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1 Introduction

An integral formula of the form ∫

A

w(a)φ(a,x)da.

can be metaphorically viewed as a one-hidden-layer neural network with a single linear output unit
and a continuum of hidden units. Each hidden unit computes a value of the function φ depending
on an input vector x and a parameter vector a. The output function of the network is a weighted
integral combination of the hidden unit functions.

Such integral formulas have been used to show that output functions from one-hidden-layer neural
networks with suitable φ and finitely many units are dense in various function spaces (see, e.g.,
Funahashi [8], Carroll and Dickinson [4], and Ito [13]). Integral representations have also been used
to estimate how accuracy of approximation varies with the number of hidden units (see, e.g., Barron
[1], Girosi and Anzellotti [10], and Kůrková, Kainen and Kreinovich [19]). In a neural network with
finitely many units the integral is replaced by a Riemann sum. A neural network can even be thought
of as a kind of numerical quadrature, a generalization of the midpoint, trapezoid, and Simpson rules
for approximating integrals.

In this paper we derive integral formulas corresponding to one-hidden-layer Heaviside networks,
extending and unifying results in [8], [4], [13], and [19]. Some of the ideas in this paper appeared in
[16]. See also Helgason’s monograph [11] on the Radon transform.

An outline of the paper follows. Section 2 reviews neural networks and establishes notation,
Section 3 discusses Green’s functions and Green’s second identity, and Section 4 describes functions
of controlled decay and states our main theorem. We consider the 1-dimensional case in Section 5,
provide necessary lemmas in Section 6, and prove the main theorem in Section 7. Section 8 has
extensions and refinements of our representation and its relation to known results. The paper ends
with a brief discussion.

2 Feedforward neural networks

Feedforward neural networks compute functions determined by the type of units and their intercon-
nections. Each computational unit depends on two vector variables (an input and a parameter), and
is given by a function φ : Rp×Rd →R, where p and d are the dimensions of the parameter and input
space respectively and R denotes the set of real numbers.

One-hidden-layer networks, with hidden units based on a fixed function φ and a single linear output
unit, yield functions f : Rd →R of the form

f(x) =
n∑

i=1

wiφ(ai,x), (2.1)

where n is the number of hidden units, and wi ∈ R are the output weights and ai ∈ Rp the input
parameters of the i-th unit for i = 1, ..., n.

A perceptron is a computational unit based on a function of the form φ((v, b),x) = ψ(v · x + b),
where ψ : R → R is a so-called activation function or threshold function, v ∈ Rd is an input weight
vector, and b ∈ R is a bias. The parameter vector is the pair (v, b) ∈ Rd+1, so p = d + 1. The
activation function often takes values between 0 and 1.

A typical activation function, and the focus of this paper, is the Heaviside function ϑ defined by
ϑ(t) = 0 for t < 0, ϑ(t) = 1 for t ≥ 0. Let ‖ · ‖ denote the Euclidean norm on Rd, and Sd−1 the
unit sphere in Rd. For every a > 0, ϑ(at) = ϑ(t). So, for v 6= 0, ϑ(v · x + b) = ϑ(e · x + b′), where
e = v

‖v‖ ∈ Sd−1 and b′ = b
‖v‖ .

For e ∈ Sd−1 and b ∈ R we denote by He,b the hyperplane

He,b = {x ∈ Rd : e · x + b = 0}.

1



The closed half-spaces bounded by this hyperplane are denoted by:

H+
e,b = {x ∈ Rd : e · x + b ≥ 0}

and
H−

e,b = {x ∈ Rd : e · x + b ≤ 0}.
A function from Rd into R is called a plane wave if it can be represented in the form α(v · x),

where α : R → R is any function of one variable and v ∈ Rd is any fixed nonzero vector. Plane waves
are constant on each hyperplane He,b, where e = v/‖v‖ and b ∈ R. A perceptron with activation
function ψ thus gives plane waves of the form ψb(v · x), where ψb(t) = ψ(t + b).

Our goal is to represent real-valued functions f on Rd by an integral combination of Heaviside
perceptron units. Thus we seek a representation

f(x) =
∫

Sd−1×R
w(e, b)θ(e · x + b) dedb (2.2)

where de is the surface area element on the unit sphere Sd−1, w : Sd−1×R −→ R is a weight function,
and x 7−→ θ(e · x + b) is the characteristic function of the closed half-space H+

e,b. Equation (2) is an
integral version of (1).

3 Green’s functions and Green’s second identity

The theory of distributions extends calculus from ordinary differentiable functions to a larger set of
generalized functions (or distributions) where the formal rules of calculus still hold. For example, the
operation of convolution g ∗h of two functions g and h, defined formally by (g ∗h)(x) =

∫
Rd g(y)h(x−

y) dy, see [20, p. 123], can be extended to distributions provided their supports are suitable. It is a
commutative operation and the Dirac delta function δ serves as an identity with f ∗ δ = f .

Let L be a linear differential operator acting on distributions in Rd. In general the equation

L(f) = g

with g given and f unknown can be solved for f by means of a Green’s function G with the property
that L(G) = δ. Indeed, f = g ∗G is a solution since L(g ∗G) = g ∗ L(G) = g ∗ δ = g.

An example of a linear differential operator is the Laplacian 4:

4(g) =
d∑

i=1

∂2g

∂x2
i

.

For a positive integer m, 4m denotes the Laplacian iterated m times, while40 is the identity operator.
The Green’s function for the Laplacian in Rd is 1

2π log ‖x‖ when d = 2, and 1
(2−d)ωd

‖x‖2−d when

d 6= 2, where ωd = 2
√

πd

Γ( d
2 )

is the surface area of the unit sphere Sd−1 in Rd (cf. [5, p. 679]). These
Green’s functions are regular distributions, i.e., they coincide with ordinary functions. Indeed, not
only are they locally integrable in Rd despite a singularity at the origin, they are also C∞ except
at the origin, and they either die out at infinity (d ≥ 3) or have logarithmic or linear growth there
(d = 2 or 1). Green’s functions for iterated Laplacians, exhibited in Equations (8) and (9) below, have
similar properties but with distinct forms depending on the parity of d, as in our integral formula
below.

Our treatment is self-contained and calculus-based. We use distribution theory [20] only for mo-
tivation.

Let x in Rd be fixed, and let positive numbers δ and R be given with R À δ. Let D = {y :
y ∈ Rd, ‖x − y‖ ≥ δ, ‖y‖ ≤ R} so that the boundary of D consists of two spheres: ∂D = {y ∈
Rd, ‖x− y‖ = δ, or ‖y‖ = R}. Then Green’s second identity for two C2 functions u and v (cf. [5, p.
257]) defined in a neighborhood of D takes the form:
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∫

D

(u4 v − v4 u) dy =
∫

∂D

(u
∂v

∂n
− v

∂u

∂n
) dSy (3.1)

where ∂
∂n = ±Σd

i=1
yi

‖y‖
∂

∂yi
denotes the radial normal derivative out of the region of interest and dSy

denotes the surface area element on the two bounding spheres. We call the righthand side of this
equation a boundary integral.

4 The Representation Theorem

Let r be a real number. A real-valued function g onRd vanishes to order r (at infinity) iff lim‖x‖→∞ g(x)‖x‖r =
0. In this case we write g(x) = o(‖x‖r) according to the Landau convention. Let ord g denote the
order of vanishing of g at ∞ [2, p. 8], that is,

ord g = sup {r : g(x) = o(‖x‖r)}.
For example, ord (log (‖x‖+1))s

‖x‖r+1 = r if r and s are real numbers with s ≥ 0. The statement ord g > r

is equivalent to each of the following:

∃ε > 0 such that ∀ε0 > 0 ∃R > 0 such that ‖x‖ ≥ R =⇒ |g(x)| ≤ ε0
‖x‖r+ε

,

∃ε > 0 ∃C > 0 such that ∀x |g(x)| ≤ C

(‖x‖2 + 1)(r+ε)/2
, and

∃ε > 0 ∃R > 0 such that ‖x‖ ≥ R =⇒ |g(x)| ≤ 1
‖x‖r+ε

.

Lemma 0: Let g : Rd −→ R be C1, with lim‖x‖→∞ g(x) = 0, and ord ∂g
∂xi

≥ r > 1 for all i = 1, ..., d.
Then ord g ≥ r − 1.

Proof: Given ε0 > 0, then for all ‖x‖ sufficiently large and for all i = 1, ..., d

| ∂g

∂xi
(x)| ≤ ε0

‖x‖r
,

and

|g(x)| = |g(x)− g(∞)| = |
∫ ∞

t=1

d∑

i=1

∂g

∂xi
(tx)xi dt|

≤
∫ ∞

t=1

√
d · ε0‖x‖
‖tx‖r

dt =

√
d · ε0

‖x‖r−1

∫ ∞

1

dt

tr
=

√
d · ε0

(r − 1)‖x‖r−1
,

i.e., g vanishes to order r − 1.

Our chief result is that a sufficiently smooth real-valued function on Rd that dies off at infinity
sufficiently rapidly can be written in the form (2). The class of functions for which the theorem is
proved depends on the parity of d, as does the choice of w.

