑

i=1

(xi − x∗)2 =
pq

(p + q + 1)(p + q)2

so that x̂∗ = x̄ and σ̂2 = 1
n

∑n
i=1 x2

i − x̄2 (ω̂2 is expressed by means of the estimates of parameters).
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Equation (4.2) for the triangular distribution with core function (3.14) is

k∑

i=1

(3xi − 2) +
n∑

i=k+1

(3xi − 1) = 0

from which we obtain

3
n∑

i=1

xi = 2k + (n− k)

and finally

t̂ =
k

n
= 3x̄− 1,

which seems to be a reasonable estimate of the central tendency.
In a general case, estimates (4.1) appear to be alternatives to the maximum likelihood estimates.

According to Fabián (2001), they are slightly worse but often much simpler.
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