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Abstract:

The feature space transformation is a widely used method for data compression. Due to this transfor-
mation the original patterns are mapped into the space of features or factors of reduced dimensionality.
In this paper we demonstrate that Hebbian learning in Hopfield-like neural network is a natural procedure
for Boolean factor analysis. Due to this learning, neurons that tend to fire together (represent one com-
mon factor) are more correlated and thus create an attractor of the network dynamics. If the attraction
basins around factors are large enough, the factors could be revealed by random search. This paper is
dedicated to estimation of the size of attraction basins around factors. Two global spurious attractors are
shown to prevent convergence of the network activity to the factors invalidating any procedure of their
search. These global attractors can be completely deleted from network dynamics by introducing a single
inhibitory neuron with bi-directional Hebbian synapses. Due to additional inhibition, the size of attraction
basins around factors becomes the same as around the stored patterns in usual Hopfield network. The
procedure of factors search is described in the accompanying paper.

Keywords:
Boolean factor analysis, Hopfield neural network, unsupervised learning

1The work was partly supported by the Institutional Research Plan AV0Z10300504 ”Computer Science for the
Information Society: Models, Algorithms, Appplications” and by grant Intelligent methods for increasing of reliability
of electrical networks 1ET100300414 granted by GA AS CR

2Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Butlerova 5a, 117 485
Moscow, Russia; e-mail: aafrolov@mail.ru

3Institute of Computer Science Academy of Science of the Czech Republic, Pod Vodárenskou věž́ı 2, 182 07 Prague 8,
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1 Introduction

Factor analysis is one of the most efficient methods to reveal and to overcome informational redundancy
of high-dimensional signals. Factors extraction is a procedure which maps original signals into the
space of factors. The principal component analysis (PCA) is a classical example of such mapping in
the linear case. Linear factor analysis implies that each original signal can be presented as

X = FS (1.1)

where F is a matrix N × L of factor loadings and S is a vector of factor scores. The columns
of F represent factors in the original signal space. Each component of S gives contribution of a
corresponding factor in the original signal. The mapping of the original space to the factor space means
that signals are represented by vectors S instead of original vectors X. Informational redundancy of
original signals is reduced if dimensionality L of vectors S (the number of factors) is smaller than the
dimensionality N of the original signals.

PCA suggests that factor scores should be statistically independent and the vectors of factor
loadings orthogonal. Then the vectors of factor loadings are eigenvectors of the covariation matrix
J = M{XXT} where XT is transposed X. Dispersions of factor scores are eigenvalues of covariation
matrix. Eigenvector f1 with the highest eigenvalue Λ1 (factor with the highest contribution to the
total variance of signals X) can be easily obtained [19] by the iterative procedure

X(t + 1) = N(h(t)) (1.2)

where

h(t) = JX(t) (1.3)

and N(h) = h/|h| denotes vector normalization. Starting from random initial vector Xin, X(t) tends
to f1. It is easy to show [19] that during this iterative procedure, Lyapunov function Λ = XT JX
monotonically increases and reaches Λ1. When f1 is obtained, the iterative procedure can be applied
to matrix J− Λ1f1f1T to obtain the next eigenvector of matrix J, and so on.

This procedure can be obviously described in terms of a neural network approach. Covariation
matrix J corresponds to a matrix of synaptic connections obtained by Hebbian learning. The iterative
procedure corresponds to the evolution of activity in neural network with parallel dynamics where h
is a vector of synaptic excitations. And substraction of the found factor from a covariation matrix
corresponds to Hebbian unlearning. Linear and even some nonlinear PCA procedures have been
actually realized by the neural network approach [12], [18], but only for special cases of nonlinearity.

One particular form of nonlinear factor analysis is a binary one, where a complex vector signal
(pattern) has a form of the Boolean sum of weighted binary factors:

X =
∨

Slf l. (1.4)

In this case, original signals, factor scores and factor loadings are binary. In contrast to linear factor
analysis, the dimensionality L of vector S (number of factors) can be larger than dimensionality N
of original pattern space. If the mean number C of factors mixed in each original signal X (we
treat C as signal ”complexity” ) is much smaller than the total number of factors, then a large
reduction of informational redundancy can be achieved even in this case. To show it let us assume
that the components of X are statistically independent, i.e ignore that signals can be presented in
form (1.4). Then IS = NH(q) bins of information are required to represent original signal, where
H(q) = −q log2 q − (1 − q) log2(1 − q) is a Shannon entropy function and q is a probability that a
given component of X is equal to one. The mapping of the original space to the factor space means
that signals are represented by binary vectors S instead of original vectors X. Since vector S of
dimensionality L contains C ones, its representation requires IF = LH(C/L) bins of information.
Reduction of information redundancy is achieved if IF < IS .

There is a few implemented methods for Boolean factor analysis. However, these methods [6],[16],[3]
are time consuming and do not support large data sets. Thus their applicability is limited only to the
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case of relatively small dimensionality. Our new Neural Network attempt should bring an innovative
way how to handle large(parallel computation) dynamically changing data (incremental learning). It
was a challenge for us to utilize the Hopfield-like neural network with parallel dynamics for Boolean
factor analysis because it has a lot of similarities with the iterative procedure described above for linear
factor analysis. First, the connection matrix of this network is a covariation matrix of input signals
obtained by Hebbian learning. Second, its activity is determined by the same iterative procedure (1.2,
1.3) except that normalization of the vector of synaptic excitations h is replaced of its binarization.
And third, its activity has almost the same Lyapunov function

Λ(t + 1) = XT (t + 1)JX(t). (1.5)

For the Hopfield network, the formula for Lyapunov function slightly differs from that of linear case
because the activity of the Hopfield-like network with parallel dynamics converges not only to point
attractors but also to cyclic attractors of length two [10]. Respectively, XT (t) in the formula for linear
case must be replaced by XT (t + 1) for the binary case.

