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Abstract:

In our previous paper [6] we have shown that Hebbian learning in Hopfield-like neural network is a
natural procedure for Boolean factor analysis. Hebbian learning forms a connection matrix of the network
as a co-variation matrix of input signal space. Neurons that represent one common factor are more
correlated and thus create attractor of the network dynamics. In this paper we describe a procedure of
factors retrieval. According to this procedure, network dynamics evolve forward starting from a random
initial state and stabilize in the attractor which corresponds to one of the factors (a true attractor) or
one of the spurious attractors. Separation of true and spurious attractors is based on calculation of their
Lyapunov function and activation threshold. We studied efficiency of the retrieval procedure by computer
simulation.
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1 Introduction

The theoretical analysis and computer simulations performed in our previous paper [6] have revealed
that Hopfield-like neural networks are capable of performing Boolean factor analysis of signals of high
dimension and complexity. Factor analysis is a procedure which maps original signals into the space
of factors. Linear factor analysis implies that each original signal can be presented as

X = FS (1.1)

where
F is a matrix N × L of factor loadings and S is a vector of factor scores. Each component of S

gives contribution of the corresponding factor in the original signal. Each column of loading matrix
F gives presentation of the corresponding factor in the signal space. Below these vectors are termed
factors. Mapping of original space to the factor space means that signals are represented by vectors S
instead of original vectors X. Boolean factor analysis implies that a complex vector signal has a form
of the Boolean sum of weighted binary factors:

X =
∨

Slf l. (1.2)

In this case, original signals, factor scores and factor loadings are binary and the mapping of
original signal to the factor space means citation of factors that were mixed in the signal.

There are many examples of data in the sciences when Boolean factor analysis is required [4].
However, there is no general method to perform it except the fit of the learning set by an exhaus-
tive search. This method evidently requires an exponentially increasing number of trials when the
dimension of the pattern space increases. Thus it can be used only when this dimension is relatively
small.

For the case of large dimensionality it was a challenge [6] to utilize for Boolean factor analysis the
Hopfield-like neural network with parallel dynamics. Due to the correlational Hebbian rule, neurons
which represent one factor and therefore tend to fire together, become more tightly connected than
neurons belonging to different factors, constituting an attractor of network dynamics. Hence the ability
of Hopfield network to perform factor search is determined by two aspects: first, by probability that
network activity converges to one of the factors starting from the random state, second, by possibility
to distinguish between the factors and the spurious attractors. As shown in [6], this ability depends
mainly on two network parameters: sparseness of factors encoding and relative informational loading
L/N where L is the total number of factors and N is the network size (which is the dimensionality of
signal space). Sparseness is determined by ratio p = n/N of active neurons n in the factor to their total
number N . We restrict the study by the case of sparsely encoded factors, i.e. by the case p ¿ 1. There
is a following a priori reason to do this. Boolean superposition of an even relatively small number of
densely encoded binary factors, results in input signal vectors with almost components having value
1. It is clear that in the extreme case when all components have value 1, decomposition of signals in
factors is evidently impossible and this is the reason why it is impossible to expect successful factor
analysis of densely encoded factors. And this why almost of our computer simulations were performed
for p = 0.02.

In the present study we suggest and investigate a two-run procedure for factor search. The sepa-
ration of true and spurious attractors is based on calculation of their Lyapunov function.

We treat the mean number of factors mixed in each signal as signal ”complexity” C. In the
limit case C = 1, the considered network reduces to ordinary Hopfield network. As shown in [6],
the increase the of complexity drastically decreases the size of the attraction basins around factors.
However, this decrease can be completely suppressed by adding one inhibitory neuron to the principal
neurons of Hopfield network. We suggest that this procedure allows excluding generally the influence
of complexity to network dynamics.

The paper is organized as follows. The pProcedure for factors search is described in Section 2.
The limit case of Boolean factor analysis when the input signals are pure factors (C = 1), i.e. the
ordinary Hopfield network, is investigated in Section 3. The case of a large complexity is investigated
in Section 4. The results are discussed in Section 5.
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2 Description of learning and recall procedures

The binary patterns of the signal space are treated as activities of N binary neurons (1 - active, 0 -
nonactive) with gradually ranging synaptic connections between them. Each pattern of the learning
set Xm is stored in the matrix of synaptic connections J′ according to the correlational Hebbian rule

J ′ij =
M∑

m=1

(Xm
i − qm)(Xm

j − qm), i 6=j, J ′ii = 0, (2.1)

where M is the number of patterns in the learning set and bias qm =
N∑

i=1

Xm
i /N is the total activity of

the m-th pattern. This form of bias corresponds to the biologically plausible global inhibition being
proportional to overall neuronal activity.

