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Czech Republic and Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Prague 1,
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Abstract The aim of this paper is to compare of the biomechanical influ-
ences of different grades of valgus deformity after the total knee replacement
(TKR) based on the contact model problem with friction, the finite element
method and the nonoverlapping domain decomposition method.
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1 Introduction

Division of loads acting on the tibial component after implantation of the to-
tal knee replacement is of primary importance in orthopedic surgery. About
the pressure ratios in the knee after the total knee replacement (TKR) the
soft tissue tension (i.e. capsules of joints, ligaments, muscular insertions) in
the vicinity of the replacement and the resulting axial position of the whole
limb are determined. These factors are influenced especially by the own tech-
nique of implantation and, in a decisive way determines the survival time of
the implant. Nonobservance of the balance of both compartments (medial
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and lateral) or possible overloading of the posterior part of the tibia plate
leads to wear out of the polyethylene insert. Asymmetrical overloading leads
to the premature abrasion of a plastic polyethylen insert with production
of a great amount of polyethylene elements, which instigate a complicated
inflammatory reaction leading to loosening metallic components of the total
replacement from the bone.

The successful application of the total replacements of the knee joint
(TKR) depends on many factors. Namely, it is the optimal axial position
of a lower limb. Participating in the resulting axial position of a limb are
many factors which must be studied from the clinical and radiological point
of view in more details and the respected before the operation. Changes in
the form of the distal femur or the proximal tibia forming the knee joint
can be the causes of incorrect centering of both components of the knee
joint. Therefore, the mechanical axis, i.e. the connection of the centre of
the head of the femur with the centre of the incisura intercondylica (area
between condyles) and the centre of the talocrural (ankle) joint determines
the so-called mechanical axis of the lower limb. After the adjustment of the
mechanical axis, the angle with the anatomic femur axis, i.e. the true axis
of an extremity which is measured by lines drawn parallel to the shaft of the
bone, determines the degree of physiological valgus, in which the resection
of the lower femur should be performed. If the correct technique of implan-
tation, especially soft tissue balancing and respect for the exact position
of the mechanical axis of extremity are maintained, then the basic condi-
tions for correct biomechanical functioning of the total knee replacement
are created.

From the orthopaedic point of view the total knee replacements are
studied by [10].

Moreover, the mechanical factors are also an important one. The idea
of a total knee prosthesis being a device that transfer the knee joint loads
to the bone allows explaining the mechanical factor in terms of the load
transfer mechanism. A complex relations exist between this mechanism, the
magnitude and direction of the loads, the geometry of the bone-joint pros-
thesis configuration, the elastic properties of the materials and the physical
connections at the material connections. The contact problems in suitable
rheology and their finite element approximations are very useful tools for
analyzing these relations for knee joint and its artificial replacement [5,7,8,
11,1,9]

2 The model

The idea of a total knee replacement being a device that transfer the knee
joint loads to the bone allows explaining the mechanical factor in terms of
the load transfer mechanism. The authors of [5,7,8,11,1,9] showed that the
contact problems in suitable rheology and their finite element approxima-
tions are very useful tools for analyzing deviation of stress-strain fields in
the knee joint and its artificial replacement.
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Such models are based on the contact problem with friction in elasticity
and the finite element method. The presented model problem is formulated
as the primary semi-coercive contact problem with given friction and for
the numerical solution of the studied problem the nonoverlapping domain
decomposition method, discussed in [2], is used.

2.1 The model contact problem with friction and the nonoverlapping
domain decomposition method

Let the investigated part of the knee joint occupy a union Ω of bounded
domains Ωι, ι = 1, 2, 3 in IRN (N = 2), denoting separate components of
the knee joint - the femur (1), the tibia (2) and the fibula (3), with Lips-
chitz boundaries ∂Ωι. Let the boundary ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 consist of
four disjoint parts such that ∂Ω = Γτ ∪ Γu ∪ Γc ∪ Γo. Let Γτ = 1Γτ ∪ 2Γτ ,
where by 1Γτ we denote the loaded part of the femur and by 2Γτ the un-
loaded part of the boundary ∂Ω. By Γu we denote the part of the tibial and
fibula’s boundaries, where we simulate their fixation. The common contact
boundary between both joint components Ω1 and Ω2 before deformation we
denote by Γc = ∂Ω1∩∂Ω2. By Γo we denote the common contact boundary
between tibia and fibula, where we assume compliance of bilateral contact
condition. Let body forces F, surface tractions P and slip limits gc be given.
We have the following problem:

Problem (P): find the displacements uι in all Ωι such that

∂τij (uι)
∂xj

+ F ι
i = 0, i, j = 1, 2 in Ωι, ι = 1, 2, 3, (1)

τijnj = Pi, i, j = 1, 2 on 1Γτ , (2)

τijnj = 0, i, j = 1, 2 on 2Γτ , (3)

uι
i = 0, i = 1, 2 on Γu, (4)





u1
n−u2

n ≤ 0, τ12
n ≤ 0,

(
u1

n − u2
n

)
τ12
n = 0,

|τ 12
t (u)| ≤ Fc|τ12

n (u)| ≡ gc,
|τ 12

t (u)| < gc ⇒ u1
t − u2

t = 0 on Γc,
|τ 12

t (u)| = gc ⇒ there exists κ ≥ 0
such that u1

t − u2
t = −κτ 12

t (u)

(5)

uι
n = 0 and τ ι

t = 0 on Γo, (6)

where the normal and tangential components of displacement vector u =
(ui), i = 1, 2, and stress vector τ = (τi), i = 1, 2, are defined as follows:
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un = uini, ut = u− unn, τn = τijnjni, τ t = τ − τnn, where n denotes the
outward unit normal to the boundary ∂Ω, and therefore, τk

n = τ l
n ≡ τkl

n ,
τ k

t (u) = τ l
t(u) ≡ τ kl

t (u). Moreover, the elastic coefficients cijkl satisfy the
conditions of symmetry cijkl = cjikl = cijlk = cklij and the condition 0 <

cι
0 ≤ cι

ijklξijξkl |ξ|−2 ≤ cι
1 < +∞, for a.a. x ∈ Ωι, ξ ∈ IR4, ξij = ξji, c

ι
0, c

ι
1 =

const. > 0 independent of x ∈ Ωι, ι ∈ {1, 2, 3}. Let W = u3
ι=1[H

1(Ωι)]2 be
the Sobolev space in the usual sense, let ‖v‖W = (

∑
ι

∑
i ‖vi‖21,Ωι)

1
2 . Let us

introduce the sets of virtual and admissible displacements

V = {v ∈ W | v = 0 on Γu and vn = 0 on Γo} ,

K =
{
v ∈ V | v1

n − v2
n ≤ 0 on Γc

}
.

Let cι
ijkl ∈ L∞(Ωι), F ι

i ∈ L2(Ωι), Pi ∈ L2(1Γτ ). Then we have to solve the
following variational problem:

Problem (Pv): find a function u ∈ K, such that

a(u,v − u) + j(v)− j(u) ≥ L(v − u) ∀v ∈ K, (7)

where

a(u,v) =
∑

ι

∫
Ωι cι

ijkleij (uι) ekl (vι) dx,
j(v) =

∫
Γc

gc|v1
t − v2

t |ds,
L(v) =

∑
ι

∫
Ωι F ι

i dx−∑
ι

∫
1Γτ∩∂Ωι P ι

i vι
ids.

(8)

Let us define a finite dimensional space Vh by

Vh = {vh | vh ∈ [C(Ω1)]2 × · · · × [C(Ωs)]2,vh|Thi
∈ [P1(Thi)]2,∀Thi ∈ Th,

vhn(qi) = 0, qi ∈ Γ0;vh(qi) = u0(qi), qi ∈ Γu}
and a finite dimensional set of admissible displacements

Kh = {vh | vh ∈ Vh, (vk
hn − vl

hn)(qi) ≤ 0, qi ∈ Γ kl
c , 1 ≤ k, l ≤ s}.

The finite element approximation leads to solve the following problem:

Problem (Ph): find a function uh,uh−u0 ∈ Kh, such that

a(uh,vh − uh) + j(vh)− j(uh) ≥ L(vh − uh) ∀vh ∈ Kh. (9)

2.2 The nonoverlapping domain decomposition method

Let us introduce

T = {n ∈ {1, . . . , N} : Γ̄c ∩ ∂Ω̄n = ∅}
the set of all indices of subdomains Ωn which are not adjacent to a contact,
and

ϑ = {[k, l], k, l ∈ {1, . . . , N} : ∂Ω̄k ∩ ∂Ω̄l ⊂ Γc}



5

represents couples of subdomains in unilateral contact. Suppose that Γ ∩
Γc = ∅. Then for the trace operator γ : [H1(Ωn)]2 → [L2(∂Ωn)]2 we have

