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Abstract:

We design a formal model of an amorphous computer suitable for theoretical investigation of its compu-
tational properties. The model consists of a finite set of nodes created by RAMs with restricted memory,
which are dispersed uniformly in a given area. Within a limited radius the nodes can communicate with their
neighbors via a single-channel radio. The assumptions on low-level communication abilities are among the
weakest possible: the nodes work asynchronously, there is no broadcasting collision detection mechanism
and no network addresses. For the underlying network we design a randomized communication protocol
and analyze its efficiency. The subsequent experiments and combinatorial analysis of random networks
show that the expectations under which our protocol was designed are met by the vast majority of the
instances of our amorphous computer model.
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1 Introduction

Thanks to recent developments in micro-electro-mechanical (MEMS) systems, wireless communica-
tions and digital electronics, a mass production of extremely small-scale, low-power, low cost sensor
devices is in sight. They integrate sensing, data processing and wireless communication capabilities.
They are utilized in building sensor, mobile, and ad-hoc wireless networks, and also more exotic sys-
tems, such as smart dust (cf. [11], [13]), or amorphous computers (cf. [1], [2], [4]). In these devices,
the limitations of available memory space in individual processors given by their size and limited
communication range implied by a limited energy resource seem to impose severe restrictions to the
class of computations allowable by such devices. The design of the respective algorithms presents a
challenge unmatched by the development in related areas such as in the theory of distributed systems
or ad-hoc networks. According to Nikoletseas [11] the specific limitations in such networks (e.g., in
the case of smart dust) call for a design of distributed communication protocols which are extremely
scalable (i.e., operating in a wide range of network sizes), time and energy efficient, and fault tolerant.

It seems that so far the respective research has mainly concentrated on the concrete algorithmic
issues neglecting almost completely the computational complexity aspects in that kind of computing
(cf. [12]). Very often the designers of such algorithms pay little attention to the underlying computa-
tional model and, e.g., they take for granted the synchronicity of time in all processors, the existence
of unique node identifiers and that of communication primitives allowing efficient message delivery.

In our paper we concentrate on a computational model of a wireless communication network where
such functionalities are not available. This is a typical case with the “exotic” computational devices
mentioned earlier. Our model, called amorphous computer works under very week assumptions: ba-
sically, it is a random graph which emerges by distributing the nodes randomly in the bounded
planar area. The graph’s nodes are processors (limited memory RAMs with random number gen-
erators) without unique identifiers (“addresses”). The graph’s edges exist only among nodes within
the bounded reach of each node’s radio. The nodes operate asynchronously, either broadcasting or
listening, hearing a message only if it is sent exactly by one of its neighbors. That is, there is no
mechanism distinguishing the case of a multiple broadcast from the case of no broadcast.

Due to its weak (and thus, general) underlying assumptions which correspond well to the case of
amorphous computing as described in the literature, we believe that our model presents a basic model
of amorphous computing (cf. [1], [2], or an overview in [4]). Within the theory of computation a
model of an amorphous computer, as given by our definition, represents an interesting object of study
by itself since it contains elements of randomness built–in into both the computer’s “set–up process”
and its operations.

Under the above mentioned mild assumptions concerning the communication among the nodes of
an amorphous computer and under reasonable statistical assumptions on the underlying graph we
design a scalable randomized auto-configuration protocol enabling message delivery from a source
node to all other nodes. For networks whose underlying communication graph has N nodes, diameter
D and node degree Q, the complexity of our algorithm is O(DQ log(N/ε)) with probability ε > 0 of
failure.

For the synchronous case, the problem of message delivery similar to ours has been studied in the
seminal paper by Ben-Yehuda, Goldreich and Itai in 1993 [3]. Under the same notation as above,
the algorithm of Ben-Yehuda et al. runs in time O((D + log(N/ε)) log N). This algorithm is faster
than ours, but the assumption of synchronicity (allowing that all nodes can start a required action
simultaneously) is a crucial one for its correctness. However, synchronization is exactly the feature
excluded by the very definition of amorphous computing.