Additionally to the the N principal neurons of Hopfield network described above we introduced
one special inhibitory neuron activated during the presentation of every pattern of the learning set
and connected with all principal neurons by bidirectional connections. The patterns of the learning
set are stored in the vector J′′ of the connections according to Hebbian rule

J ′′i =
M∑

m=1

(Xm
i − qm) = M(qi − q), (2.2)

where qi =
M∑

m=1
Xm

i /M is a mean activity of the i-th neuron in the learning set and q is a mean

activity of all neurons in the learning set. It is also supposed that the excitability of the introduced
inhibitory neuron decreases the inversely proportionally to the size of the learning set being 1/M after
storing all its patterns. In the recall stage its activity is then

A(t) = (1/M)
N∑

i=1

J ′′i Xi(t) = (1/M)J′′T X(t)

where J′′T is transposed J′′. Respectively, the inhibition produced in all principal neurons of the
network is given by vector J′′A(t) = (1/M)J′′J′′T X(t). Thus, the inhibition is equivalent to the
substraction of J′′J′′T /M = MqqT from J′ where q is a vector with components qi − q. As shown
in [6], the substraction first completely suppressed two global attractors which dominate in network
dynamics for C À 1, and second, made the size of attractor basins around the factors to be independent
of signal complexity C. In fact, the adding of the inhibitory neuron is equivalent to the replacement
of common connection matrix J′ by the matrix J = J′ −MqqT .

To reveal factors we used a two-run recall procedure. Its initialization starts by presentation of
random initial pattern Xin with kin = rinN active neurons. Activity kin is supposed to be much
smaller than the activity of factors, i.e. rin ¿ p. On presentation of Xin, network activity X evolves
to an attractor. The evolution is determined by the synchronous dynamics equation in discrete time.
At each time step:

Xi(t + 1) = Θ(hi(t)− T (t)), i = 1, · · ·, N, Xi(0) = Xin
i (2.3)

where hi are components of the vector of synaptic excitations

h(t) = JX(t), (2.4)

J = J′ −MqqT , Θ is the step function, and T (t) is activation threshold.
At each time step of the recall process, the threshold T (t) was chosen in such a way that the level

of the network activity was kept constant and equal to kin. Thus, on each time step kin ”winners”
(neurons with the greatest synaptic excitation) were chosen and only they were active on the next
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time step. To avoid uncertainty in the choice of winners when several neurons had synaptic excitations
at the level of the activation threshold, small random noise was added to the activation threshold of
each individual neuron. The amplitude of the noise was put to be less than the smallest increment of
the synaptic excitation given by formula (2.4). This ensured that neurons with the highest excitations
were kept to be winners even if the random noise was added to the neurons’ thresholds. The noise to
individual neurons was fixed during the whole recall process to provide its convergence. As shown in
[6], this choice of activation thresholds ensures stabilization of the network activity in point or cyclic
attractor of length two.

When the activity stabilizes, at the initial level of activity kin, kin + 1, neurons with maximal
synaptic excitation are chosen for the next iteration step, and network activity evolves to some attrac-
tor at the new level of activity kin + 1. Then the level of activity increases to kin + 2, and so on, until
the number of active neurons reaches the final level rfN with rf > p. Thus, one trial of the recall
procedure contains (rf − rin)N external steps and several steps inside each external step to reach an
attractor for fixed level of activity.

At the end of each external step Lyapunov function was calculated by formula

Λ = XT (t + 1)JX(t), (2.5)

where XT (t + 1) and X(t) are two network states in cyclic attractor (for point attractor XT (t + 1) =
X(t) ). Selection of true and spurious trials was based on the analysis of the change of Lyapunov
function and activation threshold along each trajectory of network dynamics. In the following we
ordinary use relative Lypunov function λ(r) = Λ(r)/rN that is a mean synaptic excitation of neurons
belonging to some attractor at the end of the external step with k = rN neurons.

