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1 Introduction

An integral formula of the form
/ w(a)o(a, x)da.
A

can be metaphorically viewed as a one-hidden-layer neural network with a single linear output unit
and a continuum of hidden units. Each hidden unit computes a value of the function ¢ depending
on an input vector x and a parameter vector a. The output function of the network is a weighted
integral combination of the hidden unit functions.

Such integral formulas have been used to show that output functions from one-hidden-layer neural
networks with suitable ¢ and finitely many units are dense in various function spaces (see, e.g.,
Funahashi [8], Carroll and Dickinson [4], and Ito [13]). Integral representations have also been used
to estimate how accuracy of approximation varies with the number of hidden units (see, e.g., Barron
[1], Girosi and Anzellotti [10], and Kurkova, Kainen and Kreinovich [19]). In a neural network with
finitely many units the integral is replaced by a Riemann sum. A neural network can even be thought
of as a kind of numerical quadrature, a generalization of the midpoint, trapezoid, and Simpson rules
for approximating integrals.

In this paper we derive integral formulas corresponding to one-hidden-layer Heaviside networks,
extending and unifying results in [8], [4], [13], and [19]. Some of the ideas in this paper appeared in
[16]. See also Helgason’s monograph [11] on the Radon transform.

An outline of the paper follows. Section 2 reviews neural networks and establishes notation,
Section 3 discusses Green’s functions and Green’s second identity, and Section 4 describes functions
of controlled decay and states our main theorem. We consider the 1-dimensional case in Section 5,
provide necessary lemmas in Section 6, and prove the main theorem in Section 7. Section 8 has
extensions and refinements of our representation and its relation to known results. The paper ends
with a brief discussion.

2 Feedforward neural networks

Feedforward neural networks compute functions determined by the type of units and their intercon-
nections. Each computational unit depends on two vector variables (an input and a parameter), and
is given by a function ¢ : R? x R? — R, where p and d are the dimensions of the parameter and input
space respectively and R denotes the set of real numbers.

One-hidden-layer networks, with hidden units based on a fixed function ¢ and a single linear output
unit, yield functions f : R — R of the form

n
Fx) = wid(a;, x), (2.1)
i=1
where n is the number of hidden units, and w; € R are the output weights and a; € R? the input
parameters of the i-th unit for i =1, ..., n.

A perceptron is a computational unit based on a function of the form ¢((v,b),x) = ¥(v-x+b),
where 1) : R — R is a so-called activation function or threshold function, v € R? is an input weight
vector, and b € R is a bias. The parameter vector is the pair (v,b) € R4 sop = d+ 1. The
activation function often takes values between 0 and 1.

A typical activation function, and the focus of this paper, is the Heaviside function ¥ defined by
9(t) = 0fort <0, 9(t) =1 fort > 0. Let || - || denote the Euclidean norm on R%, and S¢~1 the
unit sphere in R¢. For every a > 0, ¥(at) = 9¥(t). So, for v # 0, 9(v-x +b) = ¥(e - x + b'), where
eZHX—HESd_l andb’:ﬁ.

For e € S9! and b € R we denote by He ;, the hyperplane

Hop={xcR':e-x+b=0}



The closed half-spaces bounded by this hyperplane are denoted by:
H;b:{XE’Rd:e-x—FbZO}

and
H;b:{XERd:e-x+b§0}.

A function from R? into R is called a plane wave if it can be represented in the form a(v - x),
where a : R — R is any function of one variable and v € R¢ is any fixed nonzero vector. Plane waves
are constant on each hyperplane He, where e = v/||v|| and b € R. A perceptron with activation
function v thus gives plane waves of the form v, (v - x), where ¥, (t) = ¥ (t + b).

Our goal is to represent real-valued functions f on R? by an integral combination of Heaviside
perceptron units. Thus we seek a representation

Fx) = /SdilXRw(e,b)H(e~x+b) dedb (2.2)

where de is the surface area element on the unit sphere S, w : S9! x R — R is a weight function,
and x — f(e - x + b) is the characteristic function of the closed half-space H,. Equation (2) is an
integral version of (1).

3 Green’s functions and Green’s second identity

The theory of distributions extends calculus from ordinary differentiable functions to a larger set of
generalized functions (or distributions) where the formal rules of calculus still hold. For example, the
operation of convolution g#h of two functions g and h, defined formally by (g h)(x) = fRd g(y)h(x—
y) dy, see [20, p. 123], can be extended to distributions provided their supports are suitable. It is a
commutative operation and the Dirac delta function 0 serves as an identity with f*d = f.