VΓ = γK|Γ = γV |Γ . (10)

Let γ−1 : VΓ ∈ V be an arbitrary linear inverse mapping satisfying

γ−1v = 0 on Γc ∀v ∈ VΓ . (11)

Let us introduce restrictions Rn : VΓ → Γn; Ln : L → Ωn; jι
i : jι → S;

an(., .) : a(., .) → Ωn; V (Ωn) : V → Ωn and let

V 0(Ωn) = {v ∈ V | v = 0 on (∪N
n=1Ω

n)\Ωn}
be the space of functions with zero traces on Γn where Γn = Γ ∩ ∂Ωn The
algorithm is based on the next theorem and on the use of local and global
Schur complements.

Theorem: A function u is a solution of a global problem (7), if and only if
its trace u = γu|Γ on the interface Γ satisfies the condition

N∑

i=1

[ai(ui(u), γ−1w)− Li(γ−1w)] = 0, ∀w ∈ VΓ ,u ∈ VΓ (12)

and its restrictions ui(u) ≡ u|Ωi satisfy:
(i) the condition

ai(ui(u), ϕi) = Li(ϕi), ∀ϕi ∈ V 0(Ωi), for i ∈ T, (13)

(ii) the condition

ak(uk(u), ϕk) + al(ul(u), ϕl) ≥ Lk(ϕk) + Ll(ϕl),
∀ϕi ∈ V 0(Ωi), i = k, l, for [k, l] ∈ ϑ.

(14)

Proof. See [2].

To analyze the condition (12) the local and global Schur comple-
ments are introduced. Let

Vi = {γv|Γi
| v ∈ K} = {γv|Γi

| v ∈ V }
and define a particular case of the restriction of the inverse mapping γ−1(.)|Ωi

by
{

Tr−1
i : Vi → V (Ωi), γ(Tr−1

i u)|Γi = ui, i = 1, . . . , N,

ai(Tr−1
i ui,vi) = 0, ∀vi ∈ V 0(Ωi), T r−1

i ui ∈ V (Ωi), for i ∈ T.
(15)

For [k, l] ∈ ϑ we complete the definition by the boundary condition (11),
i.e.

Tr−1
k uk + Tr−1

l ul = 0 on Γc. (16)
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The local Schur complement for i ∈ T is the operator Si : Vi → (Vi)∗ defined
by

〈Siui,vi〉 = ai(Tr−1
i ui, T r−1

i vi) ∀ui,vi ∈ Vi. (17)

For subdomains which are in contact we define a common local Schur
complement for the union Ωk ∪ Ωl (where [k, l] ∈ ϑ) as the operator
Sk,l : (Vk × Vl) → (Vk × Vl)∗ = (Vk)∗ × (Vl)∗ defined by

〈Sk,l(yk,yl), (vk,vl)〉 = ak(uk(yk), T r−1
k vk) + al(ul(yl), T r−1

l vl)
∀(vk,vl) ∈ Vk × Vl,

(18)

where Tr−1
k and Tr−1

l are defined by means of (15) and (16).
The condition (12) can be expressed by means of local Schur comple-

ments in the form

∑

i∈T

〈Siui,vi〉+
∑

[k,l]∈ϑ

〈Sk,l(uk,ul), (vk,vl)〉 =
N∑

i=1

Li(Tr−1
i vi) ∀v ∈ VΓ ,

(19)

where u = γu|Γ , vi = Riv, ui = Riu. Then we will solve the equation
(19) on the interface Γ in the dual space (VΓ )∗. We rewrite (19) into the
following form

S0U + SCONU = F , (20)

where

S0 =
∑
i∈T

(Ri)TSiRi,

SCON =
∑

[k,l]∈ϑ

R
T

k,lSk,lRk,l,

F =
N∑

i=1

(Ri)T (Tr−1
i )T Li

(21)

and Rk,l(u) = (Rk(u), Rl(u))T ,u ∈ VΓ .
Equation (20) will be solved by successive approximations, because

the operators Sk,l and therefore SCON are nonlinear. As a initial approxi-
mation U

0
we choose the solution of the global primal problem, where the

boundary conditions on Γc are replaced by the linear bilateral conditions

ukn − uln = 0, on Γc. (22)

Then we replace the set K by K0 = {v ∈ V | vkn − vln = 0 on Γc} and
therefore, we solve the following problem

u0 = arg minv∈K0 L(v), (23)
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where L(v) = 1
2a(v,v)−L(v) and we set U

0
= γu0|Γ . The auxiliary prob-

lem (23) represents a linear elliptic boundary value problem with bilateral
contact and it can be solved by the domain decomposition method again.