Computer simulation revealed that sizes of attraction basins around factors are distributed in a
large range. When initial states are chosen randomly network activity tends to converge to factors
with larger attraction basins. To suppress dominance of these factors we deleted them from network
memory according to Hebbian unlearning rule by substraction ∆Jij from synaptic connections Jij

where

∆Jij = η[(Xi(t)− r)(Xj(t + 1)− r) + (Xi(t + 1)− r)(Xj(t)− r), j 6= i (2.6)

where X(t) and X(t + 1) are successive patterns of network activity in the attractors and η is an
unlearning rate. Due to this unlearning, factors that dominate in network dynamics and attract
network activity the most often are gradually deleted from the network memory. Then factors with a
little smaller attraction basins become to dominate which are deleted in turn until all factors would
be revealed.

3 Simple signals of a learning set

To clarify peculiarities of the recall procedure we initially consider ordinary Hopfield network, i.e.
”Boolean factor analysis” in the extremity of C = 1 when signals of a learning sets are factors
themselves. Moreover according to results obtained in [6] we suggest that due to additional inhibition,
network dynamics become independent of signals complexity at all. Thus the results obtained for
C = 1 are expected to be valid for any complexity. We verify this expectation in the next Section.

In computer simulations we used factors that were uniformly distributed in BN
n

6 (i.e. each factor
contained exactly pN ones and (1−p)N zeros), every pattern of the learning set was one of the factors
and each factor appeared in learning set only once, i.e. network learning was performed by the same
way as for ordinary Hopfield network.

3.1 Separation of true and spurious attractors

As an example, Fig. 1 demonstrates changes of relative Lyapunov function λ along the trials of the
recall procedure for p = 0.02, N = 3000 and L = 0.7N . Each trial was initiated by random pattern
with rin = 0.005.

6BN
n = {X|Xi ∈ {0, 1},

N∑
i=1

Xi = n}
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Fig. 1 Relative Lyapunov function λ in dependence on the relative network activity r for common Hopfield network,

N = 3000, L = 0.7N . The data were normalized to the mean of Lyapunov function for true attractors at r = p.

Trajectories of network dynamics form two separated groups. As shown in Fig. 2, the trajectories
with higher values of Lyapunov function are true and with lower ones are spurious. This Figure relates
values of Lyapunov function for patterns of network activity at points r = p to maximal overlaps of
these patterns with factors. Overlap between two patterns X1 and X2 with p active neurons was
calculated by formula

m(X1,X2) =
1

Np(1− p)

N∑

i=1

(X1
i − p)(X2

i − p)

By this formula overlap between equal patterns is equal to 1 and mean overlap between independent
patterns is equal to 0. Patterns with high Lyapunov function have high overlap with one of the factors,
while patterns with low Lyapunov function are far from all the factors. It is shown that true and
spurious trajectories are separated by the values of their Lyapunov functions. In Figs 1 and 2 and in
the following the values of Lyapunov function are normalized by mean value of this function over true
attractors at the point r = p.

The second characteristic feature of true trajectories is the existence of a kink at a point r = p
where the level of network activity coincides with that in factors (see Fig. 1). When r < p the increase
of r results in almost linear increase of the relative Lyapunov function. Increase of r occurs in this
case due to joining of neurons belonging to the factor that are strongly connected with other neurons
of factor. Then joining of new neurons results in proportional increase of mean synaptic excitation to
the active neurons of factor that is just equal to their relative Lyapunov function. When r > p the
increase of r occurs due to joining of some random neurons that are connected with factor by week
connections. Thus, the increase of the relative Lyapunov function for true trajectory sharply slows
and it tends to the values of Lyapunov function for spurious trajectories.