Since the neurons that represent one common factor tend to fire together Hebbian learning pro-
vides tighter connections between these neurons than between neurons belonging to different factors.
Therefore, factors create attractors of the network dynamics similarly to eigenvectors of the corre-
lational matrix in iterative procedure for linear case. However, the Hopfield-like network has one
principal peculiarity. The network dynamics converges to one of the factors only when the initial
state falls inside its attraction basin. Otherwise it converges to one of the spurious attractors. Note
that for linear case it converges to one of the factors starting from any random initial state. Thus, two
main questions arise in view of binary factor analysis by the Hopfield-like network. First, how often
would the network activity converge to one of the factors starting from the random state? Second, is
it possible to distinguish true and spurious attractors when the network activity converges to some
point or cyclic attractor?

The probability of the network activity to converge to one of the factors depends evidently on
the size of their attraction basins. Generally, this size is determined by three network parameters:
complexity of input signals C, a relative number of factors L/N and sparseness of factors encoding.
Sparseness is determined by the ratio p = n/N of active neurons n in the factor to the network size
N . Only sparse encoding is considered in the present paper. There are two a priori reasons to restrict
the analysis by this case. First, Boolean superposition of even a relatively small number of densely
encoded factors results in presentation of input signals as binary vectors composed of almost only
ones. Since in the extreme case, when they composed of only ones, decomposition of signals in factors
is evidently impossible, it is difficult to expect successful factorization of densely encoded factors.
Second, as shown in [8] for ordinary Hopfield network, the size of the attraction basins around the
stored prototypes is the largest when p has an order of 10−2. Note that the ordinary Hopfield network
corresponds to the extreme case of the considered network when its complexity C becomes one. It
is reasonable to expect that the properties of networks with different complexities but with the same
sparseness are close. Thus, sparse encoding of factors with p of the order of 10−2 seems to be the
most preferable to provide the largest attraction basins around the factors. In the present paper most
computer simulations were performed for p = 0.02.

The main goal of the present paper is to answer the question ”What are the parameters of the
system that guarantee existence of attractors of network activity corresponding to factors?”. To
answer this question we investigated the conditions under which the factors actually form attractors
in the Hopfield-like neural network and estimated the size of attraction basins around them. The
procedure for factors search is suggested in the accompanying paper.

The analysis is performed by Single Step (SS) approximation [14] and by computer simulation. SS
is known to be rather inaccurate for the densely encoded Hopfield network and more sophisticated
methods, such as the method of Statistical Neurodynamics (SN), are usually recommended. SN was
elaborated initially for densely encoded network [1] and then modified for sparse encoding [17], [8].
However, as shown in [9], contrary to dense encoding, for sparse encoding (p is of the order of 10−2)the
SN is even less accurate than the SS. Thus the SS seems to be more preferable for the present study.

However computer simulation revealed failure of SS approximation for Boolean factor analysis due
to the dominance of two global spurious attractors for C > 10 that prevent convergence of network
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activity to factors. These two attractors can be completely excluded from network dynamics by
addition to the network of a single inhibitory neuron with bi-directional Hebbian synapses. As a
result, the size of attraction basins around the factors greatly increases and becomes close and even
slightly larger than the SS predicts.

The paper is organized as follows. A formal model description is given in Section 2. Section 3
exposes results of SS approximation. The properties of multi-step retrieval is described in Section 4.
Section 5 is a short general discussion.

2 Network description

The neural network under consideration consists of N neurons of the McCulloch-Pitts type (integrate-
and-fire binary neurons) with gradually ranged synaptic connections between them. Only a fully
connected case is considered here.

Network is trained by a set of M patterns of the form Xm =
L∨

l=1

Sm
l f l, where f l∈ BN

n
6 are L

factors (N dimensional binary vectors) and for every m-th pattern Sm ∈ BL
C is a corresponding vector

of factor binary scores. As follows from the definition every factor contains exactly n = Np 1-s. Every
complex pattern Xm contains, in turn, exactly C factors. We assumed factors and factor scores to
be statistically independent. In a limit case when C = 1 the patterns become pure factors and we
obtain an ordinary Hopfield case. In the opposite limit case C = L all patterns of the learning set are
identical (contain all factors) and, evidently factors, cannot be identified separately.

Connection matrix J is formed by using the correlational Hebbian rule:

Jij =
M∑

m=1

(Xm
i − qm)(Xm

j − qm), i 6=j, Jii = 0, (2.1)

where bias qm =
N∑

i=1

Xm
i /N is the total activity of the m-th pattern. For C = 1 such a form of bias was

shown to give the best informational properties [5]. This form of bias corresponds to the biologically
plausible global inhibition being proportional to overall neuronal activity.

During the recall stage, on presentation of an initial pattern Xin, the network activity evolves
until it stabilizes in an attractor. As initial patterns we used distorted versions of factors with the
same level of activity n = Np as factors.

Evolution of the network activity in discrete time is determined by the synchronous dynamics
equation for activity vector X at each time step:

Xi(t + 1) = Θ(hi(t)− T (t)), i = 1, · · ·N, (2.2)
Xi(0) = Xin

i

where

hi(t) =
N∑

j=1

JijXj(t) (2.3)

is synaptic excitation, Θ - step function, and T (t) - activation threshold. The threshold T (t) is chosen
at each time step in such a way that the level of the network activity is kept constant and equal to n.
Thus, on each step n ”winners” (neurons with the greatest synaptic excitation) are chosen and only
they are active on the next step. To avoid uncertainty in the choice of winners when several neurons
have synaptic excitations at the level of the activation threshold, small random noise was added to
the activation threshold of each individual neuron. The amplitude of the noise was put to be less than

6BN
n = {X|Xi ∈ {0, 1},

N∑
i=1

Xi = n}
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the smallest increment of the synaptic excitation given by formula (2.3). This ensures that neurons
with the highest excitations are kept to be winners in spite of the random noise being added to the
neurons’ thresholds. The noise around the thresholds of individual neurons was fixed during the whole
recall process to provide its convergence. Since the number of active neurons in each factor is fixed
and also equal to n, the choice of activation thresholds allows stabilization of the network activity
in the vicinity of one of the factors. Thus, the type of the factors coding is fitted to the used recall
procedure which allows avoiding explicit control of the activation threshold. As in the case when the
activation threshold is fixed [10] only two types of attractors (point or cyclic of length two) are present
in the network dynamics (see Appendix 1). The stable pattern (point attractor) or the first pattern
of the cyclic attractor was taken in computer simulations as a resulting pattern (further termed as
final pattern Xf ) of the recall process. In respect to the factor analysis problem each factor must
have a corresponding stable pattern in its vicinity. If the network can recall all factors encoded in the
complex training set, one can say that the factor analysis problem is solved successfully.