A formal model of amorphous computer is described in Section 2. The main result of the paper
—an asynchronous communication protocol —is presented in Section 3. Due to the “amorphousness”
of the underlying model of computations the functionality, the performance and fault tolerance of the
previous protocol heavily depend on the properties of large communication networks with a random
topology. These properties are studied in Section 4 using both experiments and combinatorics. Section
5 is devoted to conclusions.
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2 Model

Various descriptions of amorphous computers can be found in the literature (e.g. [1], [2], [4] and
[5]). Unfortunately, these “definitions” differ in details and can hardly be seen as complete and self-
contained definitions of an amorphous computer. As a rule, the definitions in the above mentioned
references only explicitly state the features of an amorphous computer distinguishing it from other
similar computational systems. Often, the vital details like the assumptions on the underlying com-
munication system are only present in amorphous computer emulators (if at all) which are written by
the authors and which are not described in the papers.

This is to be compared to the standards in the complexity theory where all computational models
(Turing machines, RAMs, etc.) are described by formal definitions accepted by the entire community.
In order to get a model of an amorphous computer (AC) amenable to computability and complexity
analysis we will define an AC as follows.

Definition 1 An amorphous computer is a quintuple A = (N, P,A, r, T ) where

1. N is the number of processors (also called nodes) in the underlying network. Each node is
created by a RAM enhanced by a module for wireless sending and receiving. All nodes are
identical, controlled by the same program, except of a single distinguished node called the I/O–
port. In addition to the standard node facilities (see below) this node is capable to send and
receive data to/from a remote operator and is used to enter the data into the AC and to send
the results of AC data processing to the operator.

2. In each RAM each register holds a number represented by O(log N) bits. Every RAM is equipped
with a special read-only register called rand, a special read-only register rin and a special write-
only register rout. On each read, register rand delivers a new random number. The registers in
all nodes are initialized by the same starting values.

3. P is a random process assigning to each node a position with continuous uniform distribution
over a planar area A, independently for each node.

4. r gives the radius of a communication neighborhood. Any two nodes at distance at most r > 0
are called neighbors. All neighbors of a node form the node’s neighborhood.

5. T > 0 is transmission time of a message within a neighborhood of any node.

6. (Asynchronicity:) In each RAM any instruction takes one unit of time. The actions (computa-
tions, communication) of all processors are not synchronized.

7. The nodes communicate according to the following rules:

• if a node writes a value representing a message to rout, this message is broadcasted to its
communication neighborhood;

• all nodes broadcast on the same channel;

• if none of the given node’s neighbors is broadcasting a message, then the given node register
rin contains an empty message λ;

• if exactly one of a given node’s neighbors is broadcasting a message m, then after time T
register rin in the given node contains m;

• if two or more of the node’s neighbors are broadcasting a message and the time intervals of
broadcasting these message transfers overlap, then there is a so–called collision and the rin
register of the receiving node contains empty message λ;

• the nodes have no means to detect a collision, i.e., to distinguish the case of no-broadcast
from the case of a multiple broadcast.
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Note that since the register size of each RAM is bounded (as it is always the case in practice) each
RAM can be seen as a finite automaton. However, we have still chosen to see it as a “little RAM”
since such a view corresponds more to practice. Consequently, increasingly more nodes must take part
in a computation using asymptotically more than a constant amount of memory.

The communication model by the above given definition models a multi-hop radio network using
one shared channel without collision detection. This is the most general model considered in the
literature. We have chosen this model in order to capture the low–level details of communication in
an AC. This model also seems to best characterize the capabilities of a communication system that
are envisaged for use in a real hardware implementation.

An AC operates as follows. The input data enter the AC via its input port. ¿From there, the
data (which might also represent a program for the processors) spread to all nodes accessible via
broadcasting. In a “real” AC additional data might also enter into individual processors via their
sensors which, however, are not captured in our model since they do not influent our results. Then
the data processing within processors and data exchange among processors begins. The results are
delivered to the operator again via the output port. Obviously, an AC can work in the standard
“Turing machine” mode as well as in an interactive mode.

3 Asynchronous Communication Protocol

In order to enable communication among all (or at least: a majority of) available processors the
underlying communication graph of our AC must have certain desirable properties. The properties
which are of importance in this case are: graph connectivity, graph diameter and the maximal degree
of its nodes. Obviously, a good connectivity is a necessary condition in order to be able to harness
a majority of all processors. Graph diameter bounds the length of the longest communication path.
Finally, the node degree (i.e., the neighborhood size) determines the collision probability on the
communication channel.