Let kd = d + 1 if d is odd, d + 2 if d is even (i.e., kd = 2dd+1
2 e). Call a function f of controlled

decay if f : Rd → R is kd-times continuously differentiable and for each multi-index α = (α1, ..., αd)
with |α| ≤ kd
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ord ∂αf > |α|
where ∂αf denotes the corresponding partial derivative of f . In other words, for each such α there is
an ε > 0 such that

lim
‖x‖→∞

∂αf(x)‖x‖|α|+ε = 0,

The number ε depends on f and α. In arguments below where multiple partial derivatives are con-
sidered, we shall take ε to be the smallest of the individual ε’s and shall also assume without loss of
generality that ε < 1. The set of functions of controlled decay includes all real-valued functions on
Rd of rapid descent, i.e., all C∞ functions f satisfying ord ∂αf = ∞ for every multi-index α (cf. [20,
p. 100]). In particular, any function in Ckd with compact support is sufficently vanishing.

For f of controlled decay, we define a function wf on Sd−1 ×R by

wf (e, b) = ad

∫

H−
e,b

4 d+1
2 f(y) dy (d odd),

wf (e, b) = ad

∫

Rd

4 d+2
2 f(y)α(e · y + b) dy (d even),

where

ad =





(−1)(d−1)/2

2(2π)d−1 if d is odd
(−1)(d−2)/2

(2π)d if d is even.

and α(t) = −t log |t|+ t for t 6= 0 and α(0) = 0. The function α is odd.
Our Representation Theorem expresses a function as an integral combination of plane waves based

on the Heaviside function θ.

Theorem 1 Let f be of controlled decay. Then for each x ∈ Rd

f(x) =
∫

Sd−1×R
wf (e, b)ϑ(e · x + b) dedb, (4.1)

where in the even case the integral is defined pointwise as limK→∞
∫

Sd−1×(−∞,K]
.

Well-definedness of wf and integrability are established in the proof below.

5 The one-dimensional case

The one-dimensional case is instructive both for its simplicity and because it indicates that further
generalization is possible. When d = 1, any C1 function that vanishes at ±∞ can be represented in
the form (2).

Proposition 1 Let f : R→ R be continuously differentiable with limt→±∞ f(t) = 0. Then for every
x ∈ R,

f(x) =
1
2

∫ ∞

−∞
f ′(−b)ϑ(x + b) db +

−1
2

∫ ∞

−∞
f ′(b)ϑ(−x + b) db.

In this case Sd−1 = S0 = {±1}, the weight function is given by wf (1, b) = 1
2f ′(−b) = −wf (−1,−b).

Proof: Evaluation of the Heaviside function and a simple change of variables yields:
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1
2

∫ x

−∞
f ′(b) db− 1

2

∫ ∞

x

f ′(b) db =
1
2
(f(x)− f(−∞))− 1

2
(f(∞)− f(x)) = f(x).

When d = 1, the Representation Theorem requires that f be C2 with sufficient decay at ±∞, but
Proposition 1 is more general. The Representation Theorem asserts that when d = 1, wf (e, b) =
a1

∫
y:ey+b≤0

f ′′(y) dy = 1
2ef ′(−eb), as shown.

Proposition 1 has alternative forms. The coefficients 1
2 and − 1

2 can be replaced by t and t− 1 for
arbitrary t. If f vanishes only at −∞, take t = 1 (the first integral alone). Similarly if f vanishes only
at ∞, take t = 0. So the weight function in (2) is not unique.

Furthermore, f can be assumed to be merely absolutely continuous n each finite interval, guaran-
teeing a first derivative f ′ almost everywhere. Assume for example that: i) f is absolutely continuous
on finite intervals, ii) limx→−∞ f(x) = 0, and iii) f has finite total variation on intervals of the form
(−∞, x] for real numbers x. Then f ′ is in L1((−∞, x]) for each x and the first integral in Proposition
1 represents f at any real number x (cf. Hewitt and Stromberg [12, p. 286]). Lemma 1 below shows
that the conditions at ±∞ can be further relaxed.

6 Preliminary Lemmas

We need three lemmas for the proof. The first is a variant of Proposition 1.

Lemma 1 Let g : R → R be a continuous function such that g(0) = 0 and g is continuously differ-
entiable on (−∞, 0) ∪ (0,∞). Then for every x ∈ R,

g(x) =
∫ ∞

0

g′(t)ϑ(x− t) dt−
∫ 0

−∞
g′(t)ϑ(t− x) dt.

Proof: The right side in the Lemma is the same as:

∫ max {x,0}

0

g′(t) dt−
∫ 0

min {0,x}
g′(t) dt,

and this equals g(x)− g(0) = g(x).

The function g′ is continuous on the half-open interval joining 0 to x 6= 0, but may not be integrable
on this interval, in which case the integrals in Lemma 1 are not Lebesgue or Riemann integrals but
rather limε−→0+ (

∫∞
ε

+
∫ −ε

−∞). In the two applications we make of Lemma 1, g′ is integrable on the
given intervals and Lebesgue integration applies.

Lemmas 2 and 3 below show that the functions ‖x‖ and log ‖x‖ on Rd can be represented as
integrals of plane waves. These lemmas are stated in [5, pp. 678-9] except for the second part of
Lemma 3. Lemma 2 is needed for d odd, and Lemma 3 for d even. We give simple proofs that exploit
the homogeneity and rotational invariance of the associated integral formulas. However, extra work
is required to establish the final conclusion of Lemma 3.

Lemma 2 For every positive integer d and for all x in Rd,

‖x‖ = sd

∫

Sd−1
|e · x| de,

where sd = d−1
2ωd−1

for d ≥ 2 and s1 = 1
2 .
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Proof: The integral
∫
e∈Sd−1 |e · x| de is positive-homogeneous in x and rotationally invariant. Thus

it is equal to a constant time ‖x‖. To evaluate the constant, we take x to be a unit vector. Then the
integral, for d ≥ 2, is:

ωd−1

∫ π

θ=0

| cos θ| sind−2 θ dθ = ωd−1

[∫ π
2

0

cos θ sind−2 θ dθ −
∫ π

π
2

cos θ sind−2 θ dθ

]

= ωd−1


 sind−1 θ

d− 1

∣∣∣∣∣

π
2

0

− sind−1 θ

d− 1

∣∣∣∣∣

π

π
2


 =

2ωd−1

d− 1

while the integral reduces to 2 when d = 1.

Let β(t) = t2

2 log |t| − 3t2

4 for t 6= 0 and β(0) = 0. Note that β′(t) = −α(t) for all t, and
β′′(t) = log |t| for t 6= 0.

Lemma 3 For every positive integer d and for all nonzero x in Rd,

log ‖x‖ = bd +
1
ωd

∫

Sd−1
log |e · x| de = bd +

1
ωd

4
(∫

Sd−1
β(e · x) de

)
,

where bd is a constant.

Proof: To show that e 7→ log |x · e| is integrable, it suffices by additivity of the log to assume that x
is a unit vector. If d = 1, integrability is trivial. So assume d ≥ 2. Choosing the direction of x to be
the north pole, letting θ = cos−1 (e · x), and using the inequality cos θ ≥ 1 − 2

π θ for 0 ≤ θ ≤ π
2 , we

find that:

∫

Sd−1
| log |e · x|| de = 2ωd−1

∫ π/2

0

| log cos θ| sind−2 θ dθ

≤ 2ωd−1

∫ π/2

0

| log cos θ| dθ ≤ 2ωd−1

∫ π/2

0

(−1) log (1− 2
π

θ) dθ = πωd−1.

Thus the integrals are well-defined despite the singularities at the equator θ = π
2 .

By rotational invariance (x no longer assumed to be a unit vector)
∫

Sd−1 log |e · x| de is a function
g(‖x‖), with the property that g(‖λx‖) = ωd log |λ|+g(‖x‖). Hence g(‖x‖) = ωd log ‖x‖+g(1), where
g(1) = ωd−1

∫ π

θ=0
log | cos θ| sind−2 θ dθ for d ≥ 2 and g(1) = 0 when d = 1. This establishes the first

equation in Lemma 3, with bd = −g(1)/ωd.
To establish the second equation, observe first that e 7→ β(x ·e) is continuous and hence integrable

on Sd−1. Since 4f(e ·x) = f ′′(e ·x), we need only show that partial derivatives with respect to x can
be moved from outside to inside the integral. For first derivatives this is clear since β′ is continuous
and its domain can be restricted to [−‖x‖ − 1, ‖x‖+ 1].

The argument for second derivatives is more delicate. Since e · (x + huj) = e · x + hej , where uj

is the unit coordinate vector in the j-th direction and ej = e · uj , it suffices to show that

lim
h→0

(∫

Sd−1
(
β′(e · x + hej)− β′(e · x)

h
− ejβ

′′(e · x)) de
)

= 0. (6.1)

The case d = 1 is trivial. Assume d ≥ 2 and h > 0. The integral in (5) can be decomposed into the
sum of four Lebesgue integrals, two of them over regions in the northern hemisphere:

Uh = {e : e · x > 0, e · x + hej < 0} and Vh = {e : e · x > 0, e · x + hej > 0},
and two more over similar regions in the southern hemisphere.
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The set Uh is contained in the set {e : 0 < e · x < h} = {e : 0 < cos θ < h
‖x‖}, which has measure

approximately equal to hωd−1
‖x‖ for h small. It follows that the integral over Uh goes to 0 as h goes to 0

since β′ is uniformly continuous on the interval [− ‖ x ‖ −1, ‖ x ‖ +1] so that |β′(e ·x+hej)−β′(e ·x)|
can be assumed to be arbitrarily small and β′′ is integrable.