For the analysis of informational and dynamic properties of the network some integral parameters
are introduced. Similarity between two vectors is measured in the Hamming space by their overlap
m:

m(X1,X2) =
1

Np(1− p)

N∑

i=1

(X1
i − p)X2

i

In the case of vectors coincidence m = 1. If X1 ∈ BN
n and X2 is random and independent of X1, then

their mean overlap is equal to zero. The overlap between initial state and the recalled factor is given
by the overlap min = m(f l,X(0)). The size of the attraction basin around the factors is a critical
initial overlap mab which separates retrieval and not retrieval trajectories of neurodynamics.

As a measure of the relative informational loading we use α = LH(p)/N , where H(p) is the
Shannon function which takes account of the sparseness level.

The network factor analysis ability is analyzed in dependence on the following five parameters:
p, α, C,N,M under conditions µ = C2/L and pC are of the order of 1 and C/L ¿ 1. The size
of the training set should be large enough so that each factor could be presented several times in
combinations with different other factors. Therefore, we put MC/L À 1. Additionally we put L À 1,
N À 1 and α is of the order of 10−1.

3 Single-Step approximation

Single-step (SS) approximation has been proposed by Kinzel [14] for the densely encoded Hopfield
network. It has been shown by other theoretical approaches [2], [1] and by Monte-Carlo simulations
[11], [2], [15] that single-step approximation is very inaccurate for dense coding. However, it becomes
quite accurate when sparseness increases [8].

The principal peculiarity of this approach is that at each time step one ignores the statistical
dependence between the network activity and the connection matrix and takes account of only two
macroparameters of neurodynamics: the overlap m(t) between the current and recalled patterns and
the total network activity. Since we have assumed that the network activity is constant at each time
step and equal to the activities of factors, the recall process in our case is described by the evolution
of only one parameter m(t). Omission of the statistical dependence between the network activity and
the connection matrix is possible only for the first step when the initial activity is actually stated
independently of the connection matrix. This is why this approximation is called the ”single-step” or
”first- step” approximation.

Without any loss of generality, we may assume that a factor f1 is retrieved. In conformity with
[4], we call neurons which are active and nonactive in f1 as ”high’ and ”low” neurons, respectively.
According to (2.1) and (2.3), the neurons synaptic excitations at the first step of the recall process
can be presented in the form hi = Σ1

i + Σ0
i where

Σµ
i =

∑

m∈{m:Sm
1 =µ}

(Xm
i − qm)

∑

j 6=i

(Xm
j − qm)Xin

j
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The first sum Σ1
i contains M1 patterns of the training set which include the recalled factor f1 and

Σ0
i contains M0 patterns which do not include it. Since the variance of qm is of the order 1/N (see

Appendix 2), one can put

qm = 〈qm〉 = q = 1− (1− p)C ' 1− exp(−pC) (3.1)

where 〈· · ·〉 means averaging over all factor scores and all factors except f1. Each initial pattern
includes n1 = N(minp(1− p) + p2) high and n0 = Np− n1 low neurons of f1. Thus, for high neurons

〈Σ1
i 〉 =

MC

L
[(1− q)(1− q)n1 + (1− q)(q′ − q)n0]

and for low neurons

〈Σ1
i 〉 =

MC

L
[(q′ − q)(1− q)n1 + (q′ − q)(q′ − q)n0]

where MC/L = 〈M1〉 and

q′ = 1− (1− p)C−1 = 1− (1− q)/(1− p)

is the probability of the neuron to be active due to the presence of other factors except f1 in the
learning pattern. Therefore,

〈Σ1
i 〉 =

MNCp(1− q)2

L(1− p)
(f1

i − p)min.

Since Xin is independent of all factors except f1,

〈Σ0
i 〉 = M(1− C/L)(N − 1)p〈(Xm

i − qm)(Xm
j − qm)〉

where M(1−C/L) = 〈M0〉. By the definition of qm, for each pattern of the learning set
∑

i=1,N

(Xm
i −

qm) = 0. Hence

〈(Xm
i − qm)(Xm

j − qm)〉 = −〈(Xm
i − qm)2〉/(N − 1) = −q(1− q)/(N − 1). (3.2)

For N →∞ and L →∞ 〈Σ0
i 〉 = −Mpq(1− q) and, therefore, the mean synaptic excitations amount

to

〈hi〉 =
MNCp(1− q)2

L(1− p)
(f1

i − p)min −Mpq(1− q). (3.3)

The mean synaptic excitation for high neurons (f1
i = 1) is larger than that for low neurons (f1

i = 0).
Thus the high neurons have higher probability to be active at the next step of the network dynamics.

To estimate the probabilities of high and low neurons to be active, let us now estimate the disper-
sions of synaptic excitations. Since M0 À M1, these dispersions are determined by the dispersion of
Σ0

i . Therefore,

D{hi} = NpD{Jij}+ N2p2Cov{Jij , Jik}.k 6= j 6= i (3.4)

As shown in Appendix 3

D{Jij} =
M2C2p2(1− q)4G(µ)

L(1− p)2
(3.5)

where µ = C2/L,

G(µ) = [exp(µ(
1

(1− p)2
− 1))− 2 exp(µ(

1
1− p

− 1)) + 1](1− p)2/(µp2) (3.6)
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and function G(µ) is chosen so that G(0) = 1. As shown in Fig 1a in the range 0 < µ < 1 this function
is close to the straight line and tends to the line G = 1 + µ when sparseness increases.

To estimate Cov{Jij , Jik} one can notice that according to the correlational Hebbian rule
∑

j=1,N,j 6=i

Jij = −
∑

m=1,M

(Xm
i − qm)2.