The non-linear equation (20) will be solved by successive approxima-
tions. We will assume that the approximation U

k−1
is known and the next

approximation U
k
we find as the solution of the following linear problem

S0U
k

= F − SCONU
k−1

, k = 1, 2, . . . (24)

In [2] the convergence of the method of successive approximation (24)
to the solution of the original problem (20) in the space (VΓ )∗ is proved.

2.3 The models in frontal and sagittal planes

In the next two types of models, the axial angle changes of the weight-
bearing total knee replacement in the frontal plane and in the sagittal plane,
will be analyzed.

The total replacement of the left knee joint was considered in linkage
on the axial deviation. The models are marked as MODEL I, MODEL II,
MODEL III for the frontal cross-section, where it is possible to analyze
the influence of the axial deviation and as MODEL IV, MODEL V for the
sagittal cross-section, which tells only little about the influence of the axial
deviation, but it tells something more about the overload of the posterior
part of the tibial plate in the sagittal (anteroposterior) direction.

2.3.1 The frontal plain MODEL I corresponds to the angle of the valgus in
the resection of the lower end of the femur 5 degree, MODEL II to 7 degree
and MODEL III to 9 degree (Fig. 1). The following material parameters are
used:

(1) anchoring plate - Ti6A14V: Young’s modulus of elasticity E = 1.15×
1011[Pa], Poisson constant ν = 0.3,

(2) polyethylene (UHMWPE) insert: Young’s modulus of elasticity E =
3.4× 108[Pa], Poisson constant ν = 0.4,

(3) femoral component - CoCrMo: Young’s modulus of elasticity E =
2.08× 1011[Pa], Poisson constant ν = 0.3.

(4) cortical bone: Young’s modulus of elasticity E = 1.71 × 1010[Pa],
Poisson constant ν = 0.25,

The femorotibial part of the knee joint occupies the region, denoted by
Ω = ∪s

ι=1Ω
ι, with boundary denoted by ∂Ω = Γτ ∪ Γu ∪Γc, The boundary

∂Ω is created by parts 1-2 and 3-4 (Γu), where the fibula and tibia are
fixed, modelled by the zero displacement (Dirichlet) conditions; by parts
7-8 and 9-10 (Γc), which are contact boundaries between collided parts of
the femorotibial joint, modelled by the unilateral contacts; by part 11-12
(Γo), where the fibula is connected with the tibia, modelled by the bilateral
contact; and by part 5-6 (1Γτ ), where the load 0.215×107[Pa] is prescribed;
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Fig. 1 The models: MODEL I-III, IV and V

on the remaining parts of the boundary (2Γτ ) the femorotibial joint is un-
loaded.

For computations the following discretization parameters were used:
MODEL I: 13 subdomains of domain decomposition, 3737 nodes, 7132

elements, 31+31+15 unilateral and bilateral contact nodes, 344 interface
elements between subdomains of domain decomposition,

MODEL II: 13 subdomains of domain decomposition, 3780 nodes, 7208
elements, 31+31+15 unilateral and bilateral contact nodes, 350 interface
elements between subdomains of domain decomposition,

MODEL III: 13 subdomains of domain decomposition, 3763 nodes, 7180
elements, 31+31+15 unilateral and bilateral contact nodes, 34 interface el-
ements between subdomains of domain decomposition.

2.3.2 The sagittal plain In the sagittal plane two types of models of the
total knee replacements in linkage on the axial deviation 5, 7, 9 degrees
across both condyles (see Fig. 1), where by MODEL IV the cut across outer
condyle (on the figure marked by the fibula) and by MODEL V the cut
across the inner condyle (on the figure without fibula) and in three variants
denoted as A corresponding to 5 degree, B-7degree and C-9degree, were
investigated. The sagittal cut tells anything about the influence of the axial
deviation, it tells something more about the overload of the posterior part
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of the tibial plato in the sagittal (anteroposterior) direction, and therefore,
it informs us about a relevant strong wear of the polyethylene insert. In
both types of models the same material parameters were considered.