Assuming that all nodes of an AC should participate in its computation there must exist a mecha-
nism of node–to–node communication used by the nodes to coordinate their actions. Such a mechanism
will consist of two levels. The lower level is given by a basic randomized broadcasting protocol en-
abling each node to broadcast a message to its neighborhood. Making use of this protocol we extend
it, on the next level, to a broadcasting algorithm that can be used to broadcast a message from a
given node to all other network nodes.

Protocol Send: A node is to send a message m with a given probability ε > 0 of failure. The
protocol must work correctly under the assumption that all nodes are concurrently, asynchronously,
in a non-coordinated way, using the same protocol, possibly interfering thus one with each other’s
broadcast.

The idea is for each node to broadcast sporadically, minimizing thus a communication collision
probability in one node’s neighborhood. This is realized as follows. Each node has a timer measuring
timeslots (intervals) of length 2T (T is time to transfer a message). During its own timeslot, each
node is allowed either listen, or to send a message at the very beginning of its timeslot (and then listen
till the end of this timeslot). Making use of its random number generator, a node keeps sending m at
each start of the timeslot with probability p for k subsequent slots. The values of p and k are given
in the proof of the following theorem. After performing the above algorithm each node waits for 2kT
steps (so–called safe delay) before it can perform the next round of the protocol.

Theorem 1 (Sending a message) Let A be an amorphous computer, let the underlying computa-
tional graph be connected with maximal neighborhood size bounded by Q. Let 1 > ε > 0 be an priori
given allowable probability of failure. Assume that all nodes send their messages asynchronously ac-
cording to the Protocol Send. Let X be a node sending message m and Y be any of X’s neighbors.
Then the Protocol Send delivers m to Y in time O(Q log(1/ε)) with probability at least 1− ε.

Sketch of the proof: Thanks to our choice of the length of the timeslots, for each timeslot of a given
node X there is exactly one corresponding timeslot of some other node Y such that if both nodes
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send asynchronously in their timeslots, only a single collision will occur. This is so because if X has
started its sending at the beginning of its timeslot, X’s and Y ’s sendings overlap if and only if Y had
started a sending in a timeslot that was shifted w.r.t. the beginning of X’s timeslot by less than T
time units in either time direction. The timeslots of length shorter than 2T could cause more than a
single broadcast collision between the arbitrary pairs of nodes, whereas longer timeslots would delay
the communication.

We will treat message sendings as independent random events. Message m is correctly received by
Y in one timeslot if X is transmitting m (the probability of such event is p) and none of Y ’s neighbors
is transmitting (the corresponding probability is (1 − p)Q), giving the joint probability p(1 − p)Q.
The value of p(1− p)Q is maximized for p = 1/(Q + 1). The probability of a failure after k timeslots
is [1 − p(1 − p)Q]k = ε. Hence, k = ln ε/ln[1− p(1− p)Q]. The denominator in the latter expression
equals −∑∞

i=1[p(1 − p)Q]i/i ≤ −p(1 − p)Q = −1/(Q + 1)(1 + 1/Q)−Q ≤ −e−1/(Q + 1) leading to
k = O(Q log(1/ε). 2

In order to send a message to any node of an AC we use flooding, i.e, broadcasting the message
to all nodes of the network.

Algorithm Broadcast. A node is to broadcast message m to be received by all other nodes. The
node sends m using ProtocolSend. Upon receiving this message, any other node also starts sending
m using ProtocolSend. Within the duration of a safe delay, a node remembers the last sent message
in order to ignore it when receiving it repeatedly.

Theorem 2 (Broadcasting) Let the communication graph of A be connected, with Q,N and ε as
above. Assume a node X starts broadcasting a message m in the network using Broadcast Algorithm,
making use of Protocol Send with error probability ε/N . Then m will be delivered to each node in
time O(DQ log(N/ε)) where D denotes the diameter of the communication graph. The probability that
there is a node in the network not receiving m is less than ε.