The third characteristic feature of true trajectories which allows for their distinction from spurious
trajectories, lies in the behavior of their activation thresholds. Activation thresholds T at the final
states of external steps are shown in Fig. 3 for the same network parameters as in Fig. 1. Initially
activation thresholds for true attractors are larger in comparison with spurious ones. However at the
point r = p they sharply drop to the level of spurious attractors. This behavior is originated from
the well known fact (see, for example, [5]) that during activation of the fragment of one of the stored
patterns the distribution of synaptic excitations has two separated high and low modes: high - for
neurons belonging to the pattern and low - for neurons not belonging to it. The mean of the high mode
increases proportionally to the size of the fragment and the mean of the low mode is close to zero.
When r < p fragments of stored patterns are activated along the true trajectories. Then activation
thresholds are inside the high mode. The mean of high mode increases when r increases since r is
the relative size of activated fragment of the stored pattern. Consequently the activation thresholds
increase with r. However when the stored pattern is activated totally (r = p), the activation threshold
has to jump to the low mode to activate additional neurons not belonging to the pattern as r continues
to increase.
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Fig. 2 Values of normalized Lyapunov function in relation to overlaps with the closest factors for common Hopfield

network, N = 3000, L = 0.7N . It is shown that true and spurious attractors can be easily separated due to a large gap

between distributions of values of Lyapunov function.

The use of these three features of true trajectories provides reliable recognition of patterns stored
in Hopfield network.

3.2 Probability of true trials during random search

Another requirement to the procedure of factors search concerns its ability to reveal all factors (stored
patterns in the case of common Hopfield network). Two properties of network dynamics could disturb
this ability: the dominance of spurious attractors that prevents activation of true attractors at all
and the dominance of several true attractors that prevents activation of all others. We show in this
subsection that the first problem is actually principal and there exists the critical loading L that
restricts network ability of factors search. However, as shown in the next subsection, the second
problem can be easily solved by the unlearning of dominant factors.

There are two reasons why spurious attractors become to dominate when L increases: first, due
to the increase of their Lyapunov function; second, due to the increase of their amount. It is well
known (see, for example, [2], [1]) that Lyapunov function of spurious attractors increases when relative
loading L/N increases, and amount of spurious attractors increases exponentially when network size
N increases. Thus we can expect the existence of two limits that restrict network ability for factors
search. One relates to the critical relative loading and another - to the critical network size under
fixed relative loading.

To find the first limit we estimated the values of normalized Lyapunov function λ for spurious
attractors in dependence on L/N when N →∞. The values of λ obtained by averaging across 10000
spurious trials are shown in Fig. 4 for r = p. For each ratio L/N experimental points were fitted by
linear regression function. The regression intercept was treated as estimation of normalized Lyapunov
function for N →∞ under fixed L/N . The obtained estimates are presented in Fig. 5.

Normalized Lyapunov function of spurious attractors reaches the value 1 that is the value of
normalized Lyapunov function for true states at L ' 2.8N . Thus, the critical loading L1 when spurious
attractors become dominate due to their large Lyapunov function amounts to about L1 = 2.8N .
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Fig. 3 The change of activation threshold T along the recall process for common Hopfield network, N = 3000, L = 0.7N .

Notice the drop of activation threshold at the point r = p.

Fig. 4 Normalized Lyapunov function of spurious attractors for common Hopfield network for r = p in dependence

on L/N and 1/N . Each point was obtained by averaging over 10000 trials. Experimental points are fitted by straight

lines.

To estimate the second limit we analyze the probability of transitions from spurious to true tra-
jectories along the recall process. As shown in Fig. 1 the most trajectories start as spurious but
many of them transform to true ones. Transitions from spurious to true trajectories occur during the
whole recall process and the probability Pspur that the trajectory is spurious monotonically decreases
when r increases. As an example, probability Pspur in dependence on r and N is shown in Fig. 6 for
L = 0.7N . Each point in Fig. 6 was obtained over 10000 trials. It quickly drops when network size
N is relatively small and remains high for large N . Thus, actually, when network size is relatively
small the most trajectories become true during the recall process and they can be used for factors
recognition. However, when network size increases almost all trajectories are spurious and the recall
procedure becomes incapable of factors search.

Fig. 7 demonstrates the probability of transition from spurious to true attractor Ptrans in depen-
dence on r and N . Probability Ptrans was calculated as

Ptrans = (Pspur(k)− Pspur(k + 1))/Pspur(k)

It has maximum around r = 0.01. As shown in Fig. 1 the point of maximum corresponds approx-
imately to the point where the values of Lyapunov function for true trajectories become markedly
higher then those for spurious trajectories and, thus, true trajectories become more attractive. For
r > 0.01 lnPtrans linearly decreases when r increases. The slope of this decrease appeared to be
independent of N . However totaly, Ptrans decreases when N increases. The obtained dependence of
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Fig. 5 Normalized Lyapunov function of spurious attractors for r = p. The points are obtained as intercepts of

regression lines as shown in Fig. 4. 5 - common Hopfield network (C = 1), ? - C = 10, ◦ - C = 20. Thin solid line

- B-Spline approximation of experimental points. Horizontal line gives the mean value of Lyapunov function for true

attractors.