Let L be a linear differential operator acting on distributions in R?. In general the equation

L(f)=g

with g given and f unknown can be solved for f by means of a Green’s function G with the property
that L(G) = 4. Indeed, f = g x G is a solution since L(g« G) = g+ L(G) = g*J = g.
An example of a linear differential operator is the Laplacian A:

2

d
Mg =) 5

For a positive integer m, A™ denotes the Laplacian iterated m times, while A is the identity operator.
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The Green’s function for the Laplacian in R is 5~ log ||x|| when d = 2, and mHXHQ’d when
d # 2, where wg = 2v7? s the surface area of the unit sphere S4=1 in R? (cf. [5, p. 679]). These

N

Green’s functions are(;;gular distributions, i.e., they coincide with ordinary functions. Indeed, not
only are they locally integrable in R¢ despite a singularity at the origin, they are also C™ except
at the origin, and they either die out at infinity (d > 3) or have logarithmic or linear growth there
(d =2 or 1). Green’s functions for iterated Laplacians, exhibited in Equations (8) and (9) below, have
similar properties but with distinct forms depending on the parity of d, as in our integral formula
below.

Our treatment is self-contained and calculus-based. We use distribution theory [20] only for mo-
tivation.

Let x in R? be fixed, and let positive numbers 6 and R be given with R > 6. Let D = {y :
y € R%|Ix —y| > §,|lyll £ R} so that the boundary of D consists of two spheres: 9D = {y €
Re ||lx —y|| =, or |ly|| = R}. Then Green’s second identity for two C? functions u and v (cf. [5, p.
257]) defined in a neighborhood of D takes the form:



n

ov ou
/D(uAv—vAu)dy—AD(ua——v%)dsy (3.1)

where 8— =43¢, HZ;'IH 3,; denotes the radial normal derivative out of the region of interest and dsy
denotes the surface area element on the two bounding spheres. We call the righthand side of this

equation a boundary integral.

4 The Representation Theorem

Let r be a real number. A real-valued function g on R* vanishes to order r (at infinity) iff lim x| — oo g(x)||z||” =
0. In this case we write g(x) = o(]|x||") according to the Landau convention. Let ord g denote the
order of vanishing of g at oo [2, p. 8], that is,

ord g = sup {r : g(x) = o(||x||")}.

For example, ord (log”(‘l‘xw = r if r and s are real numbers with s > 0. The statement ord g > r
is equivalent to each of the following:

3¢ > 0 such that Veg > 0 3R > 0 such that [Ix|| > R = |g(x)] < | T‘OH
X 6
3¢ > 0 3C > 0 such that < < d
€> > 0 such that vx|g(x)| < (|x[|2 + 1)(r+e)/2” an
1
Je > 0 3R > 0 such that [|x| > R = [g(x)| < x|

Lemma 0: Let g : R — R be C', with lim x|~ o0 9(x) = 0, and ord % >r>1foralli=1,...,d.
Then ord g > r — 1.

Proof: Given ¢y > 0, then for all ||x|| sufficiently large and for alli =1, ...,d

Jg €0
|- ()| < 7
O I
and
9 = o) |—|/ﬁ S o) |
</ \/& 60||X|| t _ \/Zi.eo /OO@: \/8'60
T e el 7=t Syt (= Dlix|t
i.e., g vanishes to order r — 1. |

Our chief result is that a sufficiently smooth real-valued function on R? that dies off at infinity
sufficiently rapidly can be written in the form (2). The class of functions for which the theorem is
proved depends on the parity of d, as does the choice of w.

Let kg = d+1if d is odd, d + 2 if d is even (i.e., kg = 2[%EL]). Call a function f of controlled
decay if f : RY — R is kg-times continuously differentiable and for each multi-index a = (av, ..., ag)
with |Oé‘ < kg



ord 9% f > |¢

where 0% f denotes the corresponding partial derivative of f. In other words, for each such « there is
an € > 0 such that

0° f(x)|x|*1+e =0,
lIx[|—o0
The number ¢ depends on f and «. In arguments below where multiple partial derivatives are con-
sidered, we shall take € to be the smallest of the individual €’s and shall also assume without loss of
generality that € < 1. The set of functions of controlled decay includes all real-valued functions on
R? of rapid descent, i.e., all C* functions f satisfying ord 9% f = oo for every multi-index « (cf. |20,
p. 100]). In particular, any function in C¥¢ with compact support is sufficently vanishing.
For f of controlled decay, we define a function wy on 591 x R by
d+1

wy(e,b) = aq - A7 f(y)dy  (dodd),

wi(e,b) =ag [ AF f(y)ale-y+b)dy (deven),
Rd

where

GRSl it diis odd
aq = (_1)<472)/2 . A
W if d is even.

and «(t) = —tlog|t| 4+t for t # 0 and «(0) = 0. The function « is odd.
Our Representation Theorem expresses a function as an integral combination of plane waves based
on the Heaviside function 6.