Sketch of the proof: Message m spreads through the network in waves, as a breadth-first search
algorithm of the communication graph starting in X would do it. All nodes of the current wave send
m to their neighbors using ProtocolSend with error ε/N , which takes time O(Q log(N/ε). After at
most D waves, m has reached all nodes. The algorithm takes time O(DQ log(N/ε)). For one node
the failure probability is ε/N and for the whole network this probability will rise to ε. The safe delay
ensures that a second message cannot outrun the first one if the same node sends two messages one
after the other. 2

4 Properties of random networks

Note that the definition of an AC makes no assumptions about the underlying communications graph
whereas the statements of both Theorems 1 and 2 have referred to the underlying communication
graphs. This has been so since only some graphs are “good” for our purposes while the others
cannot support any interesting computations. In the previous theorems the appropriateness of the
underlying graphs has been ensured in theorems’ assumptions. However, by the definition of an AC,
its communication network is shaped by process P as a result of the node placement (cf. Definition 1,
item 3), which means that the resulting network has a random structure. Now we will be interested
under what conditions a randomly emerging network will have the properties assumed in the previous
theorems. As we have seen, for the basic protocol to work we needed connected networks. Moreover,
in order to estimate the efficiency of the protocol we made use of the diameter and of the maximum
neighborhood size of the respective networks. Therefore we will focus onto the latter mentioned
properties of random networks.

For an amorphous computer A = (N,P, A, r, T ) its node density d is defined as d = Nπr2/a (a
denotes the size of area A). In the rest of the paper we assume that the nodes constituting a network
are distributed uniformly randomly (by process P ) over a square area A with a given density.
Connectivity A connected component of a graph comprises all nodes among which a multi-hop
communication is possible.
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The existence of an edge between two nodes is a random event depending on the random positions
of the nodes. The probability of edge presence is higher with larger communication radius r and is
lower when the nodes are spread over a larger area A.

Node density d gives the average number of nodes in the communication area of one node. Depend-
ing on the node density we expect to observe different topology of the node connections graph. For
low densities, the majority of the nodes will be isolated with high probability. For medium densities
connected components of fixed average size (not depending on the total number of nodes) will be
formed with high probability. For very high densities there is a critical density (co–called percolation
threshold) above which one huge component containing nearly all nodes will be formed with high prob-
ability. This behavior has been studied by so–called percolation theory (cf. [8]) but, unfortunately,
the available analytical results concern the case of nodes placed on a rectangular grid and hence do
not cover the case we are after (cf. [14]). In [7], the critical density of around 4.5 has been found by
simulations in the continuum percolation model.

A percolation threshold also exists in our random network scenario. We were interested how the
size of the largest component in a random graph depends on the node density. To this end we have
executed experiments for several node counts. For each node count the experiment consisted of 400
runs. In each run we created one random graph and observed the size of its largest component. Then
we computed the component size such that it was not achieved only in 2 % of the experimental runs
(i.e., we estimate the 2nd percentile). The results are shown in Fig. 1. All experiments were carried
out with density d = 6 which is the value chosen in order to get reasonably large components.

The interpretation of the results is following. Let’s take the case N = 100. The obtained value
0.48 means that a random realization of a graph with N nodes will have a component with more
than 0.48N nodes with probability 98 %. As can be seen from our figure, for larger node counts the
fraction tends to rise.

Thus, whenever an AC with at least 100 connected nodes is needed, we should actually create
an AC with 100/0.48 = 210 nodes. The expected AC will then have a component containing 100
connected nodes with 98 % probability. The penalty of this scenario is that a constant factor of nodes
gets wasted which may be acceptable for cheap devices. This is in contrast with, e.g., the ad-hoc
networks scenario using expensive devices, where full connectivity is sought and the node density
must rise as Ω(log N) (cf. [9]).
Diameter The diameter of a graph is the maximum length of a shortest path between any two vertices
of that graph.

Analytically, the size of a random graph diameter has been derived, e.g., in [6]. It shows that the
diameter is about O(D/r), where D is the diameter of a circle circumscribing the area containing the
nodes. But we cannot directly apply this result to our AC. First, the result has been proved only for
the asymptotic case when number N of nodes goes to infinity. Second, the referred result holds only
when the node density is above the connectivity threshold (which is Ω(log N)). In our scenario, we
have used constant node density that is above the percolation threshold but below the connectivity
threshold.

In [10] an experiment was carried out measuring the diameter size while varying both the number
of nodes and the transmission range. However, we are interested in the behavior of the graph diameter
when the node density remains fixed. Therefore we performed 400 test runs with various numbers
of nodes with density d = 6 and measured the 98th percentile of a graph diameter. The results are
shown in Fig. 2.
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Our experiments show that the graph diameter follows the asymptotic expression derived in [6]
also below the connectivity threshold. When the node density d is fixed, then O(D/r) = O(

√
N/d).

In Fig. 2, the node count increases quadratically and it can be easily seen that the graph diameter
rises roughly linearly with

√
N . We see that an upper bound in the form diameter = 2.7

√
N holds.