Fig. 6 Probability Pspur in dependence on r and N for common Hopfield network, L = 0.7N . Pspur(r) is a probability

that a trajectory remains to be spurious until given r. Each experimental point was obtained over 10000 trials of

computer simulation. Solid lines are approximations of experimental data by formula (3.2).

Ptrans on r and N can be fitted by the following regression model:

ln Ptrans = −aN − br (3.1)

where a = (6.2± 0.1) · 10−4 and b = 82± 5.

For sufficiently large N when r can be considered as continuous variable, the probability Pspur has
a form

Pspur(r) = exp(−N

∫ r

rin

Ptrans(x)dx).

Then according to (3.1)

Pspur(r) = exp[−N

b
exp(−aN)(exp(−brin)− exp(−br)))]. (3.2)

Fig. 6 demonstrates the accuracy of the used approximation. It is less accurate for smaller N due to
the effect of discontinuity of r along the trials.

Coefficient a in regression model (3.1) happened to be proportional to L/N and was presented as
a = c1L/N , while coefficient b could be presented as b = c2 + c3L/N . Thus as a whole, dependence of
Ptrans on L, N and r could be presented as

ln Ptrans = −c1L− c2r − c3rL/N. (3.3)
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Fig. 7 Probability of transition Ptrans from spurious to true attractor for common Hopfield network, L = 0.7N .

Each experimental point was obtained over 10000 trials of computer simulation. Solid lines are approximations of

experimental data by formula 3.1.

Coefficients ci were found by the best fit over the whole set of tested network parameters: L/N = 0.5,
0.7, 1, 1.4 and N = 2000, 3000, 4000, 5000, 7000. Each value Ptrans was calculated over 10000 trials.
Coefficients ci were estimated as c1 = (8.8 ± 0.1) · 10−4, c2 = 25.5 ± 3 and c3 = 80 ± 2. According
to (3.2) the probability that a trial finally happened to be true, i.e. 1 − Pspur(rf ), is mainly defined
by the term aN − ln(N/b) = c1L− ln(N/(c2 + c3L/N)). The probability is relatively high when this
term is small. Thus the probability of true trials is relatively high when

L < L2 = ln(N/(c2 + c3L/N))/c1 (3.4)

and it drops to zero when this condition breaks. Due to proportionality of coefficient a to L/N , the
critical condition (3.4) happened to depend mainly on absolute loading L and only logarithmically on
the network size N . Therefore for large N critical absolute loading L2 is reached for small relative
loading. In this case one can ignore the term c3L/N comparing with c2 in (3.4) and rewrite this
condition as L < L2 ' ln(N/c2)/c1 ' ln(0.04N) · 103. The random search of factors is possible when
L satisfies both conditions L < L1 and L < L2. For N < 2000 the first condition restricts the network
ability for factors search, and for N > 2000 - the second condition.

3.3 Hebbian unlearning

Even in the case when the probability of true trials is rather high, the search of all factors could
be impossible due to dominance of some of them. Fig. 8 illustrates this statement: thin line shows
the number of found different factors in dependence on number of trials for N = 3000, L = 1.4N .
According to (3.2) for these network parameters the probability of true trial amounts to around
0.1. Initially the number of new found factors increases proportionally to the number of trials with
proportionality coefficient equal to the probability of true trials, i.e. 0.1. However later the search of
new factors becomes slower because all trajectories are attracted by the fraction of 0.135 of all factors.