The investigated femorotibial area of the knee joint in the sagittal plane
occupies the region, we denote it by Ω = ∪s

ι=1Ω
ι and its boundary by

∂Ω = Γτ ∪ Γu ∪ Γc. The boundary ∂Ω is created by parts between points
1-2 and 3-4 (Γu), where the fibula (1Γu) and the tibia (2Γu) are fixed;
by the part between points 5-6 (1Γτ ), where the loading is prescribed; by
the part between points 7-8 (Γc), which is contact boundary between both
collided parts of the femorotibial joint; by part between points 9-10 (Γc),
where the fibula through the tissues is jointed with the tibia and modelled
by the bilateral contact; on the remaining parts of the boundary (2Γτ ) the
femorotibial joint is unloaded.

The boundary and contact conditions: MODEL IV: Zero displacement
(Dirichlet condition) is prescribed between points 1-2 (fixed tibia) and 3-4
(fixed fibula); between points 5-6 the femur is loaded by a loading 1.46 ×
106[Pa] in the case of MODEL IV-A, 1.52× 106[Pa] in the case of MODEL
IV-B and 1.61 × 106[Pa] in the case of MODEL IV-C; the unilateral con-
tact condition is between points 7-8 and the bilateral contact condition is
between points 9-10.

MODEL IV: Zero displacement vector (Dirichlet condition) is prescribed
on the part 1-2 (fixed tibia), on the part 5-6 a loading 1.2 × 106[Pa] in
the case of MODEL V-A, 1.0 × 106[Pa] in the case of MODEL V-B and
0.86× 106[Pa] in the case of MODEL V-C; the unilateral contact condition
is between points 7-8 and the bilateral contact condition is between points
9-10; the remaining part of the boundary is unloaded.

For computation the following discretization parameters were used:
MODEL IV: 10 subdomains of domain decomposition, 2867 nodes, 4740

elements, 33 unilateral and bilateral contact nodes, 299 interface elements
between subdomains of domain decomposition,

MODEL V: 8 subdomains of domain decomposition, 2474 nodes, 4104
elements, 33 unilateral contact nodes, 290 interface elements between sub-
domains of domain decomposition.

3 Biomechanical analysis of the axial angle changes on the
weight-bearing TKR

The main goal of the paper is to compare the biomechanical influences
of different grades of valgus deformity after application of the total knee
replacement (TKR).

3.1 The frontal plain

The numerical results are presented in Figs 2-7 for axial deviation 5, 7 and
9 degrees. Fig. 2 characterizes the internal shift of the material points on
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Fig. 3 The vertical component of the stress tensor for MODEL I, II, III

the contact boundary before and after the deformation for the medial and
lateral condyle. The vertical and shear components of the stress tensor and
the principal stresses in the considered femorotibial part of the lower limb
are in Figs 3-5. Normal and tangential components of the displacement
and of the stress vectors on the contact boundary between the femoral and
tibial components of the knee joint in the area of both condyles are in Figs
6, 7.

3.1.1 Results of computations for 5 degree valgus A model was constructed
so that the requirement of maintaining of the mechanical axis with symmet-
rical division of the load on the whole area. Deformity of the knee joint re-
veals itself mainly in the femoral part of the joint. The horizontal component
of the displacement vector indicates the shifts in the area of the polyethylen
insert of the external condyle in its medial part. The vertical component of
the displacement reveals itself especially in the considered part of the femur,



11

0 0.05 0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τ
xy

−2.84811e+06

−2.16096e+06

−1.47382e+06

−7.86670e+05

−9.95239e+04

+5.87622e+05

+1.27477e+06

+1.96191e+06

+2.64906e+06

0 0.05 0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τ
xy

−3.05689e+06

−2.38695e+06

−1.71702e+06

−1.04708e+06

−3.77145e+05

+2.92790e+05

+9.62726e+05

+1.63266e+06

+2.30260e+06

0 0.05 0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τ
xy

−3.31289e+06

−2.63679e+06

−1.96070e+06

−1.28460e+06

−6.08507e+05

+6.75875e+04

+7.43682e+05

+1.41978e+06

+2.09587e+06

Fig. 4 The shear component of the stress tensor for MODEL I, II, III
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Fig. 5 The principal stresses for MODEL I, II, III