Thus

(N − 1)D{Jij}+ (N − 1)(N − 2)Cov{Jij , Jik} = −MD{(Xm
i − qm)2} (3.7)

−M(M − 1)Cov{(Xm
i − qm)2, (X l

i − ql)2}.
Both terms on the right side of (3.7) that are respectively of order M and M2, can be ignored when
compared with the first term on the left side of this equation that is of order NM2. Hence

Cov{Jij , Jik} = −D{Jij}
N

(3.8)

and according to (3.4) and (3.5),

D{hi} = σ2 = Np(1− p)D{Jij} = Np(1− p)
M2C2p2(1− q)4G(µ)

L(1− p)2
(3.9)

The network with complex learning patterns is reduced to the ordinary Hopfield network with
simple learning patterns when C = 1 and M = L. In this case µ = 0, consequently G(µ) = 1 and the
expressions for means and variance of synaptic excitations coincide with those for sparsely encoded
ordinary Hopfield network [8].

In the limit case N →∞, the distributions of synaptic excitations can be approximated by normal
ones. Then at the first step of the recall process

Prob{Xi(1) = 1} = Φ(θi)

where

θi = (T (1)− 〈hi〉)/σ,

Φ(x) = 1/(2π)1/2

∫ ∞

x

exp(−u2/2)du (3.10)

and T (1) is an activation threshold. According to (3.3) and (3.9) for high and low neurons of f1

θ1 = θ − min(1− p)√
Lp(1− p)G(µ)/N

= θ − min(1− p)√
γp(1− p)/I(p)

,

θ0 = θ +
minp√

γp(1− p)/I(p)

where θ = (T (1) + Mpq(1− q))/σ is a scaled activation threshold and

γ = αG(µ). (3.11)

In the model the threshold is chosen in such a way that a total level of the network activity is the
same as in factors, i.e. is chosen to satisfy condition

pp1 + (1− p)p0 = p (3.12)

where p1 = Φ(θ1) and p0 = Φ(θ0) are probabilities for high and low neurons to be active. As a result
of the first step, the overlap changes to

m(1) = p1 − p0. (3.13)
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In the single-step approximation these equations are assumed to be valid for all time steps (natu-
rally, min must be replaced by m(t) and m(1) by m(t + 1) where t and t + 1 are consequence steps of
the recall process).

The obtained neurodynamic equations completely coincide with those for ordinary Hopfield net-
work [8] if γ is replaced by α. Parameter γ completely determines the network dynamics in the SS
approximation for given min and p. The curves which characterize the behavior of the network activity
depending on γ, min and p are presented in Fig.1b. Let the initial state of the network activity for a
given γ be characterized by the point (min, γ). If this point lays under the curve, the overlap between
the current pattern and the recalled pattern sways during the recall process to the right, that is to
the final overlap mf given by the right branch of the curve. The overlap sways to the left for each
point above the curve. Thus the left branch of the curve corresponds to the border of an attraction
basin. In the SS approximation this border corresponds to the condition m(1) = min.
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1,0

1,2

1,4

1,6

1,8

2,0

m

G

G
inh

(a)

0,0 0,2 0,4 0,6 0,8 1,0
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Fig. 1 Results of SS approximation (lines) and computer simulation (points). p = 0.02 - solid line, p = 0.004 - dashed

line, p → 0 - dashed-dotted line; ◦ - p = 0.02, • - p = 0.004. a) Functions G(µ) and Ginh(µ) taking account of signals

complexity without and with additional inhibition. b) Sizes of attraction basins in dependence on relative informational

loading α and signals complexity µ, γ = αG(µ) is a combined index of their influence to attraction basins if additional

inhibition is not used. If additional inhibition is used, γ = α.

Fig. 1b demonstrates that in the SS approximation for given γ the size of the attraction basins
monotonically decreases when the encoding sparseness increases. Computer simulations showed that
equations (3.3) and (3.4) provide quite accurate estimations for the means and variances of synaptic
excitations when N exceeds 103 and thus these equations quite accurately predict the first step of
neurodynamics.

4 Multi-step retrieval

Properties of the multi-step retrieval were investigated by computer simulation that was performed for
N from 1100 to 10000. The program generated a set of random factors of fixed sparseness p and mixed
them into a set of M patterns so that each pattern contained exactly the C factors. The network was
trained by this set and then tested by corrupted versions of factors for up to 20000 simulation trials
for each combination of parameters. The most results were obtained for p = 0.02 and min = 0.3.

The sizes of attraction basins appeared to be very far from SS prediction. Fig. 2a illustrates
trajectories of neurodynamics for M = 40000, N = 1100, α = 0.1, C = 20 on the plane constituted
by axes [m(t), Λ(t)] where m(t) is the overlap of the network state with the recalled factor and Λ(t) is
the Lyapunov function calculated by (1.5). In accordance with the SS prediction the most trajectories
displaced at the first step to the recalled factors. Averaged over all trajectories m(1) = 0.368± 0.003
while SS gives m(1) = 0.41. Discrepancy between the experimental results and the SS prediction
decreases when N increases. However in contrast to the main SS assumption m(t) does not change
monotonically and at the next steps most trajectories returned back and ended far from the recalled
factors. This neurodynamics is similar to the observed one for the densely encoded ordinary Hopfield
network (see, for example,[1]). Note that the Lyapunov function of spurious attractors is much larger
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Fig. 2 Trajectories of neurodynamics without (a) and (b) and with (c) and (d) additional inhibition obtained for

M = 40000, N = 1100, α = 0.1, C = 20 and min = 0.3. Abscissa is overlap m(t) between the current network activity

and the recalled factor. Ordinate is Lyapunov function (a) and (c) or a rank of the network activity (b) and (d) showing

contribution of neurons most often or rarely contained in factors set. Additional inhibition completely suppressed the

dominance of two global attractors.

than that of true attractors.