Theorem 1 Let f be of controlled decay. Then for each x € R?
flx) = / wy(e,b)d(e - x + b) dedb, (4.1)
Sd—1xR

where in the even case the integral is defined pointwise as limg oo fsdflx(—oo K]

Well-definedness of wy and integrability are established in the proof below.

5 The one-dimensional case
The one-dimensional case is instructive both for its simplicity and because it indicates that further
generalization is possible. When d = 1, any C! function that vanishes at 0o can be represented in

the form (2).

Proposition 1 Let f: R — R be continuously differentiable with lim;_, 1 f(t) =0. Then for every
reR,

F@) = %/_w £ (=b)9(a + b db + _71/_00 F(B)9 (= + b) db.

In this case S9! = % = {41}, the weight function is given by wy(1,b) = 1 f'(—b) = —ws (-1, —b).

Proof: Evaluation of the Heaviside function and a simple change of variables yields:



;/;f@%_;émf@@=;U@%waD—;ﬂw%%@»=ﬂm

When d = 1, the Representation Theorem requires that f be C? with sufficient decay at +o0o, but
Proposition 1 is more general. The Representation Theorem asserts that when d = 1, wy(e,b) =
a1 J oy rb<o " (y)dy = %ef’(—eb)7 as shown.

Proposition 1 has alternative forms. The coefficients % and —% can be replaced by t and ¢ — 1 for
arbitrary ¢. If f vanishes only at —oo, take t = 1 (the first integral alone). Similarly if f vanishes only
at oo, take t = 0. So the weight function in (2) is not unique.

Furthermore, f can be assumed to be merely absolutely continuous n each finite interval, guaran-
teeing a first derivative f’ almost everywhere. Assume for example that: i) f is absolutely continuous
on finite intervals, ii) lim,—,_ f(x) = 0, and iii) f has finite total variation on intervals of the form
(—o00, 7] for real numbers z. Then f’ is in L!((—o0,z]) for each z and the first integral in Proposition
1 represents f at any real number x (cf. Hewitt and Stromberg [12, p. 286]). Lemma 1 below shows
that the conditions at +00 can be further relaxed.

6 Preliminary Lemmas
We need three lemmas for the proof. The first is a variant of Proposition 1.

Lemma 1 Let g: R — R be a continuous function such that g(0) = 0 and g is continuously differ-
entiable on (—00,0) U (0,00). Then for every x € R,

oo 0
g(z) = /0 g )9 (x —t)dt — / g ()9t — x)dt.

— 00

Proof: The right side in the Lemma is the same as:

max {z,0} 0
/ ywﬂ—/ g'(t) dt,
0

min {0,z }

and this equals g(z) — g(0) = g(z). 1

The function ¢’ is continuous on the half-open interval joining 0 to z # 0, but may not be integrable
on this interval, in which case the integrals in Lemma 1 are not Lebesgue or Riemann integrals but
rather lime_o4 (" + [~2). In the two applications we make of Lemma 1, ¢’ is integrable on the
given intervals and Lebesgue integration applies.

Lemmas 2 and 3 below show that the functions |x|| and log||x|| on R? can be represented as
integrals of plane waves. These lemmas are stated in [5, pp. 678-9] except for the second part of
Lemma 3. Lemma 2 is needed for d odd, and Lemma 3 for d even. We give simple proofs that exploit
the homogeneity and rotational invariance of the associated integral formulas. However, extra work
is required to establish the final conclusion of Lemma 3.

Lemma 2 For every positive integer d and for all x in R?,

%[l = Sd/ le - x| de,
Sd—l
_ d—1 1
where sg = Son ford>2 and s; = 3.




Proof: The integral fee ga—1 |€ - x| de is positive-homogeneous in x and rotationally invariant. Thus
it is equal to a constant time ||x||. To evaluate the constant, we take x to be a unit vector. Then the
integral, for d > 2, is:

Wd—1 / |cos B sin™?0df = wa 1 / cosfsin?=20dh — / cos 0sin?=2 0 do
6=0 0 x
sin®19|%  sin? e " 2w4q_1
= w _ — —
d—1 a1 i1 | T
2
while the integral reduces to 2 when d = 1. 1

Let B(t) = Slog|t| — 2 for ¢t # 0 and 5(0) = 0. Note that §'(t) = —af(t) for all ¢, and
B"(t) = log|t| for ¢ # 0.