In the set Vh, on the other hand, let τ be the absolute value of the integrand in (5). Setting t = hej

e·x
and using the definitions of β′ and β′′, we find that

τ = |ej | sign(t)
(

log (1 + t)
t

+ log (1 + t)− 1
)

.

If t = 0, τ = 0. Since |ej | ≤‖ e ‖= 1, τ is dominated by log (1 + t) for t ≥ 0 and by log (1−t)
log 2 for

−1 < t ≤ 0. Thus τ is dominated by log (1+|t|)
log 2 for all t > −1. Hence, with H = h

‖x‖ , the integral over
Vh is dominated by:

1
log 2

∫

{e: e·x>0}
log (1 + h| ej

e · x |) de ≤ ωd−1

log 2

∫ π/2

0

log (1 +
H

cos θ
) sind−2 θ dθ

≤ ωd−1

log 2

∫ π/2

0

log (1 +
H

1− 2
π θ

) dθ =
ωd−1

log 2
π

2
(−H log H + (1 + H) log (1 + H)) ,

which converges to 0 as h tends to 0+.
These arguments show that when h converges to 0+ the integral in (5) restricted to the northern

hemisphere (e such that e · x > 0) tends to 0. In the southern hemisphere the substitution e′ = −e
and the oddness of β′ and evenness of β′′ convert the corresponding integral into the negative of the
northern hemisphere integral. Likewise, when h tends to 0 though negative values, the substitutions
x′ = −x and h′ = −h convert a left limit at x into a right limit at x′. Hence (5) holds.

7 Proof of the Representation Theorem

To prove the Representation Theorem, we express a function as the convolution of its iterated Lapla-
cian with the corresponding Green’s function. The Green’s function is represented as an integral
combination of plane waves. The plane waves in turn are represented as integral combinations of
Heavisides. This gives the desired representation of the original function.

Throughout the argument x is an arbitrary fixed member of Rd, while y in Rd is variable and
4 = 4y.

First we show that wf is finite and continuous. Indeed, the integrands in the definition of wf in
section 4 are sums involving derivatives of order kd.

In the odd case, when |α| = kd = d + 1, the summands satisfy

|∂αf(y)| ≤ C

(‖y‖2 + 1)(d+1+ε)/2

for all y in Rd and some ε > 0 where C is a constant depending on f and α. Thus in spherical
coordinates, where r =‖ y ‖ and dΩ is the area element on Sd−1, integrating over all of Rd rather
than just H−

e,b, we find:

∫

Rd

|∂αf(y)|dy ≤
∫

[0,∞)×Sd−1

C

(r2 + 1)(d+1+ε)/2
rd−1 dΩdr

≤ Cωd

∫ ∞

0

dr

(r2 + 1)(2+ε)/2
≤ Cωd

π

2
.
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Hence, for d odd, wf is finite and Lebesgue’s Dominated Convergence Theorem [12, p. 172] shows
that wf is continuous. Indeed, the effective integrand 4 d+1

2 f(y)θ(−e · y − b) behaves well pointwise
as (e, b) varies.

In the even case, when |α| = kd = d + 2, the summands satisfy

|∂αf(y)||α(e · y + b)| ≤ C|α(e · y + b)|
(‖y‖2 + 1)(d+2+ε)/2

for ‖y‖ in Rd. If we adopt a coordinate system in which y = (y1,y⊥) with y1 = e ·y and y⊥ ∈ Rd−1,
and ρ = ‖y⊥‖, we obtain:

∫

Rd

|∂αf(y)||α(e · y + b)|dy ≤
∫

R×[0,∞)×Sd−2

C|α(y1 + b)|
(y2

1 + ρ2 + 1)(d+2+ε)/2
ρd−2 dΩdρdy1.

We make the substitution ρ =
√

y2
1 + 1 tan θ and the right side becomes:

Cωd−1

∫

R

∫ π/2

θ=0

|α(y1 + b)|(y2
1 + 1)(d−1)/2

(y2
1 + 1)(d+2+ε)/2

tand−2 θ sec2 θdθdy1

secd+2+ε θ
≤ Cωd−1

π

2

∫

R

|α(y1 + b)| dy1

(y2
1 + 1)(3+ε)/2

.

The last integral is an even function of b: replace b by −b and y1 by −y1. So we may assume b ≥ 0.
Since |α(t)| ≤ 1 for |t| ≤ e + 1, this integral is dominated by the following sum:

∫

|y1+b|≤e+1

dy1

(y2
1 + 1)(3+ε)/2

+
∫

|y1+b|≥e+1,|y1|≤b

|α(y1 + b)| dy1

(y2
1 + 1)(3+ε)/2

+
∫

|y1+b|≥e+1,|y1|≥b

|α(y1 + b)| dy1

(y2
1 + 1)(3+ε)/2

,

Since e ≤ |t1| ≤ |t2| implies |α(|t1|)| ≤ |α(|t2|)| and in the second and third integrals immediately
above e + 1 ≤ |y1 + b| ≤ |y1|+ b ≤ max {2|y1|, 2b}, the sum is dominated by:

∫

R

(1 + |α(2b)|+ |α(2|y1|)|) dy1

(y2
1 + 1)(3+ε)/2

,

and this integral is a finite well-behaved function of b. Lebesgue’s Dominated Convergence Theorem
applies as in the odd case, and so wf is finite and continuous.

The case of odd d.

Finding the Green’s function. For i = 0, 1, ..., d+1
2 let

ui = 4if, vi = 4 d+1
2 −i ‖ x− y ‖,

where differentiation in the Laplacians is with respect to the variable y. Then for 0 < i < d+1
2 , ui

and vi+1 are twice continuously differentiable except when y = x since f is in Cd+1, and we assert
that for such i:

∫

Rd

uivi dy =
∫

Rd

ui 4 vi+1 dy =
∫

Rd

4uivi+1 dy =
∫

Rd

ui+1vi+1 dy. (7.1)

The middle equation is based on Green’s identity for ui, vi+1 on the region D in Section 3, Equation
(3), and requires that the corresponding boundary integrals vanish as R tends to ∞ and δ tends to 0.
These conditions will be established below.

First we must show that uivi is integrable for 0 ≤ i ≤ d+1
2 . Since uivi is continuous, we only

need investigate behavior as y tends to ∞ or y tends to x. We make extensive use of the following
identities:

4(‖ x− y ‖a) = a(a + d− 2) ‖ x− y ‖a−2

4m(‖ x− y ‖a) = C(a,m, d) ‖ x− y ‖a−2m (7.2)
C(a,m, d) = Πm−1

j=0 (a− 2j)Πm
j=1(a + d− 2j),
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valid for y 6= x, any real number a, and any integer m > 0. The decay condition on f assumed in the
Theorem provides an ε > 0 such that

|ui(y)| ≤ 1
‖ y ‖2i+ε

for ‖ y ‖ sufficiently large. Using the identities (7), we find that

|vi(y)| = |C(1,
d + 1

2
− i, d)| ‖ x− y ‖1−2( d+1

2 −i)

for y 6= x. Since lim‖y‖→∞
‖y‖
‖x−y‖ = 1, with A any real number larger than C(1, d+1

2 − i, d) and R

sufficiently large, we obtain in spherical coordinates centered on the origin:

∫

{y :‖y‖≥R}
|uivi|dy ≤

∫

[R,∞)×Sd−1

A

r2i+ε
r1−2( d+1

2 −i)rd−1drdΩ

=
∫

[R,∞)×Sd−1

A

r1+ε
drdΩ =

Aωd

εRε
< ∞.

Likewise, for δ > 0 and i > 0, in spherical cordinates centered on x, we have:

∫

{y :0<‖x−y‖≤δ}
|uivi| dy ≤

∫

(0,δ]×Sd−1
Br1−2( d+1

2 −i)rd−1drdΩ

=
∫

(0,δ]×Sd−1
Br2i−1drdΩ =

Bδ2iωd

2i
< ∞

where B = max {|ui(y)| : ‖ x− y ‖≤ δ}C(1, d+1
2 − i, d). When i = 0, there is nothing to prove since

C(1, d+1
2 , d) = 0 and so v0 ≡ 0. Thus uivi is integrable as claimed.