The spurious attractors are two global attractors created by neurons contained in the most and
the least numbers of factors, respectively. To demonstrate this fact we redrew the graph in the axes
[m(t), c(t)] where c(t) indicates whether the neurons contained in the most or least numbers of factors
contribute to the current network activity. To calculate c(t), we ranged all neurons in the order of
numbers of factors that contained them. So the neurons that were contained in the least number of
factors had the least rank and contained in the most number of factors had the highest rank. The
rank of the current activity was calculated as a sum of ranks of active neurons. The obtained rank
was normalized so that the patterns created by the neurons contained in the least number of factors
have rank c close to zero, created by the neurons contained in the most number of factors have c ' 1
and created by random neurons have c ' 0.5. Fig. 2b demonstrates that the patterns created by the
global spurious attractors had ranks c close to 0 and 1, while true attractors had ranks around 0.5.

4.1 Lyapunov function of true and global spurious attractors

Two global spurious attractors dominate because their Lyapunov function exceeds the one of true
attractors. By definition, the Lyapunov function of each attractor can be estimated as Λ = nh where
n = pN is a number of active neurons and h is mean synaptic excitation produced in these neurons by
their proper activity. Since true attractors almost coincide with factors, their mean synaptic excitation
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can be estimated by (3.3) for fi = 1 and min = 1. Thus the Lyapunov function of true attractors is

Λtr = M [Np(1− q)]2C/L−MNp2q(1− q) (4.1)

Let us estimate now the Lyapunov function of global spurious attractors. Let k be the number of
factors containing a given neuron. The mean and variance of k are pL and p(1 − p)L, respectively.
Then the number of neurons which belong to k > k1 factors can be estimated as NΦ(u1) where
u1 = (k1 − pL)/

√
p(1− p)L. To choose pN neurons with the largest k from totally N neurons, one

must put k1 = pL + u1

√
p(1− p)L where u1 satisfies equation Φ(u1) = p. On average, each of the

chosen neurons belongs to k2 = pL + u2

√
p(1− p)L patterns where

u2 =
1

Φ(u1)
√

2π

∫ ∞

u1

u exp(−u2/2)du.

The probability of one of these neurons to be active during the presentation of a learning pattern is
r ' 1−exp(−k2C/L) ' q+(1−q)Cu2

√
p(1− p)/L. Then a mean augmentation of synaptic connection

between two of these neurons during the presentation of input pattern is ∆J = (r − q)2 and a mean
strength of connection after presentation of the whole learning set is J = M∆J = M(r − q)2. Hence
the Lyapunov function for this attractor can be estimated as

Λgl
sp ' M(pN)2J = M [Np(r − q)]2 ' M [Np(1− q)Cu2]2p(1− p)/L.

Since p ¿ 1 then u2 ' u1 ' [−2 ln(p
√

2π)]
1
2 . Consequently

Λgl
sp ' 2M [Np(1− q)C]2p ln(1/[p

√
2π])/L (4.2)

Similarly, it is easy to estimate Lyapunov function for the attractor created by neurons belonging
to the smallest number of factors. To do this it is necessary to replace k2 in the formula for r by
k3 = pL−u2

√
p(1− p)L keeping all other equations. This results in the same expression for Lyapunov

function as (4.2).
According to (4.1) and (4.2) Lyapunov function of true attractors increases proportionally to C

while of spurious attractors proportionally to C2. That is why spurious attractors dominate for large
C and are not observed for small C, particularly for ordinary Hopfield network with C = 1.

Usually second term in (4.1) is relatively small and can be ignored. Then

Λgl
sp/Λtr ' 2Cp ln(1/[p

√
2π]) (4.3)

Fig. 3 demonstrates the ratio of Lyapunov functions for spurious and true attractors in dependence
on C and p obtained by (4.3) and their experimental ratios obtained for p = 0.02 and different N and
α. It is shown, first that (4.3) gives a rather accurate estimation of this ratio, second that the ratio
only slightly depends on N and α, and third that the critical complexity, when spurious attractors
become dominant, amounts to about C = 10 for p = 0.02 and increases when sparseness increases.
According to (4.3), when p → 0, both effects of the complexity and sparseness on global spurious
attractors can be taken into account by single parameter Cp ln(1/p). Since in this case Shannon
function H(p) ' p ln(1/p), the use of this parameter is equivalent to the use of parameter CH(p),
i.e. for very large sparseness it is reasonable to normalize complexity by the Shannon function as was
done before for informational loading.

4.2 Suppression of global attractors

In order to provide the factors retrieval for large complexity, two global spurious attractors have to
be suppressed. Since the strength of connection between the neurons of these attractors is given
by M(r − q)2 where r is a probability that each of these neurons is active in the learning pattern,
the suppression of these attractors can be achieved by substraction of matrix J′ from the connection
matrix J obtained by Hebbian rule (2.1) where

J ′ij = M(ri − q)(rj − q), i 6= j, J ′ii = 0 (4.4)

9
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equality of values of Lyapunov function for spurious and true attractors. For p = 0.02 this line is crossed for C ≈ 10

indicating the critical value of complexity when spurious attractors become dominate.

and ri is a frequency of appearance of the i-th neuron in the learning set. Then connections between
neurons that were extremely often or rarely presented in the learning set are selectively reduced and
do not change for the most neurons whose activity was close to the mean level q.

In the frame of neural network approach, substraction of J′ can be implemented by additional
inhibitory neuron bi-directionally connected with all principal neurons of the network by connection
vector J̄. In the learning stage this neuron is activated at each presentation of the learning pattern
and its connections are modified by the Hebbian rule. Then, as a result of storing all M patterns of
the learning set,

J̄i =
M∑

m=1

(Xm
i − qm) = M(ri − q).

Let us also assume that the excitability of the inhibitory neuron decreases during the learning as to
1/M . In the recall stage its activity is then

A(t) = (1/M)
N∑

i=1

J̄iXi(t) = (1/M)J̄T X(t)

where J̄T is transposed J̄. Respectively, the inhibition produced in all principal neurons of the
network is given by vector J̄A(t) = (1/M)J̄J̄T X(t). Since J′ ' (1/M)J̄J̄T (the difference only in
diagonal elements), this inhibition is equivalent to the substraction of J′ from J.

Fig. 2c and 2d demonstrate how the trajectories of network activity change due to this inhibition.
It is shown that now most trajectories converge to factors, two global spurious attractors are completely
suppressed and trajectories that converge to states far from the factors are attracted by local attractors
with rank c ' 0.5 and the Lyapunov function close to that for true attractors.