Lemma 3 For every positive integer d and for all nonzero x in RY,

1 1
log||x||:bd+—/ log|e-x|de:bd+A( ﬁ(e-x)de),
Wy Jgd—1 Wy

gd—1

where by is a constant.

Proof: To show that e — log|x - e| is integrable, it suffices by additivity of the log to assume that x
is a unit vector. If d = 1, integrability is trivial. So assume d > 2. Choosing the direction of x to be
the north pole, letting § = cos™! (e - x), and using the inequality cosf > 1 — %9 for0 <0< 3, we
find that:

/2
/ |log|e - x||de = 2wd_1/ | log cos A] sin?~2 0 db
§a-1 0

/2 /2 9
< 2wd,1/ |log cos | df < 2wd,1/ (=1)log(1— =6)df = Twq_1.
0 0 Q

Thus the integrals are well-defined despite the singularities at the equator 6 = 7.

By rotational invariance (x no longer assumed to be a unit vector) [¢,_, logle - x|de is a function
g(||x]]), with the property that g(||Ax||) = wqlog |A|+g(||x||). Hence g(||x||) = wqlog|/x||+g(1), where
9(1) = wg—1 [,_,log|cosb| sin?"20df for d > 2 and g(1) = 0 when d = 1. This establishes the first
equation in Lemma 3, with by = —g(1)/wq.

To establish the second equation, observe first that e — ((x-e) is continuous and hence integrable
on S9!, Since Af(e-x) = f”(e-x), we need only show that partial derivatives with respect to x can
be moved from outside to inside the integral. For first derivatives this is clear since 8’ is continuous
and its domain can be restricted to [—||x|| — 1, ||x|| + 1].

The argument for second derivatives is more delicate. Since e - (x + hu;) = e - x + he;, where u;
is the unit coordinate vector in the j-th direction and e; = e - u;, it suffices to show that

lim
h—0

(/Sd_l(ﬁ’(&x—i—hej)—6’(e'x)

- —e;B" (e x)) de) =0. (6.1)

The case d = 1 is trivial. Assume d > 2 and h > 0. The integral in (5) can be decomposed into the
sum of four Lebesgue integrals, two of them over regions in the northern hemisphere:

Up={e:e-x>0,e-x+hej <0} and V), ={e:e-x>0,e-x+ he; >0},

and two more over similar regions in the southern hemisphere.



The set Uy, is contained in the set {e: 0 <e-x < h}={e:0 < cosf < ﬁ}, which has measure
N
since ' is uniformly continuous on the interval [— || x || —1,| x || +1] so that |5'(e-x+he;) — 3'(e-x)]|
can be assumed to be arbitrarily small and 3" is integrable.

In the set V},, on the other hand, let 7 be the absolute value of the integrand in (5). Setting t =
and using the definitions of 3’ and 3", we find that

approximately equal to for h small. It follows that the integral over Uy, goes to 0 as h goes to 0

hej
exX

log (14t
T = |e;| sign(t) <0g(t+) +log(1+1t) — 1) .

Ift =0, 7 =0. Since |e;| <|| e ||=1, 7 is dominated by log (1 +¢) for ¢ > 0 and by % for
—1 <t <0. Thus 7 is dominated by % for all £ > —1. Hence, with H = H’hTI’ the integral over
V}, is dominated by:

1 : oy [T H

/ log (1+h|-2|)de < 4 1/ log (1 + )sin®=2 60 df
log2 Jie:ex>0} e X log2 J, cosf
< Wil /W/Qlo (1+i)d9 = LT HilogH + (1+ H)log (1 + H))
~ log2 J, & 1- 29 ~ log2 2 & & ’

s

which converges to 0 as h tends to 0.

These arguments show that when h converges to 07 the integral in (5) restricted to the northern
hemisphere (e such that e - x > 0) tends to 0. In the southern hemisphere the substitution e’ = —e
and the oddness of 3’ and evenness of 3" convert the corresponding integral into the negative of the
northern hemisphere integral. Likewise, when h tends to 0 though negative values, the substitutions

x' = —x and b/ = —h convert a left limit at x into a right limit at x’. Hence (5) holds. |

7 Proof of the Representation Theorem

To prove the Representation Theorem, we express a function as the convolution of its iterated Lapla-
cian with the corresponding Green’s function. The Green’s function is represented as an integral
combination of plane waves. The plane waves in turn are represented as integral combinations of
Heavisides. This gives the desired representation of the original function.

Throughout the argument x is an arbitrary fixed member of R?, while y in R¢ is variable and
A=Ay

First we show that w;y is finite and continuous. Indeed, the integrands in the definition of wy in
section 4 are sums involving derivatives of order k,.