minimally in the area of the fibula. Represented in Figs 3-5 is the division
of the vertical component of the stress tensor, the shear and the principle
stresses in the area of the artificial replacement of the knee joint. The great-
est changes in the horizontal stress component are indicated in the area of
the tibial plate. From the vertical component of the stress tensor (Fig. 3)
and the principle stresses (Fig. 5) it follows that the stress in the diaphysis
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Fig. 7 Normal and tangential components of the stress vectors on the contact
boundary in the area of both condyles for MODEL I, II, III

is spread evently, in the area of metaphysis it begins to be separated by
the area characterized by pressure, in the area of epiphysis the pressure is
transmitted over the fixing elements of the femoral component of the artifi-
cial replacement, and it is the external condyle that is more burdened and
further transmitted over the polyethylen insert on the tibial plate and over
the fixing element of the tibial plato onto tibia. The shear stresses (Fig. 4)
and the principle stresses (Fig. 5) indicate the areas characterized by ten-
sile stresses in the area above the incisura intercondylica and in the area
of the tibial plato. From the normal and tangential components of the dis-
placement vector on the contact it follows that both components are in tight
contact and that the movement on the internal condyle grows in direction to
the centre and in the external condyle the tangential component grows from
the incisura intercondylica up to the maximum movement that is practically
behind the centre of the condyle and then markedly falls to the external rim.
The normal component of the stress vector has, on both condyles, similar
character in view of the condyle symmetry and a greater load gets over the
external condyle. An analysis of the normal contact stresses indicates only
the pressure stresses. The tangential contact stresses are near zero.

3.1.2 Results of computations for 7 degree valgus The principle of main-
taining the mechanical axis with symmetrical division of the whole surface
(area) of the joint has been preserved also in this case. The symmetrical
division of forces for both knee compartments is documented also by the
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saturation of the coloration on the pictures based on the numerical results,
especially transmission of the pressure forces over both condyles in case of
the principle stresses (Fig. 5). The transfer of the load with maximum in the
area of the fixing femoral elements and of the stem of the tibial component
is indicated in Figs 3-5. The vertical component of the stress tensor (Fig. 3)
indicates a straighten spread of stresses in comparison with the preceding
case, which even shear stresses indicate (Fig. 4). A balanced transmission
of the load ongoing symmetrically through both parts of the joint is rep-
resented in the case of the principle stresses in Fig. 5 by the course of the
pressure load. Lowering of the size of the tensile stress is indicated in the
area incisura intercondylica. The character of the normal components of the
displacement vector does not change, i.e. both knee joint components in an
investigated case stay in a tight contact, only the character of the course
of the tangential displacement component on the internal condyle changes
(Fig. 6). The values of this component change as well. And also a partial
straightening of the pressure load on both condyles of the knee joint is in-
dicated. The tangential component of the stress vector changes only a little
(Fig. 7).

3.1.3 Results of computations for 9 degree valgus In this model there was
effort to preserve the basic condition relevant to the mechanical axis. Hori-
zontal and vertical components of the displacement vector indicate greater
changes of deformity in both areas of the polyethylen insert. The compo-
nents of the stress tensor and the principle stress (Figs 3-5) indicate signs
of a knee part overload and increase of transfer (transmission) of the load
by an external compartment. The increase load passing through the ex-
ternal compartment is, in addition, emphasized in Fig. 5 by the course of
the principle stresses. Numerical results show that also in this case both
components of the replacement of the knee joint are in tight contact, the
movement in tangential direction grows, which testifies to greater deformity
of the joint replacement (Figs 6-7). Normal components of the stress vector
on the contact between both femorotibial parts of the knee joint (Fig. 7)
indicate greater values of loading (overload) of the external condyle.

Overloading of the posterior part of the tibial plate in the anteroposterior
direction in the nonloosing of the soft posterior structures, possibly incorrect
inclination of the resection of the proximal tibia is studied in MODEL IV
and V. The results display certain overloading of the posterior part of the
tibial plate also for the case of a 7 degree deviation, which indicates the
possibility of wear of the polyethylene insert TKR.

3.1.4 Valuational remarks From the first analyses of the numerical results
it is possible to estimate that the optimal partition of the forces effective
on TKR in medio-lateral direction (frontal plane) corresponds to the mod-
ification in the 7 degree valgus.