Another effect of the inhibition shown in Fig. 2 is improvement of convergence to factors even at
the first step of neurodynamics. The displacement of trajectories to recalled factors became larger
at this step than without inhibition. Averaged over all trajectories m(1) = 0.45 ± 0.002 (without
inhibition it was 0.38 ± 0.003). To evaluate this effect we recalculated the means and variance of
synaptic excitations of principal neurons with additional inhibition. As shown in the previous section
they are completely determined by the mean and variance of synaptic connections. Thus, to estimate
how inhibition modifies the SS prediction it is enough to estimate how it modifies connection matrix.

According to (4.4), 〈J ′ij〉 = 0. Thus inhibition does not modify the mean of synaptic connections
Jij . However, as shown in Appendix 4, it significantly reduces their variance. Particularly the variance
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of J inh
ij = Jij − J ′ij amounts to:

D{J inh
ij } =

M2C2p2(1− q)4Ginh(µ)
L(1− p)2

(4.5)

where

Ginh(µ) = [exp(µ(
1

(1− p)2
− 1))− exp(2µ(

1
1− p

− 1))](1− p)2/(µp2). (4.6)

Thus the variances of effective synaptic connections with (J inh
ij ) and without (Jij) inhibition differ

only by functions Ginh(µ) and G(µ) given by (4.6) and (3.6), respectively. Function Ginh(µ) is
compared with G(µ) in Fig. 1a. It is shown that due to the inhibition the variance of effective
synaptic connections becomes only slightly dependent on µ and Ginh tends to line Ginh(µ) = 1 when
sparseness increases. Thus, inhibition actually improved parameters of the SS approximation making
them close to those of the ordinary Hopfield network with C = 1 and therefore improves the network
dynamics even at the first step of neurodynamics.

4.3 Size of attraction basins

Fig. 2 also demonstrates that as for the ordinary Hopfield network, the borders of the attraction
basins around the factors are fuzzy: starting from the states with the same min, the trajectories
may converge to the recalled factor or to some spurious state far from all factors. Consequently, the
distribution of final overlaps has two distinct modes: mf ≈ 1 (”true”) and mf << 1 (”spurious”). It
is well known for the ordinary Hopfield network that for small informational loading a ”true” mode
prevails, and as informational loading increases, the distribution maximum shifts into a ”false” mode,
demonstrating a sharp transition from a retrieval to a not-retrieval network dynamics at a certain
α = αab. The transition becomes more sharp when network size increases.

To estimate the critical informational loading αab for given min we used the same method as for
the ordinary Hopfield network [9]. Particularly, we first estimated probabilities of correct recall P in
dependence on the size of a learning set M , informational loading α and network size N for fixed C
and min. Then we approximated this dependence by a special regression model and extrapolated it
for N →∞ to find critical αab.

For each set of parameters the probability was estimated as a portion of true trajectories at the
histogram of mf distribution. In order to separate ”true” and ”spurious” modes at the histogram,
we used the border mf = 0.72. Since the ”true” and ”spurious” modes were always well separated,
an exact choice of the border was not important. The computed values of P were transformed by the
following logistic mapping to variable F :

P =
1

1 + e−F
(4.7)

The advantage of this transformation is that F has no limits, whereas 0 ≤ P ≤ 1. Thus, to approximate
F (α, N, M) for given C and α by some regression model it is not required to use any constrains to
restrict F as it would be required for direct approximation of P (α, N, M).

As an example, the dependence of F on M is shown in Fig. 4 for N = 3000, C = 20 and min = 0.3.
Data were obtained with a connection matrix modified by additional inhibition. As shown in Fig.4, F
can be well fitted by linear dependence on 1/M . Intercepts of the regression lines that approximate
the dependence of F on 1/M were used to estimate the asymptotic values of F for M →∞.

As was shown previously, the variance of synaptic connections lost dependence on signal complexity
due to additional inhibition. Since the network behavior depends only on the effective connection
matrix, one could suggest that its behavior had lost dependence on signal complexity in general.
This suggestion is confirmed by the results of factors recalling shown in Fig. 5. This figure presents
dependence of F on N and α for min = 0.3 and C = 20 and 1. For C = 20, only asymptotic values
of F for M → ∞ obtained with inhibition are shown. For C = 1 the data are shown obtained with
and without inhibition. Thereby for C = 1 the recall procedure was performed with matrices J and
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additional inhibition, min = 0.3. Thin lines correspond to regression model (4.8). The thick straight line corresponds

to the critical value of informational loading αab = 0.303.

Jinh = J− J′ where J is an ordinary Hopfield connection matrix and J′ is given by (4.4). As shown
in Fig. 5, the data actually form a homogeneous family, although the ability to recall stored factors
happened to be even higher for C = 20 than for ordinary Hopfield network (it becomes especially
remarkable when informational loading increases). One of the possible explanations is that storing
of complex patterns produces noise in the connection matrix and this noise suppresses some local
spurious attractors of the ordinary Hopfield network. Note also that the additional inhibition does
not influence the dynamic properties of the ordinary Hopfield network.

Since the data were close for all three groups (C = 20 with inhibition and C = 1 with and without
inhibition) they were combined in one family of data for approximation by the regression model

F = a0 + a1α + a2N + a3 ln N + a4αN. (4.8)

As shown in [9] this regression model allows for rather accurate extrapolation of dependence F (α, N)
obtained by the fit of data for relatively small network size N ≤ 104 to the range of a very large
network size up to N = 105. The fitted curves that approximate the data for fixed α are also shown
in Fig. 5 by thin lines. According to this approximation, the lines constitute two groups. The upper
lines are concave and tend to +∞ when N → ∞. The lower line is convex and tends to −∞ when
N → ∞. Transition from one to another group occurs due to the change of α. The value of α
which corresponds to the thick straight line separating these groups is chosen as critical αab. For
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each α < αab the probability of trajectories to converge to factors tends to 1 when N increases. And
conversely for α > αab it tends to zero. Thus αab corresponds to sharp transition from retrieval to
nonretrieval conditions for N →∞.