Now we show that the boundary integrals vanish. For R sufficiently large there is a constant C
such that

∫

{y :‖y‖=R}
|ui

∂vi+1

∂n
− vi+1

∂ui

∂n
| dSy ≤

∫

Sd−1

C

R2i+ε
R1−2( d+1

2 −(i+1))−1Rd−1dΩ

=
∫

Sd−1

C dΩ
Rε

=
Cωd

Rε
,

where ε is from the decay condition on f . Indeed, ∂
∂n = ±Σd

i=1
yi

r
∂

∂yi
and | ∂

∂n (‖ x − y ‖a)| ≤ a ‖
x− y ‖a−1 so that

|ui(y)
∂vi

∂n
(y)| ≤ 1

R2i+ε
C1 ‖ x− y ‖1−2( d+1

2 −i)−1, and

|vi+1(y)
∂ui

∂n
(y)| ≤ C2 ‖ x− y ‖1−2( d+1

2 −i)

R2i+ε+1

for suitable constants C1 and C2 depending on i and d. Since ‖x−y‖
‖y‖ ∼ 1 for ‖ y ‖ sufficiently large,

we can take C > C1 + C2 to obtain the above estimate on the boundary integral for large R. For δ
near 0, ∂

∂n = − ∂
∂r and

∫

{y :‖x−y‖=δ}
|ui

∂vi+1

∂n
− vi+1

∂ui

∂n
| dSy

≤
∫

Sd−1
{D1δ

1−2( d+1
2 −(i+1))−1 + D2δ

1−2( d+1
2 −(i+1))}δd−1dΩ

= {D1δ
2i + D2δ

2i+1}ωd
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where D1 = max {|ui(y)| : ‖ x− y ‖≤ δ}·C(1, d+1
2 −(i+1), d)|2(i+1)−d| and D2 = max {|∂ui

∂n (y)| : ‖ x− y ‖≤ δ}·
C(1, d+1

2 − (i + 1), d).
As R tends to ∞ and δ to 0+, these estimates show that all boundary integrals vanish for 0 < i <

d+1
2 . This establishes (6).

When i = 0, the boundary integrals vanish with one exception:

∫

{y :‖y−x‖=δ}
u0

∂v1

∂n
dSy = −

∫

Sd−1
f(y)

∂ 4 d−1
2 (‖ x− y ‖)

∂r
|r=δδ

d−1dΩ

= −
∫

Sd−1
f(y)

∂

∂r
(C(1,

d + 1
2

− 1, d) ‖ x− y ‖1−2( d+1
2 −1))|r=δδ

d−1dΩ

= −
∫

Sd−1
f(y)C(1,

d + 1
2

− 1, d)(2− d)δ1−dδd−1dΩ

=
∫

Sd−1
f(y)(−1)

d+1
2 (d− 1)! δ1−dδd−1dΩ,

where y = x + δe, e ∈ Sd−1, and this integral tends to f(x)(−1)
d+1
2 (d− 1)! ωd as δ tends to 0.

By (6)
∫

Rd

u1v1 dy = ... =
∫

Rd

u d+1
2

v d+1
2

dy,

and by Green’s identity again and the fact that v0 ≡ 0

0 =
∫

Rd

u0v0 dy =
∫

Rd

u1v1 dy + lim
R→∞,δ→0+

∫

{y :‖x−y‖=δ or ‖y‖=R}
u0(

∂v1

∂n
− v1

∂u0

∂n
) dSy

=
∫

Rd

u d+1
2

v d+1
2

dy − f(y)(−1)
d−1
2 (d− 1)!ωd.

Hence

f(x) = cd

∫

Rd

4 d+1
2 f(y)‖x− y‖ dy. (7.3)

with cd = (−1)
d−1
2

(d−1)! ωd
. So cd ‖ y ‖ is the Green’s function for 4 d+1

2 in Rd (d odd).

Determining wf . By Lemma 2 and Lemma 1, applied to the function |t|, we have:

‖x− y‖ = sd

∫

Sd−1
|e · (x− y)| de

= sd

∫

Sd−1

(∫ ∞

0

ϑ(e · (x− y)− t)dt +
∫ 0

−∞
ϑ(t− e · (x− y))dt

)
de.

Now set b = −e · y − t in the first integral and b = e · y + t in the second, and use the identity∫
Sd−1 g(−e) de =

∫
Sd−1 g(e) de (true for any integrable function g). Then

‖x− y‖ = sd

∫

Sd−1

(∫ −e·y

−∞
ϑ(e · x + b)db +

∫ e·y

−∞
ϑ(−e · x + b)db

)
de =

2sd

∫

Sd−1

∫ −e·y

−∞
ϑ(e · x + b) db de = 2sd

∫

Sd−1

∫

R
ϑ(−e · y − b)ϑ(e · x + b) db de.

Substituting this expression for ‖ x − y ‖ into (8), and supposing that we may change the order of
integration, we obtain the representation of Theorem 1 for d odd:
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f(x) = 2cdsd

∫

Sd−1

∫

R

(∫

Rd

4 d+1
2 f(y)ϑ(−e · y − b)dy

)
ϑ(x · e + b) de db =

=
∫

Sd−1×R
wf (e, b)ϑ(x · e + b) db de.

Change in the order of integration is justified by Fubini’s Theorem (cf. [12, p. 386]). For each x
in Rd, (y, e, b) 7→ 4 d+1

2 f(y)ϑ(−e · y − b)ϑ(e · x + b) is integrable with absolute integral

∫

Rd

∫

Sd−1

∫

R
| 4 d+1

2 f(y)||ϑ(−e · y − b)ϑ(e · x + b)| db de dy ≤
∫

Rd

∫

Sd−1
| 4 d+1

2 f(y)||e · (x− y)| de dy ≤ ωd

∫

Rd

| 4 d+1
2 f(y)| ‖ x− y ‖ dy,

which is bounded since lim‖y‖→∞
‖x−y‖
‖y‖ = 1 and for large R:

∫

{y :‖y‖≥R}
| 4 d+1

2 f(y)| ‖ y ‖ dy ≤
∫

‖y‖≥R

1
rd+1+ε

r · rd−1drdΩ =
∫

‖y‖≥R

drdΩ
r1+ε

=
ωd

εRε
.

In particular, by Fubini the intermediate integrand wf (e, b)ϑ(e · x + b) is integrable on Sd−1 ×R.

The case of even d. The argument in this case is similar to the odd case except that we
construct both wf and an alternative weight function ŵf .

Finding the Green’s function. Proceeding as in the odd case, we let

ui = 4if, vi = 4 d
2−i(log ‖ x− y ‖)

for 0 ≤ i ≤ d
2 . We shall establish that equations (6) hold for these choices of ui and vi and 0 < i < d

2 .
We shall need the following identities:

4(log ‖ x− y ‖) = (d− 2) ‖ x− y ‖−2

(7’)
4m(log ‖ x− y ‖) = C(−2,m− 1, d)(d− 2) ‖ x− y ‖−2m for m ≥ 2

where C(·, ·, ·) is as in (7). These identities imply that v0(y) = 4 d
2 (‖ x− y ‖) ≡ 0.

The function uivi is integrable for 0 ≤ i ≤ d
2 . Indeed,

∫

{y :‖y‖≥R}
|uivi|dy ≤

∫

[R,∞)×Sd−1

A

r2i+ε
r−2( d

2−i)rd−1drdΩ

=
∫

[R,∞)×Sd−1

AdrdΩ
r1+ε

=
Aωd

εRε

for r =‖ y ‖≥ R with R large, i < d
2 , and a suitable constant A obtained from (7’) and depending on

i and d. For i = d
2 and R large

∫

{y :‖y‖≥R}
|u d

2
v d

2
|dy ≤

∫

[R,∞)×Sd−1

1
rd+ε

(log r)rd−1drdΩ

=
∫

[R,∞)×Sd−1

log r

r1+ε
drdΩ =

(1 + ε log R)ωd

ε2Rε
.
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For δ > 0 and 0 < i < d
2 ,

∫

{y :0<‖x−y‖≤δ}
|uivi| dy ≤

∫

(0,δ]×Sd−1
Br−2( d

2−i)rd−1drdΩ

=
∫

(0,δ]×Sd−1
Br2i−1drdΩ =

Bδ2iωd

2i
,

where B = max {| 4i f(y)| : ‖ x− y ‖≤ δ} ·A, with A as above. When i = d
2 and δ < 1,

∫

{y :0<‖x−y‖≤δ}
|u d

2
v d

2
| dy ≤

∫

(0,δ]×Sd−1
K| log r|rd−1drdΩ =

Kδd|d log δ − 1|ωd

d2
.

where K = max {| 4 d
2 f(y)| : ‖ x− y ‖≤ δ}. Thus, uivi is integrable.

We now establish the vanishing of the boundary integrals in Green’s second identity to show that
(6) holds. For 0 ≤ i < d

2 and large R

∫

{y :‖y‖=R}
|ui

∂vi+1

∂n
− vi+1

∂ui

∂n
| dSy ≤

∫

Sd−1

C

R2i+ε
R−2( d

2−(i+1))−1Rd−1dΩ

=
∫

Sd−1

CdΩ
Rε

=
Cωd

Rε
,

where C is a constant depending on i and d (obtained by combining two constants C1 and C2 for the
two terms as in the odd case). For δ near 0

∫

{y :‖x−y‖=δ}
|ui

∂vi+1

∂n
− vi+1

∂ui

∂n
| dSy

≤
∫

Sd−1
{D1δ

−2( d
2−(i+1))−1 + D2δ

−2( d
2−(i+1))}δd−1dΩ

= {D1δ
2i + D2δ

2i+1}ωd

where D1 and D2 are suitable constants as in the odd case. As R tends to ∞ and δ goes to 0+, the
boundary integrals tend to 0 and so (6) is valid.