In the odd case, when |a] = kg = d + 1, the summands satisfy

C

0% f(y)] < (lyll? + 1)(d-i—1+6)/2

for all y in R% and some € > 0 where C is a constant depending on f and a. Thus in spherical
coordinates, where r =|| y || and df2 is the area element on S9~! integrating over all of R rather
than just H_,, we find:

) c .
/Rd 0% f(y)ldy < /[()7(>c))xsd1 2+ 1)(d+1+e)/2r dQudr
> dr m



Hence, for d odd, wy is finite and Lebesgue’s Dominated Convergence Theorem [12, p. 172] shows
that wy is continuous. Indeed, the effective integrand AT f(y)0(—e -y —b) behaves well pointwise
as (e, b) varies.

In the even case, when |a| = kg = d + 2, the summands satisfy

Cla(e -y +b)|
(Iyl|Z + D){rzra/2

0% f(¥)llafe-y +b) <

for ||y|| in R%. If we adopt a coordinate system in which y = (y;,y*) with y; =e-y and y*+ € R4,
and p = ||y*||, we obtain:

82 dQdpdy; .

Cloty +)
0“ . b)|dy <
s lete y oy [

We make the substitution p = y/y? + 1tan6 and the right side becomes:

™2 ayy + b)|(y2 + 1)@D/2 tan?=2 0 sec? OdOdy, T la(y1 + b)| dyx
Cwa-1 (d+2+ )/2 dt+2+e s CQuiaig | a perae
0= (i +1) ‘ sec ¢ 2 Jr (yi +1)03Fe

The last mtegral is an even function of b: replace b by —b and y; by —y;. So we may assume b > 0.
Since |a(t)] <1 for |¢| < e+ 1, this integral is dominated by the following sum:

/ dy, Jr/ la(y1 +b)| dys / la(ys +b)| dyx
wbi<ers W+ DCTI2 T et pa<e U7 F D20 S s s (7 + )G/

Since e < [t1| < |to] implies |a(|t1])] < |a(|tz|)| and in the second and third integrals immediately
above e + 1 < |y; + b < |y1| + b < max {2|y1|, 2b}, the sum is dominated by:

[ G eCUL+ oGl D
R @RDOOP

and this integral is a finite well-behaved function of b. Lebesgue’s Dominated Convergence Theorem
applies as in the odd case, and so wy is finite and continuous.

The case of odd d.

Finding the Green’s function. Fori=0,1,..., 42 let

w= AN, u=AF T x—y

where differentiation in the Laplacians is with respect to the variable y. Then for 0 < i < , Ui
and v;4; are twice continuously differentiable except when y = x since f is in C¢*!, and we assert
that for such i:

d+1

/ w;v; dy = / u; AN vy dy = / Auvipq dy = / Uit 1041 dy. (7.1)
R R R R

The middle equation is based on Green’s identity for u;,v;11 on the region D in Section 3, Equation
(3), and requires that the corresponding boundary integrals vanish as R tends to co and § tends to 0.
These conditions will be established below.

First we must show that u;v; is integrable for 0 < i < %. Since wu;v; is continuous, we only
need investigate behavior as y tends to oo or y tends to x. We make extensive use of the following
identities:

Allx=y ) = ala+d—2)x—y|*?
A™(lx—y ") = Cla,m,d) | x—y[|*~*" (7.2)
Cla,m,d) = M7 a—2))IT%, (a + d — 2j),



valid for y # x, any real number a, and any integer m > 0. The decay condition on f assumed in the
Theorem provides an € > 0 such that

1
lwi(Y)| < T—zie
Iy |7+

for || y || sufficiently large. Using the identities (7), we find that

d+1 . _o(dtl_,
i)l =11, —= =il | x=y[I' 250
for y # x. Since limjjy | ”x‘ !'H = 1, with A any real number larger than C(1, % —i4,d) and R

sufficiently large, we obtain in spherical coordinates centered on the origin:

IN

714 P20 =) pd=1 g0
[Ryo0)x g1 THTe

A Awd
= ——drdQ) = — < o0
/[R7oo)><sd L rlte eRe

Likewise, for § > 0 and ¢ > 0, in spherical cordinates centered on x, we have:

/ |UiUi|dy
{y:llyll>R}

/ |u;v;| dy S/ Bri=2(5 =) pd=1 grq0)
{y0<|lx-y[<d} (0,8]x 841
— / Brrdrda = B2 94 - o
(0,6]x Sd—1 24
where B = max {|u;(y)| : || x—y [|<6}C(1, %L —i,d). When i = 0, there is nothing to prove since

C(1, %, d) = 0 and so vg = 0. Thus w;v; is 1ntegrable as claimed.