¿From the regression model, αab can be evidently found as αab = −a2/a4. For data combined in
a joint family αab = 0.307± 0.006. This value is shown in Fig. 1b. The regression model, applied to
each of three groups of data separately, gives αab = 0.303 ± 0.005 for C = 20, αab = 0.315 ± 0.008
for the ordinary Hopfield network with additional inhibition and αab = 0.307± 0.008 for the ordinary
Hopfield network. All these values differ nonsignificantly. However, they significantly exceed the value
αab = 0.22 predicted by SS (see Fig. 1b). Thus for sparse encoding (p = 0.02) the SS approximation
underestimates the size of attraction basins. This is confirmed by computer simulation performed for
p = 0.02 and min = 0.1 and for p = 0.004, min = 0.1 and 0.3 for the ordinary Hopfield network. The
obtained estimations are also shown in Fig. 1b. When α is smaller than αab predicted by SS, then
m(t) increases monotonically according to SS assumption. But when α is larger than αab predicted by
SS but smaller than αab obtained experimentally, then m(t) changes nonmonotonically: trajectories
move away from the recalled factors at the first step but then return and end in their vicinities.
Without additional inhibition they usually demonstrate opposite behavior: m(t) increases at the first
step but then decreases.

5 Discussion

Theoretical analysis and computer simulations revealed that the Hopfield-like neural networks are
capable of performing Boolean factor analysis of the signal of a high dimension and complexity. This
ability is based on the fact that, due to the correlational Hebbian rule, the factors become attractors
of the network dynamics. This is identical with the property of the factors to be eigenvectors of the
correlational matrix in linear factor analysis. However, in contrast to the linear factor analysis, the
number of binary factors can be much larger than the patterns dimensionality.

Both the SS approximation and the computer simulation revealed that this capability is mainly
determined by two network parameters: relative informational loading α and complexity of a learning
set C. The ability worsens when both these parameters increase. However, the computer simulation
has shown that the SS predictions are very far from reality. The network loses this ability when α
and C are much smaller then the SS predicts. This failure of the SS approximation is explained by
the existence of two global spurious attractors that SS fails to predict. These attractors become to
dominate when signal complexity is large independently of informational loading. For example, for
p = 0.02 the critical complexity of their dominance amounts to C ' 10. The critical complexity
increases when sparseness increases.

The dominance of the global attractors can be completely suppressed by addition to the network of
a single inhibitory neuron with bi-directional Hebbian synapses. Due to this additional inhibition, the
network completely loses its dependence on signal complexity and all properties of network dynamics
becomes identical to those for the ordinary Hopfield network. The size of the attraction basins
happened to be much closer to the SS prediction but contrary to the case without inhibition it
exceeds the SS prediction now. If the initial network state is inside the attraction basin obtained
by computer simulation but outside predicted by SS, then at the first step of the neurodynamics,
trajectory goes out of the recalled factor but then turns back and tends to it. Such behavior is typical
the for sparsely encoded ordinary Hopfield network [9] and opposite to the observed one for the densely
encoded Hopfield network [1]. For the densely encoded network the SS prediction can be significantly
improved by the method of Statistical Neurodynamics (SN) elaborated by Amari and Maginu [1].
However, for the sparsely encoded network the prediction of SN is even worse than the SS. Thus until
now, SS is the most accurate method to analyze sparsely encoded Hopfield-like networks. Computer
simulation has shown that its accuracy increases when sparseness increases (compare the data for
p = 0.02 and p = 0.004 in Fig. 1b).

On the whole, our results suggest that for a sufficiently large range of parameters the neural
network approach seems to be prospective for developing a general statistical method for a binary
factor analysis. The present approach is in line with many recent attempts to elaborate new statistical
methods for nonlinear factor analysis; for example, nonlinear Independent Component Analysis ([13]).
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Some of these methods utilize neural networks [12] to perform iterative algorithms; however, the
learning rules and network dynamics employed are mostly artificially made up to provide the required
computations. A major distinction of the current work from the related ones is that natural properties
of unmodified Hebbian learning and dynamics of attractors neural network are implemented in a simple
paradigm which has clear neurobiological interpretation.

There are many examples of data in the sciences when Boolean factor analysis is required [7].
However, binary factor analysis with the use of neural network approach seems especially efficient for
processing textual data. Since the time of the factor search only slightly increases with the increase
of signal space dimensionality, it is most attractive to apply this approach to patterns of very large
dimensionality. Texts are good examples of such a kind of signals. The dimensionality of signal space
is equal to the number of words in the used dictionary and thus is usually very high.

This paper only emphasizes the principal ability of the Hopfield-like network to perform Boolean
factor analysis. This ability is based on the fact that a network keeps its ability to create large
attraction basins around the stored patterns even in the case when they are mixed in the signals of
a learning set. The realistic procedure of Boolean factor analysis with the Hopfield-like network is
presented in the accompanying paper.

6 Appendix 1. Attractors of network dynamics

In order to prove that only point and cyclic attractors of length two are present in the network
dynamics, let us introduce the function

F (t) = Λ(t)− (XT (t + 1) + XT (t))Tn

where the first term is an ordinary Lyapunov function Λ(t) = XT (t + 1)JX(t) and the second term
takes account of small noisy increments Tn

i added to the global activation threshold T (t) . These
increments are so chosen as to be different for different neurons and fixed during the whole recall
process. Since J is symmetric, XT (t + 1)JX(t) = XT (t)JX(t + 1). Then the increment of F during
one recall step amounts to

∆ = F (t + 1)− F (t) = (XT (t + 2)−XT (t))(JX(t + 1)−Tn)

Since the number of active neurons is set to be fixed at each time step of the recall process, then
(XT (t + 2)−XT (t))e = 0 where e is the vector of the N ones. Hence

∆ = (XT (t + 2)−XT (t))(JX(t + 1)−Tn − T (t + 1)e) =
∑

i

δi

where δi = (Xi(t+2)−Xi(t))ui(t+1) and ui(t) =
∑

j JijXj(t)−Tn
i −T (t). Individual increments δi are

non-negative because if ui(t+1) > 0, then, according to (2.2), Xi(t+2) = 1 and Xi(t+2)−Xi(t) ≥ 0
regardless, of Xi(t); if ui(t + 1) < 0 then, according to (2.2), Xi(t + 2) = 0 and Xi(t + 2)−Xi(t) ≤ 0,
regardless of Xi(t). Thus in both cases δi ≥ 0 and therefore ∆ ≥ 0. Since the number of the network
states is finite, ∆ finally reaches the zero value when all δi = 0. Due to the small random noise the
global activation threshold can be chosen at each time step so that ui 6= 0 for all i. Then the equality
δi = 0 can be satisfied only if Xi(t + 2) = Xi(t). Thus the network dynamics finally reaches the point
or cyclic attractors of length two.