For i = 0, as in the case of odd d, there is one non-negligible term in the boundary integral. By
(7’)

∫

{y :‖x−y‖=δ}
u0

∂v1

∂n
dSy = −

∫

Sd−1
f(y)

∂

∂r
|r=δ (4 d−2

2 (log ‖ x− y ‖)δd−1dΩ

= −
∫

Sd−1
f(y)C(−2,

d− 2
2

− 1, d)(d− 2)
∂

∂r
|r=δ (r2−d)δd−1dΩ

=
∫

Sd−1
f(y)(−1)

d
2 {(d− 2

2
)!}22d−2δ1−dδd−1dΩ,

and this integral tends to f(x)(−1)
d
2 {(d−2

2 )!}22d−2ωd as δ tends to 0. As in the odd case, cf. (8),

lim
δ−→0+

−
∫

{y : ‖x−y‖=δ}
u0

∂v1

∂n
dSy =

∫

Rd

u1v1 dy =
∫

Rd

u d
2
v d

2
dy,

and so

f(x) = cd

∫

Rd

4 d
2 f(y) log ‖x− y‖ dy (7.4)
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where cd = (−1)
d−2
2

2d−2ωd{( d−2
2 )!}2 . Thus cd log ‖y‖ is the Green’s function for 4 d

2 in Rd (d even).

Determining ŵf . By Lemma 3

log ‖x− y‖ = bd +
1
ωd

4
(∫

Sd−1
β(e · (x− y)) de

)
, (7.5)

The Divergence Theorem [3, p. 423] implies that
∫

Rd

4 d
2 f(y) dy = lim

R−→∞

∫

{y : ‖y‖ =R}

∂

∂n
(4 d−2

2 f)(y)dSy = 0

since ∫

{y : ‖y‖=R}
| ∂

∂n
(4 d−2

2 f)(y)| dSy ≤
∫

{y : ‖y‖=R}

1

R2( d−2
2 )+1+ε

Rd−1dΩ =
ωd

Rε

for large R. Using this fact and substituting (10) into (9), we can eliminate the term involving bd to
obtain:

f(x) =
cd

ωd

∫

Rd

4 d
2 f(y)4 (

(∫

Sd−1
β(e · (x− y))de

)
)dy.

Then application of Green’s identity converts this into:

f(x) =
cd

ωd

∫

Rd

4 d+2
2 f(y)

(∫

Sd−1
β(e · (x− y))de

)
dy. (7.6)

Indeed, to apply (3), let u(y) = 4 d
2 f(y) and v(y) =

∫
Sd−1 β(e · (x − y))de. Then the boundary

integral in (3) decomposes into two parts, one with a well-behaved integrand whose integral over
{y : ‖ x− y ‖= δ} tends to 0 as δ does, and the other satisfying:

∫

{y :‖y‖=R}
|u∂v

∂n
− v

∂u

∂n
|dSy ≤

∫

Sd−1

(
C1R log R

Rd+ε
+

C2R
2 log R

Rd+1+ε

)
Rd−1dΩ =

(C1 + C2) log Rωd

Rε
,

which approaches 0 as R tends to ∞. Note here that

| ∂v

∂n
(y)| = |Σd

i=1

yi

R

∂v

∂yi
(y)| = | 1

R

∫

Sd−1
y · eβ′(e · (x− y)) de|

≤
∫

Sd−1
|β′(e · (x− y))| de ≤ |β′(‖ x− y ‖)ωd ≤ C1R log R

and
|v(y)| ≤

∫

Sd−1
|β(e · (x− y))|de ≤ C2R

2 log R

for ‖ y ‖= R large and suitable constants C1 and C2. So (11) holds.
¿From Lemma 1, and the identities

∫
Sd−1 g(−e) de =

∫
Sd−1 g(e) de and β′(−t) = −β′(t), we obtain:

∫

Sd−1
β(e · (x− y)) de

=
∫

Sd−1

(∫ ∞

0

β′(t)ϑ(e · (x− y)− t)dt−
∫ 0

−∞
β′(t)ϑ(t− e · (x− y))dt

)
de

13



=
∫

Sd−1

(∫ −e·y

−∞
β′(−e · y − b)ϑ(e · x + b)db−

∫ e·y

−∞
β′(b− e · y)ϑ(b− e · x)db

)
de

= 2
∫

Sd−1

∫

R
β′(−e · y − b)ϑ(−e · y − b)ϑ(e · x + b) db de.

Substituting the last expression into (11) and rearranging terms, we have:

f(x) =
2cd

ωd

∫

Sd−1

∫

R

(∫

Rd

4 d+2
2 f(y)β′(−e · y − b)ϑ(−e · y − b)dy

)
ϑ(e · x + b)db de

Hence,

f(x) =
∫

Sd−1×R
ŵf (e, b)ϑ(x · e + b) de db,

where

ŵf (e, b) =
2cd

ωd

∫

H−
e,b

4 d+2
2 f(y)α(e · y + b) dy, (7.7)

since α(t) = β′(−t).
As before, change in the order of integration is justified by Fubini’s Theorem. Indeed

∫

Rd

∫

Sd−1

∫

R
| 4 d+2

2 f(y)||α(e · y + b)||ϑ(−e · y − b)ϑ(e · x + b)| db de dy ≤
∫

Rd

∫

Sd−1
| 4 d+2

2 f(y)|max {1, |α(|e · (y − x)|)|}|e · (y − x)| de dy ≤

ωd

∫

Rd

| 4 d+2
2 f(y)|max {1, |α(‖ y − x ‖)|} ‖ y − x ‖ dy,

which follows from the inequality |α(t)| ≤ max {1, |α(s)|} for |t| ≤ |s|. Since

lim
‖y‖→∞

‖ x− y ‖ |α(‖ x− y ‖)|
‖ y ‖ |α(‖ y ‖)| = 1,

we take R large and boundedness follows from:

∫

{y:‖y‖≥R}
| 4 d+2

2 f(y)| ‖ y ‖ |α(‖ y ‖)| dy ≤
∫

‖y‖≥R

Cr2(log r)rd−1 dr dΩ
rd+2+ε

= Cωd

∫ ∞

R

log r dr

r1+ε
< ∞.

In particular ŵf (e, b)ϑ(e · x + b) is integrable on Sd−1 ×R.

Properties of ŵf . Equation (12) gives us a weight function ŵf for an integral formula. However,
to obtain the weight function wf in the Theorem, we first need two properties of ŵf , namely:

(P1) For b0 ∈ R there exist η > 0 and M > 0 such that |ŵf (e, b)| ≤ M/(b2 + 1)(1+η)/2 for
all e ∈ Sd−1 and all b ≥ b0; and

(P2) limK→∞
∫∞
−K

ŵf (e, b) db = 0 uniformly for e ∈ Sd−1.
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To establish (P1), fix e, choose rectangular coordinates y = (y1,y⊥) with y1 = e · y, and set
ρ =‖ y⊥ ‖. Then, arguing as before, we have:

ωd

2cd
|ŵf (e, b)| ≤

∫

H−
e,b

| 4 d+2
2 f(y)||α(e · y + b)|dy ≤

∫ −b

−∞

∫

y⊥∈Rd−1

C|α(y1 + b)| dy⊥ dy1

(‖ y ‖2 +1)(d+2+ε)/2
=

∫ −b

−∞

∫

[0,∞)×Sd−2

C|α(y1 + b)|ρd−2 dρ dΩ dy1

(y2
1 + ρ2 + 1)(d+2+ε)/2

= Cωd−1

∫ −b

y1=−∞

∫ π
2

θ=0

|α(y1 + b)| sind−2 θ cos2+ε θ dθ dy1

(y2
1 + 1)(3+ε)/2

≤ Cωd−1
π

2

∫ −b

y1=−∞

|α(y1 + b)| dy1

(y2
1 + 1)(3+ε)/2

= Cωd−1
π

2

∫ ∞

0

|α(t)| dt

((t + b)2 + 1)(3+ε)/2
.

The last integral is a continuous function of b defined for all values of b. Noting that |α(t)| ≤ 1 for
|t| ≤ e and |α(t)| ≤ t1+δ

δ(1+δ) for t ≥ e and any δ > 0, we see that when b ≥ 0 and ε > δ > 0:

(
∫ e

0

+
∫ ∞

e

)
|α(t)| dt

((t + b)2 + 1)(3+ε)/2
≤ e

(b2 + 1)(3+ε)/2
+

∫ ∞

e

(t + b)1+δ dt

δ(1 + δ)(t + b)3+ε

≤ e

(b2 + 1)(3+ε)/2
+

1
δ(1 + δ)(1 + ε− δ)(e + b)1+ε−δ

≤
e + 1

δ(1+δ)(1+ε−δ)

(b2 + 1)(1+ε−δ)/2
.

Hence, (P1) holds for b ≥ 0 and η = ε − δ. If b0 < 0, continuity on the interval [b0, 0] allows us to
draw the same conclusion for b ≥ b0 (with the constant M replaced by a larger constant that depends
on b0).