Now we show that the boundary integrals vanish. For R sufficiently large there is a constant C
such that

dv; du; C o4l (1))~ 1 d—
/{ Iyl=F) |u; az;rl _v¢+1 Z|dsy < /sd ) R2i+6R1 2(F =D)L pd-140
y:llyll= -

_/ CdQY  Cuy
~ Jga-r Re R’

where ¢ is from the decay condition on f. Indeed, 2 = +%¢ 1%W and |[Z (| x—y |9 < a|

x —y [|*7! so that

8”01 1 atl oy
0s(y) T2 ()] < g Ci | x -y 20

, and

dug Ol x—y |25

|Uz'+1 Y) 6‘n( )| = R2i+e+1

for suitable constants C; and Cy depending on i and d. Since ”’ﬂ;ﬁ'“ ~ 1 for || y || sufficiently large,

we can take C' > (7 4+ C5 to obtain the above estimate on the boundary integral for large R. For §

near 0, 6‘9” = —% and

Oviy1 du;
i - d
/{y Ix—yl=6} = n Uity 14

IN

/ {D15172(%7(i+1))71 +D25172(%7(i+1))}5d71d9
gd—1

= {Dlézi + D262i+1}wd



where Dy = max {|u;(y)| : || x—y [|< 6}-C(1, H2—(i+1),d)[2(i+1)—d| and Dy = max{|%(y)| Dl x—y|< 4}
C(]-v % - (Z + 1)7d)

As R tends to oo and § to 0T, these estimates show that all boundary integrals vanish for 0 < i <
4+l This establishes (6).

When i = 0, the boundary integrals vanish with one exception:

vy LT (Ix—y ), a1
witdsy = = [ fy) 8 d0
/{yrly—XIl—é} on gd—1 or

0 d+1 e B
= [ GO0 - [ x ey )t

- / fyea 1
Sd—l

= [ DT - e,
gd-1

—1,d)(2 — d)s* =43¢ 1dQ

d+1

where y = x + de, e € S, and this integral tends to f(x)(—1)"= (d — 1)!wg as  tends to 0.
By (6)

U1V dy = ...= Ud+1Vd+1 dy,
Rd Rd 2 T2

and by Green’s identity again and the fact that vg =0

. (%1 8UQ
0=/uvdy=/uvdy—|— lim / ug(—=—— —v1——)dgy
Ri e U o Sy dyios o ey (om0

= [ s dy - )T (A - Dl
Rd 2 2
Hence
at1
f0=ca | A F)x -y dy. (7.3)
Rd

d—1
with ¢g = ((d_fiﬁ

. So ¢q || y || is the Green’s function for A in RY (d odd).

Determining wy. By Lemma 2 and Lemma 1, applied to the function [¢], we have:

Ix — vl =sd/ le- (x — y)| de
Sd—l

zsd/sd,l </00019(e-(x—y)—t)dt+/00019(t—e-(x—y))dt) de.

Now set b = —e -y — t in the first integral and b = e -y + t in the second, and use the identity
Jga-1 9g(—e)de = [¢._, g(e) de (true for any integrable function g). Then

xyi=sa [ ([ otexsnas [ o xnan) de -
gd—1 oo PN

—ey
2sd/ / 19(e~x—|—b)dbde:2sd/ / d(—e-y —b)d(e-x+b)dbde.
Sd-1 J_ Sa-1JR

Substituting this expression for || x —y || into (8), and supposing that we may change the order of
integration, we obtain the representation of Theorem 1 for d odd:

10



f@bﬂQMA;h@(7WA%7@WFHY—®@>er+®®%=

:/ wy(e,b)d(x - e+ b)dbde.
Sd—1xR

Change in the order of integration is justified by Fubini’s Theorem (cf. [12, p. 386]). For each x
in RY, (y,e,b) — A%f(y)ﬁ(—e -y — b)¥(e-x+b) is integrable with absolute integral

/ / L/w&%fwmm—ey—mwex+MMmes
Rd Jga-1 R

d+1

/u/IA%ﬂﬂw&—ﬂ%WSW/\ATﬂﬂHPWHW
Rd Jgd—1 R

which is bounded since limHy|Hoo =l =1 and for large R:

d+1 1 _ drdS2 wd
A f(y)llly dyS/ — . 1drdQ:/ aass Y
\/{y:|y||>R} ‘ ( )| || H Iyl>R frd-‘rl-‘re Iyll>R rlte eRe

In particular, by Fubini the intermediate integrand wy(e,b)d(e - x + b) is integrable on S9! x R.