7 Appendix 2. Estimation of D{qm}
By definition, qm = (1/N)(

∑
i=1,N Xm

i ). Then

D{qm} =
1
N

D{Xm
i }+

N − 1
N

Cov{Xm
i , Xm

j }
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where D{Xm
i } = q(1−q). Covariation between Xm

i and Xm
j can be presented in the form Cov{Xm

i , Xm
j } =

〈(1−Xm
i )(1−Xm

j )〉 − (1− q)2. Since factors are statistically independent

〈(1−Xm
i )(1−Xm

j )〉 = 〈
∏

l∈{l:βm
l =1}

(1− f l
i )(1− f l

j)〉 = [(1− p)(1− p∗)]C

where 1− p∗ = ((1− p)N − 1)/(N − 1) is a probability that the j-th neuron is not active in a given
factor under the condition that the i-th neuron is not active in this factor. Thus

Cov{Xm
i , Xm

j } = (1− q)2[(1− p

(1− p)(N − 1)
)C − 1] ' − (1− q)2pC

(1− p)N
,

that is D{qm} is of order 1/N .

8 Appendix 3. Estimation of D{Jij}
D{Jij} can be presented in the form

D{Jij} = ME1 + M(M − 1)E2 − (〈Jij〉)2 (8.1)

where

E1 = 〈(Xm
i − qm)2(Xm

j − qm)2〉,
E2 = 〈(Xm

i − qm)(Xm
j − qm)(X l

i − ql)(X l
j − ql)〉, l 6= m

and according to (3.2) 〈Jij〉 = M〈(Xm
i − qm)(Xm

j − qm)〉 = −Mq(1− q)/(N − 1).
To estimate E1 and E2 we ignore the statistical dependence between Xm

i and Xm
j which results

from the fact that the number of active neurons in factors is fixed and equal to n (the correlation
coefficient between these variables is of order 1/N , see Appendix 2). Then E1 = q2(1 − q)2. To
estimate E2 one must take into account the statistical dependence between the activities of the same
neurons in different patterns of the learning set. This dependence results from the fact that the
different neurons are differently presented in a set of factors. Thus the neurons which are contained
in more factors have higher probability to be active in both learning patterns Xm and Xl. In order
to take into account this dependence explicitly, let us introduce probability

P (C1) =
(

C

C1

)(
L− C

C − C1

)
/

(
L

C

)

that the given pair of signals have C1 common factors.Then

E2 =
∑

C1

P (C1)E2(C1)

where

E(C1) = 〈(Xm
i − qm)(X l

i − ql)〉|C1 = 〈(1−Xm
i )(1−X l

i)〉 − (1− q)2.

Due to independence of different factors

〈(1−Xm
i )(1−X l

i)〉 = (1− p)C1(1− p)2(C−C1) = (1− q)2/(1− p)C1 ,

i.e. E(C1) = (1 − q)2[(1 − p)−C1 − 1] and after approximation of P (C1) by Poisson distribution
P (C1) ' µC1 exp(−µ)/C1! where µ = C2/L, and taking in account that for any a

∑

C1

aC1µC1 exp(−µ)/C1! = exp(µ(a− 1))
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one can immediately obtain

E2 = (1− q)4[exp(µ(
1

(1− p)2
− 1))− 2 exp(µ(

1
1− p

− 1)) + 1]

= (1− q)4p2G(µ)µ/[(1− p)2]

where G(µ) is given by (3.6). Since the first term in (8.1) is of order M , the second one is of order
M2 and the third one is of order (M/N)2, the first and third terms can be ignored when compared
with the second one. Hence D{Jij} is given by (3.5).

It must be noted that the estimation of D{Jij} by formula (3.5) is valid only when 1 − q is not
extremely small, because the first term in (8.1) is of order (1 − q)2, the second of (1 − q)4 and the
third of (1 − q)2. Since 1 − q = exp(−pC), we assume that pC is not extremely large to provide the
condition that (1− q)2 and (1− q)4 are of the same order.

9 Appendix 4. Estimation of mean and variance of synaptic connec-
tions with additional inhibition

The estimations are performed by the same method as in Appendix 3. According to (2.1) and (4.4)

J inh
ij = Jij − J ′ij =

M∑
m=1

(Xm
i − qm)(Xm

j − qm)−M(ri − q)(rj − q)

'
M∑

m=1

(Xm
i − q)(Xm

j − rj) =
M∑

m=1

(1−Xm
i )((1−Xm

j )− (1− rj))

where ri is the probability that neuron i is active in a learning pattern. Then D{J inh
ij } ' M2Einh

2

where

Einh
2 = 〈(1−Xm

i )((1−Xm
j )− (1− rj))(1−X l

i)((1−X l
j)− (1− rj))〉

= 〈(1−Xm
i )(1−Xm

j )(1−X l
i)(1−X l

j)〉 − 〈(1−Xm
i )(1− rj)(1−X l

i)(1−X l
j)〉

− 〈(1−Xm
i )(1−Xm

j )(1−X l
i)(1− rj)〉+ 〈(1−Xm

i )(1− rj)(1−X l
i)(1− rj)〉

' 〈(1−Xm
i )(1−Xm

j )(1−X l
i)(1−X l

j)〉 − [〈(1−Xm
i )(1−X l

i)〉]2

where we took into account that 〈(1 −Xm
i )(1− ri)〉 ' 〈(1 −Xm

i )(1−X l
i)〉 and so on. The terms in

last equation was found in Appendix 3 and substitution of them immediately gives (4.5).
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