To prove (P2), note first that (P1) implies that for fixed e the mapping b 7→ ŵf (e, b) is integrable
on intervals of the form [−K,∞). Furthermore, Fubini’s Theorem in combination with the argument
for (P1) allows us to change the order of integration. Since all partials with respect to variables other
than y1 can be integrated out and evaluated at infinity (where the antiderivatives vanish), we find
that

ωd

2cd

∫ ∞

−K

ŵf (e, b) db =
∫ ∞

−K

∫

H−
e,b

4 d+2
2 f(y)α(e · y + b) dy db

=
∫ ∞

−K

∫ −b

y1=−∞

∫

y⊥∈Rd−1
4 d+2

2 f(y)α(y1 + b) dy⊥ dy1 db

=
∫ ∞

−K

∫ −b

y1=−∞

∫

y⊥∈Rd−1
(

∂

∂y1
)d+2f(y)α(y1 + b) dy⊥ dy1 db =

∫

y⊥∈Rd−1
I(y⊥) dy⊥,

where

I(y⊥) =
∫ ∞

−K

∫ −b

−∞
(

∂

∂y1
)d+2f(y)α(y1 + b) dy1 db =

∫ K

−∞

∫ −y1

−K

(
∂

∂y1
)d+2f(y)α(y1 + b) db dy1

=
∫ K

−∞

∫ −y1

−K

(
∂

∂y1
)d+2f(y)β′(−y1 − b) db dy1 =

∫ K

−∞
(

∂

∂y1
)d+2f(y)β(K − y1) dy1

=
∫ K

−∞
(

∂

∂y1
)d+1f(y)α(y1 −K) dy1

=
∫ K−

−∞
(

∂

∂y1
)df(y) log |y1 −K| dy1.

Here we have used integration by parts, properties of β and α, and the decay condition satisfied by
f . The last integral decomposes further as:
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(
∫ K−1

−∞
+

∫ K−

K−1

)(
∂

∂y1
)df(y) log |y1 −K| dy1

= log |y1 −K|( ∂

∂y1
)d−1f(y)

∣∣∣∣
K−1

y1=−∞
+

∫ K−1

−∞

( ∂
∂y1

)d−1f(y) dy1

K − y1

+ (y1 −K) log |y1 −K|
( ∂

∂y1
)d−1f(y)− ( ∂

∂y1
)d−1f(K,y⊥)

y1 −K

∣∣∣∣∣

K−

K−1

+
∫ K−

K−1

((
∂

∂y1
)d−1f(y)− (

∂

∂y1
)d−1f(K,y⊥))(

1
K − y1

) dy1

=
∫ K−1

−∞

( ∂
∂y1

)d−1f(y) dy1

K − y1
+

∫ K−

K−1

((
∂

∂y1
)d−1f(y)− (

∂

∂y1
)d−1f(K,y⊥))(

1
K − y1

) dy1

=: I1(y⊥) + I2(y⊥).

We now integrate with respect to y⊥. For K > 1 by the Mean Value Theorem:

|
∫

Rd−1
I2(y⊥) dy⊥| = |

∫ K−

K−1

∫

Rd−1
((

∂

∂y1
)d−1f(y)− (

∂

∂y1
)d−1f(K,y⊥))(

1
y1 −K

) dy1 dy⊥|

≤
∫

Rd−1
max

K−1≤y1≤K
|( ∂

∂y1
)df(y)| dy⊥ ≤

∫

[0,∞)×Sd−2

Cρd−2 dΩ dρ

((K − 1)2 + ρ2 + 1)(d+ε)/2

= Cωd−1

∫ π/2

0

1
((K − 1)2 + 1)(1+ε)/2

sind−2 θ cosε θ dθ ≤ Cωd−1
π

2((K − 1)2 + 1)(1+ε)/2
,

where we have used the substitution ρ = (
√

(K − 1)2 + 1) tan θ. As K tends to infinity, this integral
tends to 0.

Likewise,

|
∫

Rd−1
I1(y⊥) dy⊥| = |

∫ K−1

−∞

∫

Rd−1

( ∂
∂y1

)d−1f(y) dy⊥ dy1

y1 −K
|

≤
∫ K−1

−∞

∫

[0,∞)×Sd−2

Cρd−2 dΩ dρ dy1

|y1 −K|(y2
1 + ρ2 + 1)(d−1+ε)/2

= Cωd−1

∫ K−1

−∞

∫ π
2

0

sind−2 θ dy1 dθ

|y1 −K|(y2
1 + 1)ε/2 cos1−ε θ

≤ Cωd−1π

2ε

∫ K−1

−∞

dy1

|y1 −K|(y2
1 + 1)ε/2

,

which uses the inequality cos1−ε θ ≥ (1− 2
π θ)1−ε for ε ≤ 1 and 0 ≤ θ ≤ π

2 . Ignoring the scale factors
in front and making the substitution u = K − y1, we rewrite the last integral as:

∫ ∞

1

du

u((K − u)2 + 1)ε/2

= (
∫ K−1

1

+
∫ K+1

K−1

+
∫ ∞

K+1

)
du

u((K − u)2 + 1)ε/2

≤
∫ K−1

1

du

u(K − u)ε
+

∫ K+1

K−1

du

u
+

∫ ∞

1

dv

(v + K)(v2 + 1)ε/2
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≤ (K − 1)1−ε

K

∫ K−1

1

(
1
u

+
1

K − u
) du + log

K + 1
K − 1

+
∫ ∞

1

dv

(v + K)(v2 + 1)ε/2

=
2(K − 1)1−ε log (K − 1)

K
+ log

K + 1
K − 1

+
∫ ∞

1

dv

(v + K)(v2 + 1)ε/2
.

As K tends to ∞, the first two terms tend to 0, while the integral is dominated by
∫∞
1

dv
v1+ε = 1

ε and
so also tends to 0 by Lebesgue’s Dominated Convergence Theorem. Thus (P2) is established.

Replacing ŵf by wf . Since ad = cd

ωd
for d even, we can express wf in terms of ŵf , using∫

Rd =
∫

H+
e,b

+
∫

H−
e,b

and the oddness of α, as:

wf (e, b) =
1
2
(ŵf (e, b)− ŵf (−e,−b)).

Then
∫

Sd−1×(−∞,K]

wf (e, b)θ(e · x + b) de db

=
∫

Sd−1×(−∞,K]

ŵf (e, b)θ(e · x + b) de db

−
∫

Sd−1×(−∞,K]

1
2
(ŵf (e, b) + ŵf (−e,−b))θ(e · x + b) de db.

The first integral in the last expression tends to f(x) as K tends to ∞ by (12). So it suffices to show
that the second integral tends to 0 as K tends to ∞. Indeed, for K >‖ x ‖,

∫

Sd−1×(−∞,K]

(ŵf (e, b) + ŵf (−e,−b))θ(e · x + b) de db

=
∫

Sd−1×(−∞,K]

ŵf (e, b)θ(e · x + b) de db +
∫

Sd−1×[−K,∞)

ŵf (e, b)θ(−e · x− b) de db

=
∫

Sd−1

∫ max {K,−e·x}

−e·x
ŵf (e, b) db de +

∫

Sd−1

∫ −e·x

min {−K,−e·x}
ŵf (e, b) db de

=
∫

Sd−1

∫ K

−K

ŵf (e, b) db de.

However,
∫ K

−K
ŵf (e, b) db tends to 0 uniformly in e as K tends to ∞ since by (P1)

∫∞
K

tends to 0 and
by (P2)

∫∞
−K

tends to 0. This completes the proof.

8 Alternative representations

The formulas for wf in the Representation Theorem (Theorem 1) can be written in several alternative
forms, some of which have appeared in the literature under stronger hypotheses.

Kůrková, Kainen and Kreinovich [19] used distributional techniques from Courant and Hilbert [5]
to show that if f is a compactly supported function on Rd with continuous d-th order partials, and d
is odd, then f can be represented as in (4), where wf is as in (15) below.

Ito [13] and Carroll and Dickinson [4] treated both the odd and the even case, basing their work
on Helgason’s book on the Radon Transform [11], and obtained a representation for C∞ functions of
rapid descent (Ito) and C∞ functions of compact support (Carroll and Dickinson).

The connection of previous work to the two propositions below is discussed at the end of this
section.

In the following proposition we make use of principal value integration (cf. Zemanian [20, p. 18]).
Thus p. v. (

∫
Rd

φ(y) dy
e·y+b ) := limδ→0+

∫
{y : |e·y+b|≥δ}

φ(y) dy
e·y+b provided the latter exists.
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Proposition 2 Let f be of controlled decay. For d odd

wf (e, b) = ad

∫

H−
e,b

4 d+1
2 f(y) dy (8.1)

= ad

∫

H−
e,b

D(d+1)
e f(y) dy (8.2)

= ad

∫

He,b

D(d)
e f(y) dHy (8.3)

For d even,

wf (e, b) = ad

∫

Rd

4 d+2
2 f(y)α(e · y + b) dy (8.4)

= ad

∫

Rd

D(d+2)
e f(y)α(e · y + b) dy (8.5)

= ad

∫

Rd

D(d+1)
e f(y) log |e · y + b| dy (8.6)

= −ad p.v.
∫

Rd

D
(d)
e f(y)

e · y + b
dy (8.7)

If f is of controlled decay and also satisfies

ord ∂αf > d− 1 for 0 ≤ |α| ≤ d− 2, (8.8)

then for d odd

wf (e, b) = −ad (
∂

∂a
)d

(∫

He,a

f(y) dHy

)∣∣∣∣∣
a=b

. (8.9)

and for d even

wf (e, b) = −ad

(
∂

∂a

)d (
p.v.