For the horizontal stress components and the principle stresses outweigh
the relatively small tensile stresses in the area round the external lateral and
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internal medial contact parts and in the area incisura intercondylica, oth-
erwise predominantly indicated in femur are pressure stresses, especially in
relatively larger distance from the contact boundary and also in tibia. The
stress gradients become equal in epiphysis and metaphysis, and diaphysis
is already strained evenly. For the vertical stresses predominantly the pres-
sure stresses are observed, the area incisura intercondylica and the medial
margin are relieved (reduced) and the stress grows further in the lateral di-
rection, similar situation is observed also in the tibia. The pressure stresses
is transmitted over the external lateral and internal medial parts of the con-
tact area. In the course of a vertical component of stress, shear stresses and
the principal stresses we can see that concentration of the pressure stresses
is more located into the area of the external condyles of femur and tibia,
the smaller part across the internal condyles, tensile stresses are located
into the area incisura intercondylica.

The normal and tangential components of the displacement and stress
vectors on the contact boundaries of both condyles have a testing value for
the analysis of the total replacement of the knee joint in dependence on the
axial deviation. From the analysis of the normal displacement component
DUn we see that both components of the knee joint are constantly in a
close contact. The analysis of the tangential component of the displacement
vector DUt points at relatively small shifts in both condylar components of
the joint, the character of their process is a little different for the studied
axial deviation and we observe real mutual shifts of the contralateral points
of the contact in the space. Normal and tangential stresses on the contact
in both condylar parts of the knee joint characterizes loading relations on
the both condylar parts of the knee joint. The pressure is observed in both
condyles.

3.2 The sagittal plain

The greatest testifying values have horizontal component of the displace-
ment vector Ux, the normal and tangential components of displacement vec-
tor DUn, DUt and normal and tangential stresses τn and τt on the contact
between both components of the knee joint replacement. The contact be-
tween both parts of the joint knee replacement is between points 7-8, where
the point 7 corresponds to the investigated posterior part of the polyethy-
lene insert. Figs 8, 9 present the horizontal component of the displacement
vector Ux, from which the shifts within the bounds approx.−1.667×10−5[m]
- −1.748 × 10−5[m] - −1.85 × 10−5[m] in the case of the outer condyle for
the axial deviations 5, 7, 9 deg. in the area of the tibial plato and within
approx. −1.38 × 10−5[m] - −1.15 × 10−5[m] - −0.92 × 10−5[m] in the case
of the inner condyle for the axial deviations 5, 7, 9 deg. in the area of the
tibial plato, are observed. From these results it is seen that the polyethylen
insert for all axial deviations is press out in the posterior part of the tibial
plato, with greater values for the outer condyle than for inner condyle, and
that the polyethylene insert is more deformed and worn out.
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Fig. 8 The horizontal component of the displacement for MODEL IV - A,B,C
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Fig. 9 The horizontal component of the displacement for MODEL V - A,B,C
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Fig. 10 Normal and tangential components of the stress vectors on the contact
boundary for MODEL IV - A,B,C
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Fig. 11 Normal and tangential components of the stress vectors on the contact
boundary for MODEL V - A,B,C

Figs 10, 11 present the normal and tangential contact stresses τn and τt.
Tangential contact stresses are approx. equal to zero, the normal contact
stresses on the outer condyle have the values within the bounds approx.
−9.5×105[Pa] - −10.×105[Pa] - −10.5×105[Pa], and on the inner condyle
within the bounds approx. −6.5×105[Pa] - −6.0×105[Pa] - −5.0×105[Pa],
in the vicinity of the posterior part of the tibial plato and have the character
of pressures, which increase and the next minimum has in the closeness of
the front part of the tibial plato. The certain overloading of the posterior
part of tibial plato are observed, which leads to the possibility of worn out
and resulting wear of polyethylene insert of TKR.

4 Conclusions

Analysis of numerical results deduce optimal distribution of forces operated
on total knee replacement in anteroposterior direction and well-balanced
transition of forces in anteroposterior direction corresponding to the 7 de-
gree case. Optimal transfer of forces in anteroposterior direction with max-
imum in the place of amplification of the posterior corticalis of the femur,
fixation elements of femoral and/or of tibial stem component is in a good
agreement observed in practice. Analysis of numerical results of computa-
tions across the lateral and medial condyle in the sagittal plane shows onto
certain overloading of the posterior part of the tibial plato, which suggest
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the possibility of worn out and resulting wear of polyethylene insert of TKR,
which is also in a good agreement with observations in orthopaedic surgery.
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