We expect that at most in 2 % of random realizations the graph diameter will be larger than this
value.

Maximum neighborhood size can be estimated by applying the techniques known from the solu-
tions of the classical occupancy problem.

Theorem 3 Let A = (N,P, A, r, T ) be an AC with N nodes randomly uniformly dispersed by proces
P with density d over a square area A, let Q = d8 log N/ log log Ne. Then for a sufficiently large N,
the probability that there are more than 12Q nodes in any communication neighborhood of a node is
less than 4/(dN).4

Proof: We start by exactly covering A of size a by H = h × h squares, with h ∈ N; the size of each
square is chosen so that its size is maximal, but note greater than the area πr2 of a communication
neighborhood. Then (h− 1)2πr2 < a ≤ h2πr2 and since a = Nπr2/d, we get N/H ≤ d and for h ≥ 4,
H/N < 2/d.

We estimate the probability p=k that in a randomly selected square there will be exactly k nodes
for k “not too small” (see in the sequel). Let us consider all sequences of length N over {1, 2, . . . ,H} of
node “throws” into H squares numbered by 1, 2, . . . H. There are HN of such sequences, each of them
being equally probable. Consider any i, 1 ≤ i ≤ H. There are (H − 1)N−k

(
N
k

)
sequences containing

exactly k occurrences of i. Then p=k =
(
N
k

) (H−1)N−k

HN =
(
N
k

)
1

Hk

(
1− 1

H

)N−k and the probability that

there are at least k nodes in a square is p≥k =
∑N

j=k p=j =
∑N

j=k

(
N
j

) (
1
H

)j (
1− 1

H

)N−j
. Using

Stirling’s approximation
(
N
j

) ≤ (eN/j)j and upper-bounding the last factor in the last expression by

1 we get p≥k ≤
∑N

j=k

(
eN
jH

)j

≤ ∑N
j=k

(
ed
j

)j

≤ (
ed
k

)k ∑∞
j=0

(
ed
j

)j

≤ (
ed
k

)k ∑∞
j=0

(
ed
k

)j
. The latter

infinite series converges to 1/(1 − ed/k) providing ed < k. Consider k such that ed < k/2; then the
sum of the series is at most 2 and for k ≥ (ed)2, p≥k ≤ 2

(
ed
k

)k ≤ 2.2−1/2k log k.

For k = Q we get p≥k ≤ 2.2−
1
2

8 log N
log log N (3+log log N−log log log N) ≤ 2/N2 (taking into account that for

a sufficiently large N, 3 + log log N − log log log N ≥ 1
2 log log N). It follows that the probability that

in any of the H squares there will be at least Q nodes is 2H/N2 < 4/(dN).
Finally, note that for h ≥ 2 the size of a square is s > ((h− 1)/h)2πr2 ≥ 1/4πr2. Hence, the area

of a communication neighborhood is smaller than the area of four squares. After realizing that the
nodes from at most 12 squares can enter a circular neighborhood of area πr2 the claim of the theorem
follows. 2

4All logarithms are to the base 2.
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From Theorems 1 and 2 it follows that for graphs with the maximum neighborhood size bounded
as in Theorem 3 the asymptotic time complexity of ProtocolSend is O(log N log(1/ε)/ log log N) and
that of AlgorithmBroadcast O(

√
N log N log(N/ε)/ log log N), with high probability.

Note that the statistical properties of random networks do not depend much on the presence or
non-presence of small random subsets of nodes. This is vital when considering the failure resilience of
amorphous computers w.r.t. to random node faults.

5 Conclusion

We have devised a formalized model of an amorphous computer. Its main departure point from
other models of wireless networks or distributed computing is amorphousness of its architecture,
anonymity of processors and a principal lack of synchronicity combined with the impossibility to detect
broadcasting collisions. Unlike the majority of the known models which work whenever appropriately
programmed, this need not be the case with an amorphous computer since its nodes can be dispersed
in an unlucky manner that does not support the computer’s functionality. We have shown both
experimentally and analytically that under reasonable statistical assumptions chances are high that
an amorphous computer with good expected properties will emerge. For such a computer we have
designed the basic communication protocol enabling message sending within a neighborhood of a node.
Using a variant of a flooding technique this elementary algorithm has been extended to broadcasting
over the entire network. The main research problem for the future is the existence of a more efficient
sending protocol.
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