This difficulty can be easily overcome by Hebbian unlearning when attractors appeared during
the recall process are deleted from the network memory. The deletion was performed by the rule
(2.6). Attractors were deleted by substraction of network states obtained for true trials at r = p with
unlearning rate η = 1. Fig. 8 shows the effect of unlearning (thick line). The points are values of
Lyapunov function obtained for r = p. The densities of points with high and low values of Lyapunov
function correspond to the probabilities of true and spurious trajectories. At the initial stage of the
recall process the density of first points is initially smaller, that corresponds to the dominance of
spurious trajectories. As shown in Fig. 8 initially the fraction of true trajectories amounts to about
only ten percents that is the same as in the case without unlearning. However soon the rate of the
search of new factors speeds up. This process is accompanied by the decrease of Lyapunov function
for both true and spurious trials. For true trials it decreases because of deletion of factors with high
values of Lyapunov function. For spurious trials it decreases because deletion of factors is equivalent
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Fig. 8 Relative Lyapunov function (points) and the fraction of found factors (lines) in dependence on number of recall

trials for common Hopfield network, N = 3000, L = 1.4N . Values of relative Lyapunov function are shown only for the

recall with unlearning. In the recall without unlearning, distribution of experimental points does not depend on number

of trials and correspond to initial stage of the recall with unlearning. ¦ - true attractors, ◦ - spurious attractors. Thick

and thin solid lines are fractions of found factors obtained with and without unlearning, respectively.

to the decrease of relative loading L/N and as shown in Fig. 5, the values of Lyapunov function for
spurious attractors monotonically decrease when L/N decreases. Since values of Lyapunov function
decreases faster for spurious trajectories, the fraction of true trajectories increases and at the final
stage of the recall process the probability of spurious trials falls to zero and each trial results in the
retrieval of new factor. Only about 11000 trials are required to reveal all 4200 factors. When almost
all factors are found the probability of spurious trials increases again, but they have now very small
Lyapunov function.

4 Large complexity of input patterns

In this series of computer experiments the network was trained by a set of M patterns of the form

Xm =
L∨

l=1

Sm
l f l, where f l∈ BN

n are L factors and for every m-th pattern Sm ∈ BL
C is a corresponding

vector of factor binary scores. As follows from the definition every factor contains exactly n = Np
1-s. Every complex pattern Xm contains, in turn, exactly C factors. We assumed factors and factor
scores to be statistically independent. Computer experiments were performed for C = 10 and 20.

All characteristic properties of true and spurious trajectories in the case of complex input patterns
completely coincide with those for simple input patterns. Particularly, Lyapunov function λ is higher
for true trajectories, they have specific kink at the curve λ(r) and specific drop of activation threshold
T at the point r = p. The values of normalized Lyapunov function for spurious attractors for C = 10
and C = 20 are compared in Fig. 5 with those for C = 1. The complete coincidence of the results
confirms our prediction that the use of the additional inhibitory neuron in the network architecture
not only completely suppresses two global attractors but also suppresses the dependence of network
properties on C. Thus all three specific properties of true trajectories can be used for their separation
from spurious trajectories and the first limit L1 which restricts the network ability to factor search
due to the increase of Lypunov function for spurious attractors, coincides with that obtained above
for common Hopfield network.

To find the second limit we used the same approach as in the previous section. Particularly, we
obtained the probability of transition from spurious attractors to true attractors in dependence on
N and α. This probability was approximated by the same regression model (3.3) as for common
Hopfield network. Coefficients ci of the regression model were found by the best fit of experimental
data obtained for L = 0.7N (N = 2000, 3000, 4000) and L = N, 1.4N (N = 2000, 3000). For C = 10
they were estimated as c1 = (9.6 ± 0.6) · 10−4, c2 = 690 ± 30 and c3 = 254 ± 18 and for C = 20
c1 = (9.0±0.4) ·10−4, c2 = 680±20 and c3 = 367±14. Coefficient c1 which mainly defines the critical
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information loading L2 ∼ ln(N/c2)/c1 happened to be close to that of Hopfield network. Hence,
the second critical loading L2 also happened to be independent of C. This is the second argument
in support of our prediction that additional inhibitory neuron allowed to exclude the dependence of
network properties on input patterns complexity.

To suppress the dominance of several factors in the recall process we used the same procedure of
factors unlearning as for common Hopfield network. Fig. 9 demonstrates the effect of unlearning for
N = 3000, L = 1.4L and C = 20. Thin line gives the fraction of factors recalled without unlearning
and thick line with unlearning. Only around 600 of 4200 factors were revealed after 16000 trials
without unlearning and all of them were revealed with unlearning. It is shown that as for the common
Hopfield network the search of new factors speeds up during the recall process with unlearning due
to the primary decrease of Lyapunov function for spurious attractors.