∫

Rd

f(y)
e · y + a

dy
)∣∣∣∣∣

a=b

. (8.10)

Proof:

The odd case. In the case d = 1 equations (13), (14), (15), and (21) are trivial and wf (e, b)
agrees with Proposition 1. Suppose d ≥ 3. The integral in (13), from Theorem 1,

∫

H−
e,b

4 d+1
2 f(y) dy

is an integral over the half-space where y · e + b ≤ 0. If we adopt a rectangular coordinate system in
which y1 = y · e, the iterated Laplacian 4 d+1

2 f(y) retains its usual form with 4 = ∂2

∂y2
1

+ ... + ∂2

∂y2
d

.
The integrand consists of a sum of partial derivatives of f of order d + 1 all but one of which can be
expressed in the form ∂u

∂yi
for some i 6= 1 and some function u, itself a partial derivative of f of order

d, by interchanging the order of differentiation. Integrating each such term, but integrating first with
respect to yi, we find that

∫

H−
e,b

∂u

∂yi
(y)dy =

∫

y1≤−b,(y2,...,yi−1,yi+1,...,yd)∈Rd−2

(∫ ∞

yi=−∞

∂u

∂yi
(y)dyi

)
dy1...dyi−1dyi+1...dyd
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=
∫

y1≤−b,(y2,...,yi−1,yi+1,...,yd)∈Rd−2
u(y)|∞yi=−∞ dy1...dyi−1dyi+1...dyd = 0

since limyi→∞ u(y) = lim‖y‖→∞ u(y) = 0. Use of Fubini’s Theorem is justified since | ∂u
∂yi
|, a derivative

of order d + 1 dominated at infinity by 1
‖y‖d+1+ε , is integrable over Rd and over H−

e,b.
Accordingly the integral of interest reduces to:

∫

H−
e,b

(
∂

∂y1

)d+1

f(y) dy.

Then we integrate with respect to y1 first of all, obtaining:

∫

Rd−1

(
∂

∂y1

)d

f(y)

∣∣∣∣∣

y1=−b

y1=−∞
dy2...dyd

=
∫

Rd−1

(
∂

∂y1

)d

f(−b,y⊥) dy⊥

= −
(

∂

∂a

)d (∫

Rd−1
f(−a,y⊥) dy⊥

)∣∣∣∣∣
a=b

,

where shifting the partial derivatives outside the integral is justified below. The above expressions are
identical, except for the omitted factor ad, with (14), (15), and (21) above since dy⊥ = dHy, and ∂

∂y1
and its iterates are directional derivatives in the direction of e, i.e., normal to the hyperplane He,b.

Shifting the partials is permitted if we show that
∫

Rd−1

∂v

∂yi
(−b,y⊥)dy⊥ = − (

∂

∂a
)
(∫

Rd−1
v(−a,y⊥) dy⊥

)∣∣∣∣
a=b

.

for any real number b where v = ( ∂
∂y1

)if for i = 0, ..., d−1. By the definition of a derivative, it suffices
to show that

∫

Rd−1
(
v(−b− h,y⊥)− v(−b,y⊥)

h
+

∂v

∂y1
(−b,y⊥))dy⊥

=
∫

Rd−1
(
∫ 1

s=0

(
∂v

∂y1
(−b,y⊥)− ∂v

∂y1
(−b− sh,y⊥))ds)dy⊥

tends to 0 as h approaches 0.
The controlled decay property and (20) imply that lim‖y‖→∞ ∂v

∂y1
(y)‖y‖d−1+ε = 0 for all v consid-

ered. The last integral over Rd−1 decomposes into two parts: one for ‖y⊥‖ large, say, larger than R,
where the inner integral is dominated by 2ε0

‖y⊥‖d−1+ε and integration with respect to dy⊥ = ρd−2dρdΩ

with ρ = ‖y⊥‖ yields an answer dominated by 2ε0ωd−1
εRε (which can be made arbitrarily small by letting

R tend to infinity); while the other part is over the compact set C = {y⊥ : ‖y⊥‖ ≤ R} where uniform
continuity of ∂v

∂y1
(−b,y⊥) guarantees that for h sufficiently close to 0 the integrand and the integral

over C are arbitrarily small. Thus the entire integral tends to 0 as h does, to complete the argument.

The even case. The representation in (16) derives from Theorem 1. In a rectangular coordi-
nate system in which y1 = y ·e, just as in the odd case, by dropping terms that have partial derivatives
with respect to variables other than y1, we arrive at the following equations, with De = ∂

∂y1
:
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wf (e, b)
ad

=
∫

Rd

(
∂

∂y1
)d+2f(y)α(y1 + b) dy

(i)
=

∫

Rd

(
∂

∂y1
)d+1f(y) log |y1 + b| dy

(ii)
= − p. v.

(∫

Rd

(
∂

∂y1
)df(y)

1
y1 + b

dy
)

(iii)
= −

(
∂

∂a

)d (
p. v.

∫

Rd

f(y)
y1 + a

dy
)∣∣∣∣∣

a=b

,

The left side of (i) is (17). So if we establish (i), (ii), and (iii), then (18), (19), and (22) follow.
An integration by parts with respect to the variable y1 yields (i). As the function log |y1 + b| =

−α′(y1 + b) has a singularity at y1 = −b, Lebesgue integration is required.
Another integration by parts leads to (ii). Indeed, for δ > 0

∫

{y : |y1+b|≥δ}
(

∂

∂y1
)d+1f(y) log |y1 + b| dy =

−
∫

Rd−1
(

∂

∂y1
)df(−b + δ,y⊥) log δ dy⊥ −

∫

{y : y1+b≥δ}
(

∂

∂y1
)df(y)

1
y1 + b

dy

+
∫

Rd−1
(

∂

∂y1
)df(−b− δ,y⊥) log δ dy⊥ −

∫

{y : y1+b≤−δ}
(

∂

∂y1
)df(y)

1
y1 + b

dy

= δ log δ

(
−

∫

Rd−1

∫ 1

t=−1

(
∂

∂y1
)d+1f(−b + tδ,y⊥) dt dy⊥

)
−

∫

{y : |y1+b|≥δ}
(

∂

∂y1
)df(y)

1
y1 + b

dy

The coefficient of δ log δ is a well-defined finite integral, and as δ tends to 0+, δ log δ tends to 0.
To show (iii), we must establish the following:

p. v.

(∫

Rd

∂v
∂y1

y1 + b
dy

)
= −

(
∂

∂a

) (
p. v.

∫

Rd

v(y)
y1 + a

dy
)∣∣∣∣

a=b

for all real numbers b and v = ( ∂
∂y1

)if for i = 0, ..., d− 1. Consider now the differential quotient

1
h

(
p. v.

∫

Rd

v(y) dy
y1 + b + h

− p. v.
∫

Rd

v(y) dy
y1 + b

)

= p. v.
(∫

Rd

1
y1 + b

(
v(y1 − h,y⊥)− v(y)

h
+

∂v

∂y1
(y)) dy

)

= p. v.
(∫

Rd

1
y1 + b

H(y, h) dy
)

=

(∫

{y∈Rd : |y1+h|≥1}

1
y1 + b

H(y, h) dy

)
+ p. v.

(∫

{y∈Rd : |y1+b|<1}

1
y1 + b

H(y, h) dy

)

=: I1(h) + I2(h),

where

H(y, h) :=
∫ 1

s=0

(
∂v

∂y1
(y)− ∂v

∂y1
(y1 − sh,y⊥)) ds.

It suffices to show that I1(h) and I2(h) tend to 0 as h does.
Since f is of controlled decay and we may now assume (20) holds, then

lim
‖y‖→∞

(
∂

∂y1
)jv(y)‖y‖d−1+ε = 0
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for j = 0, 1, 2.
Consider I1(h). In the subregion where |y1 + b| ≥ 1 and ‖y‖ ≥ R, R suitably large, the integrand

1
y1+bH(y, h) is dominated by 2ε0

|u|(u2+ρ2)(d−1+ε)/2 where we write u = y1 + b and ρ = ‖y⊥‖. Integrating
over the subregion, we find that the integral is dominated by

∫

{(u,y⊥) : |u|≥1,u2+‖y⊥‖2≥R2}

2ε0
|u|(u2 + ρ2)(d−1+ε)/2

ρd−2dρdΩdu

≤ 4ε0ωd−1(
∫ ∞

1

du

u1+ε
)(

∫ π/2

0

tand−2 θ sec2 θdθ

secd−1+ε θ
)

≤ 4ε0ωd−1

ε
max (

π

2ε
,
π

2
),

where the substitution ρ = u tan θ has been used as well as the inequality cos1−ε θ ≥ (1− 2
π θ)1−ε when

ε ≤ 1 and 0 ≤ θ ≤ π
2 . Since ε0 can be taken arbitrarily small for R sufficiently large, this term can be

made as small as we like. In the remaining subregion, where |y1 + b| ≥ 1 and ‖y‖ ≤ R, we have

|H(y, h)|
|y1 + b| ≤ |H(y, h)|

and the results of its integration can be made arbitrarily small by taking h sufficiently close to 0
because of uniform continuity of ∂v

∂y1
on a compact set. So I1(h) tends to 0 with h.