Fig. 9 Relative Lyapunov function (points) and the fractions of found factors (lines)in dependence on number of recall

trials for C = 20, N = 3000, L = 1.4N . ¦ - true attractors, ◦ - spurious attractors. Values of relative Lyapunov

function are shown only for the recall with unlearning. Thick and solid lines are fractions of found factors with and

without unlearning, respectively.

5 Discussion

In our previous paper [6] we have shown that Hopfield-like neural network is capable of performing
Boolean factor analysis of the signals of high dimension and complexity. This ability is based on the
fact that, due the to correlational Hebbian rule, factors become attractors of the network dynamics.
Adding of one inhibitory neuron to the principal Hopfield network allows for suppression of two
global spurious attractors that dominate in network dynamics when signals of learning set have large
complexity (C > 10). This modification of network architecture allows also to avoid the reduction of
sizes of attraction basins around factors which is observed in the network of common architecture. In
the present paper we show that it allows to avoid the worsening of network properties in response to
complexity increase, in general.

We suggested the simple recall procedure for factors search. Its ability is restricted by two critical
high limits of loading L1 and L2. The first limit L1 corresponds to loading L that provides equality
of values of Lyapunov function for spurious and true attractors. If L > L1 this value for spurious
attractors is larger and they dominate in network dynamics. If L < L1 this value is larger for true
attractors, however spurious attractors can continue to dominate because of their huge amount. To
avoid this kind of dominance, loading L must be less than L2. Thus the suggested procedure is capable
of factors search when both conditions L < L1 and L < L2 are satisfied. For the most interesting case
of large signal dimensionality (N is of the order 103 − 104) both limits are rather high. They are also
of the order 103. The estimates of limit loadings L1 and L2 were presented here only for p = 0.02.
They happened to be even higher for p = 0.004. Thus, we believe that for most practical tasks these
limits cannot be reached. However the restriction to network performance due to their existence has
to be taken into account.
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We considered here only a special case of binary signals to be factorized, namely the case when
factors were uniformly distributed in the signal space and in the learning set, the number of factors
presented in each learning pattern was fixed, the number of active neurons in each factor was fixed
and factors were mixed in patterns of learning set without distortion. These constrains seem to be
unimportant for the proposed procedure of factors search. According to [6], the value of Lyapunov
function for each factor is almost proportional to the number of input patterns which contain it. Thus
factors with high probability of appearance in input patterns should have high Lyapunov function
and hence high probability to be revealed by random search. Thus, in the case when factors are not
uniformly distributed in the learning sets, the proposed procedure should be also valid and the only
difference is that the distribution of values of Lyapunov function for factors would be determined by
the properties of their distribution in the learning set.

Similarly one cannot expect any difficulty in the search of factors with different level of activity
which is unknown in advance. As Fig. 1 and 3 show, specific kink at the curve λ(r) and drop at the
curve T (r) when r = p are characteristic features of factors that allow for their identification. One
can even expect that the proposed procedure could be used to reveal hidden hierarchical organization
of input signals when factors with high level of activity represent classes and factors with low level of
activity represent objects of classes.

There are many examples of data in the sciences when Boolean factor analysis is required [4].
However Boolean factor analysis with the use of neural network approach seems especially efficient
for processing textual data because texts are good example of signals of very large dimensionality
that is equal to number of words in the used dictionary. We believe that each topic has some specific
set of words that appear together as the document contains this topic. Then this set of words has
to create factor. The efficiency of document terms factor analysis has been demonstrated by the
method of Latent Semantic Indexing [3]. However, this method is based on linear factor analysis
which seems less adequate for textual documents than the binary attempt described in this paper.
The neural network approach based on ART was recently applied to text documents classification
[7] and showed high quality. This method also implies the existence of some specific combination of
words in documents containing specific topic. We believe that the suggested method of Boolean factor
analysis should be more efficient in recognizing documents containing several topics. The results of
Boolean factor analysis of Reuters Corpus Volume I (RCV1) will be presented in the accompanying
paper.
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6 Figure legends
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