As for I2(h), setting

G(y, h) :=
∫ 1

s=0

∫ 1

t=0

(
∂2v

∂y2
1

(−b + t(y1 + b),y⊥)− ∂2v

∂y2
1

(−b− sh + t(y1 + b),y⊥)) dt ds,

we have

I2(h) = p. v.

(∫

{y:|y1+b|≤1}

H(y, h)
y1 + b

dy

)

=
∫

{y:|y1+b|≤1}
G(y, h) dy + p. v.

(∫

{y:|y1+b|≤1}

H((−b,y⊥), h)
y1 + b

dy

)
.

The principal value integration yields 0 since the order of integration can be changed, and the integral
becomes a product of two integrals:

p. v.

(∫

{y:|y1+b|≤1}

H((−b,y⊥), h)
y1 + b

dy

)

=
(∫

Rd−1
H((−b,y⊥), h) dy⊥

)
· p. v.

(∫

{y1 : |y1+b|≤1}

1
y1 + b

dy1)

)
= 0,

where the first factor is well-defined and the second is 0. It remains for us to show that the integral
∫

{y:|y1+b|≤1}
G(y, h) dy

tends to zero as h does.
For ‖y‖ ≥ R, R suitably large, the integrand is dominated by 2

(u2+ρ2)(d−1+ε)/2 and the integral is
dominated by :

∫

{(u,y⊥) : |u|≤1,u2+‖y⊥‖2≥R2}

2
(ρ2)(d−1+ε)/2

ρd−2dρdΩdu

≤ 4ωd−1(
∫ 1

0+

du)(
∫ ∞

R

dρ

ρ1+ε
) =

4ωd−1

εRε
.
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For R sufficiently large this integral is accordingly negligible. Finally, in the remaining compact
subregion {y : |y1 + b| ≤ 1, ‖y‖ ≤ R} the integrand G(y, h) can be made as small as we like by
choosing h sufficiently close to 0 since ∂2v

∂y2
1

is uniformly continuous there. Accordingly its integral over
that region tends to 0 with h, to complete the proof.

The argument in the odd-dimensional case can be thought of as a variant of the Divergence
Theorem [3, p. 423] in d dimensions, in which an integral on the half-space H−

e,b is replaced by an
integral on the bounding hyperplane He,b.

Note that the extra condition needed for (21) and (22) is more stringent than the one in Theorem
1 when |α| ≤ d − 2. For (15) we can require one less order of differentiablility on f than in the
Representation Theorem (but at the same time we require that the highest order derivatives vanish
to one higher power of ‖x‖ at ∞).

Let d be odd. We call a function f of weakly controlled decay if f : Rd →R is d-times continuously
differentiable and ord ∂αf ≥ 0 for all multi-indices α with 0 ≤ |α| < d, and ord ∂αf > d + 1 for all
multi-indices with |α| = d. Note that neither controlled decay nor weakly controlled decay implies
the other.

Proposition 3 Let d be odd. If f is of weakly controlled decay, then f has the representation (4)
with wf given by (15).

Proof: Borrowing a technique from [19, p. 1068], we introduce a function φ on Rd that is C∞

and non-negative, vanishes for ‖x‖ ≥ 1, and has integral over Rd equal to 1. Then we define a
sequence of functions fn on Rd by fn(x) =

∫
Rd f(y)ndφ(n(x−y)) dy. Each fn is C∞, and ∂αfn(x) =∫

Rd f(y)∂α
x (ndφ(n(x−y)) dy =

∫
Rd f(y)(−1)|α|∂α

y (ndφ(n(x−y)) dy =
∫
Rd ∂αf(y)ndφ(n(x−y)) dy,

the last formula holding provided |α| ≤ d. Since f and all of its derivatives of order ≤ d vanish
at infinity, it is straightforward to show that fn converges uniformly to f on Rd and ∂αfn likewise
converges uniformly to ∂αf on Rd for |α| ≤ d. If the functions {fn} satisfy the integral formula (4)
with wfn as in (15), then f will satisfy this integral formula with wf as in (15).

Indeed,

f(x) = lim
n→∞

fn(x) = lim
n→∞

∫

Sd−1×R
wfn(e, b)ϑ(e · x + b) dedb

= lim
n→∞

ad

∫

Sd−1×R

∫

He,b

D(d)
e fn(y)ϑ(e · x + b) dHydedb,

=
∫

Sd−1×R
wf (e, b)ϑ(e · x + b) dedb

where Lebesgue’s Dominated Convergence Theorem can be applied to move the limit all the way
inside. This follows from the fact that

|D(d)
e fn(y)| = |

∫

Rd

D(d)
e f(z)ndφ(n(y − z)) dz|

≤ sup { C

(‖z‖2 + 1)(d+1+ε)/2
: ‖y − z‖ ≤ 1} ≤ K

(‖y‖2 + 1)(d+1+ε)/2

for suitable constants C and K that are independent of n and e. Since for d ≥ 3
∫

Sd−1×R

∫

He,b

1
(‖y‖2 + 1)(d+1+ε)/2

ϑ(e · x + b) dHydedb

= ωd−1

∫

Sd−1×R

∫

[0,∞)

ρd−2 dρϑ(e · x + b) dedb

(b2 + ρ2 + 1)(d+1+ε)/2
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≤ ωd−1
π

2

∫

Sd−1×R

ϑ(e · x + b) dedb

(b2 + 1)(2+ε)/2
≤ ωd−1ωd

π

2

∫ ∞

−‖x‖

db

(b2 + 1)(2+ε)/2
< ∞,

the dominating function is integrable. The case d = 1 can be worked out trivially, but this exercise is
superseded by Proposition 1.

We must still establish that {fn} satisfies the hypotheses of the Representation Theorem. Since
∂αf vanishes at infinity for |α| ≤ d, by Lemma 0 it suffices to show that the order |α| = d + 1
derivatives of fn satisfy ord ∂αfn > d + 1. However, for |α| = d + 1, using the extra increment in the
order of vanishing, we have:

|∂αfn(x)| = |
∫

Rd

f(y)∂α(φ(n(x− y))nd dy|

= |
∫

Rd

∂βf(y)
∂φ

∂ui
(n(x− y))nd+1 dy|

≤ Cn sup { 1
(‖y‖2 + 1)(d+1+ε)/2

: ‖x− y‖ ≤ 1}

≤ Dn

(‖x‖2 + 1)(d+1+ε)/2

where α = β + ui, ui a coordinate vector with 1 in the i-th position and 0 elsewhere for some i such
that αi ≥ 1.

Proposition 3 generalizes the result of Kůrková, Kainen and Kreinovich [19]. Proposition 2, (15)
and (19), extends the result of Ito [13], while Proposition 2, (21) and (22), extends the result of Carroll
and Dickinson [4].

9 Discussion

The history of the representations above is of some interest. Helgason’ book [11] offers generalizations
and at the same time points back to antecedent ideas, including papers of Funk and Radon. Gel’fand,
Graev, and Vilenkin [9] also obtained a Radon-type representation. Indeed the history of this repre-
sentation probably extends back beyond Radon and Hilbert to such figures as Cauchy, Poisson, and
Laplace.

Properties of the weight function in the integral formula can be developed further. In our present
setting wf is a continuous function on Sd−1 × R, is integrable on this set (along with (e, b) 7−→
wf (e, b)θ(e · x + b)) and satisfies lim|b|−→∞ wf (e, b)|b|1+ε = 0. In the proof of Theorem 1 we found a
class of weight functions (e, b) 7−→ ŵf (e, b) + ŵf (−e,−b), each of which represents the zero function.
Since wf is not unique, one can seek choices for it that minimize various measures of cost.

It is apparent that the representation applies to functions other than those given in Theorem 1,
and Propositions 2 and 3. Ito [13] points out that the conditions on the functions can be loosened
considerably but does not provide details. In the one-dimensional case, Proposition 1 and Lemma 1
both demonstrate that the growth conditions can be weakened, or even abandoned. In the proof of the
Representation Theorem use was made of representations of ‖x‖ and β(‖x‖) by integral combinations
of Heavisides. Similar representations can be made for any polynomial x 7−→ p(‖x− y‖).

Also of interest is how a finite sum approximating the integral formulas can be selected (choices
of weights and half-spaces). “A quadrature formula is a numerical rule whereby the value of a definite
integral is approximated by the use of information about the integrand only at discrete points (where
the integrand is defined)” (Engels, [7, p. 1]). A quadrature of the integral formula from Theorem 1
would determine parameters of a Heaviside perceptron network that should be useful information for
designing a learning algorithm. Elsewhere we have shown that for every n ≥ 1, integrable functions
f on [0, 1]d have best approximations by combinations of n or fewer Heavisides ([17], [14]), but these
best approximations cannot vary continuously with f ([18], [15]). Perhaps quadrature can be achieved
by an algorithm which first chooses among distinct alternatives and then proceeds continuously.
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The integral representation even suggests the possibility of neural computation through some
physical process that estimates wf directly from the data.
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