The case of even d. The argument in this case is similar to the odd case except that we
construct both wy and an alternative weight function ;.

Finding the Green’s function. Proceeding as in the odd case, we let

wi =0, =0 log| x —y )

for0<¢ < g. We shall establish that equations (6) hold for these choices of u; and v; and 0 < i < %.
We shall need the following identities:

Alog|x—y ) = (d-2)x-yl™?
(7)
AMlogllx—y ) = C(=2m—1d)(d-2) | x—y |~ form>2

where C(-,-,-) is as in (7). These identities imply that vo(y) = A%(|x —y ||) = 0.
The function u;v; is integrable for 0 < i < %. Indeed,

A A
/ lujv|dy S/ 5ir r2(8=0pd=1 4000
{y:llyll=R} [R,00)xSd-1 T tTe

_/ AdrdQ)  Awg
o [R,00)x S4—1 rlte  ¢Re

for r =|| y ||> R with R large, i < £, and a suitable constant A obtained from (7’) and depending on
i and d. For i = % and R large

1
a|dy < 1 =1 qrdQ)
/{y:nmzR} lugvgldy < /[R,oowsd—l rdte ogryrdr

:/ lolgrdrdQ: (1+eiogR)wd.
[R,00)x8d—1 T +e e’ Re

11



For5>Oand0<i<g,

IN

/ |u;v;| dy / Br—2(8=0pd=14,40)
{y:0<|lx—y|<d} (0,0]x54=1

- / Bri-lgrdn — B 0%wq
(0,6]x Sd—1 20

where B =max {| A" f(y)| : || x—y [|<d}- A, with A as above. When i = £ and § < 1,

K6 dlogd —1
/ lugva|dy < / K|logr|ri=tdrdQ = | og2 |wd.
{y:0<lx-yl<sy  * * (0,8] x 541 d

where K = max {| A% f(y)| : | x—y [|< 8}. Thus, usv; is integrable.
We now establish the vanishing of the boundary integrals in Green’s second identity to show that
(6) holds. For 0 <i < % and large R

IN

/ C <R—2(%—(i+1))—1Rd—1dQ

B / CdQY  Cuwy

B ga-1 R R’
where C is a constant depending on i and d (obtained by combining two constants C; and Cs for the
two terms as in the odd case). For ¢ near 0

Bviﬂ Bul
i —Viy1 5| d
/{y:|y|—R} g T g |18V

Oviq1 Ou;
i —Viy1 5| d
/{y:|x—y|=6} T T Y

= / {Dy6~2E -1 4 P, s=25 (1) 159140
S{i—l

= {Dlégi + D2(52i+1}wd

where Dy and D, are suitable constants as in the odd case. As R tends to oo and § goes to 0T, the
boundary integrals tend to 0 and so (6) is valid.
For i = 0, as in the case of odd d, there is one non-negligible term in the boundary integral. By

(7)

Ovy / 0 a=2 d—1
uw—o—-dsy = - F¥) 5 lr=s (A7 (log || x —y [[)0°"dS2
/{y:|xy||—6} on ga-r” OO
d—2 9 2-dy sd—1
= - f¥)C(=2, —— = Ld)(d = 2) 5~ [r=s (r*"%)0"d
Sgd—1 2 ar

= [ e e,
gd—1

and this integral tends to f(x)(—l)%{(%)!}%dﬁwd as 0 tends to 0. As in the odd case, cf. (8),

0
lim —/ uoﬂdsy:/ ulvldy:/ Uavg dy,
0—0+  Jiy 1 Ix-yl=e} 0N R Ri 2 %

and so
F) = ca / A% F(y)log |x — vl dy (7.4)
R

12



d—2
)=

TR (T Thus cqlog ||y]| is the Green’s function for A% in R¢ (d even).

where ¢4 =

Determining w;. By Lemma 3

1
ogllx —yll =t o ([ dte: (x-y)yde). (75)
(0% Sd—1
The Divergence Theorem [3, p. 423] implies that
d . 0
A2 f(y)dy = lim 3 T (AT f)(y)dsy =0
R R—o0 Jiy : |ly| =R} 9N

since

9 1
@) dsy < [ L
/{y lyl=r) On {y : lyl=Rr)y R25* IR 7

for large R. Using this fact and substituting (10) into (9), we can eliminate the term involving by to
obtain:

F) = Mf(ym(( ﬁ(e-(x—y))de))dy-
wq Sd—1

Rd
Then application of Green’s identity converts this into:

s =2 [ 8% ([ sle e yde) ay. (7.6)
d JRA Sgd—1
Indeed, to apply (3), let u(y) = A% f(y) and v(y = [ga_1 B(e - (x —y))de. Then the boundary

integral in (3) decomposes into two parts, one Wlth a well-behaved integrand whose integral over
{y: |x—y||=49} tends to 0 as ¢ does, and the other satisfying:

ov  Ou CiRlogR CyR%*logRY _, 4 (C1 + Cs)log Rwg
— —v—|dsy < Ri-140 —
/{y lyll=R} . ° ”| Y /Sd,l ( Rd+e * Rd+1+e Re ;

which approaches 0 as R tends to co. Note here that

GO =L =g [ yeetle - y)de

< /Sdl I8/ (e (x—y))|de<|3(| x—y |)wq < CiRlog R

and

o)< [ I8le(x—y)lde < Ca? log R

for || y ||= R large and suitable constants C; and C5. So (11) holds.
;From Lemma 1, and the identities [¢,_, g(—e)de = [4,_, g(e) de and §'(—t) = —3'(t), we obtain:

Ble- (x—y))de

gd—1

/Sdl</ g (x— y*tdt*/ p(t fe'(Xy))dt)de

13



— 00

:/SH </e.yﬂ’(—e~y—b)z?(e-x—i—b)db—/e:ﬁ’(b—ey)ﬂ(b—e-x)db) de

B Z/SLH /Rﬂ/(_e -y —b)d(—e-y —b)i(e-x +b)dbde.

Substituting the last expression into (11) and rearranging terms, we have:

rog =22 [ [ ([ 8% im0 ey - niot-e-y ~ by ) ofe-x-+ Db de
Hence,
fx)= / wyr(e,b)d(x-e+b)dedb,
Sd—1xR
where
igled) =2 [ 8% fiy)ate-y +b)dy. (7.7)

since a(t) = f/(—t).
As before, change in the order of integration is justified by Fubini’s Theorem. Indeed
L[ [1a% selate-y + blloc-e-y - hofe-x+ b dvdedy <
Rd Sd—l R
d+2
[ 185 felmax{nate: (v = 0Dl (v - x)|dedy <
Rd Sd*l
d+2

w{éJﬁXQf@NmM{Hamy—XWHHy—XHd%

which follows from the inequality |a(t)] < max {1, |a(s)|} for |t] < |s|. Since

[x =y [l el x =y DI

im =1
Iyli—oe [y Il la(ly D]

)

we take R large and boundedness follows from:

Cr?(log r)rd_l dr dQ)

/ IA#fMMyMMyMWS/
{villyl=R}

lyll=R rdrate
1]
ogrdr
= Cuwy gli < 00
g rite

In particular (e, b)d(e - x + b) is integrable on S9! x R.

Properties of w ¢+ Equation (12) gives us a weight function @y for an integral formula. However,
to obtain the weight function w; in the Theorem, we first need two properties of @y, namely:

(P1) For by € R there exist 7 > 0 and M > 0 such that |@f(e,b)| < M/(b* + 1)3+M/2 for
all e € S9! and all b > by; and

(P2) limg oo [ Wy(e,b) db = 0 uniformly for e € S4-1.

14



To establish (P1), fix e, choose rectangular coordinates y = (y;,y*) with y; = e -y, and set

p=|| y* ||. Then, arguing as before, we have:
W | . at2
iy < [ 1A% fy)llae-y +bldy <
Cq H—
/b / Cla(y +b)| dy* dyn / / C|a<y1+b>|pd > dpd2dy,
o Jyteri Iy [I? +1)t+2rar2 oo0yxsa-2 (i +p? +1)(d2+a/2
b d—2 2te —b
b)| 0 0dod b)| d
= Cuwy_ 1/ 2 Ja(yr +b)|sin 3cos i Y1 < de_lf/ |042(yl + 3)| y;
y1=—o00 J6=0 y + 1)( +e)/ 2 Yy1=—00 (yl =+ 1)( +e)/

_ T [¥ a(t)] dt
—de_12/0 ((t+b)2 + 1)G+a/2"

The last integral is a continuous function of b defined for all values of b. Noting that |«(t)] < 1 for

[t| < e and |a()\<5(1+5) for t > e and any 0 > 0, we see that when b >0 and € > § > 0:

/ / (t)| dt - e +/°° (t+b)'*0dt
t+b +1)B+/2 = (12 4+ 1)B+/2 T | 5(1 4 6)(t + b)Pte

_ 1 e+ ST
(e 1)<3+e>/2 5(1 +6)(1+€e—6)(e+b)lTe=d = (B2 4+ 1)(1+e=0)/2"

Hence, (P1) holds for b > 0 and n = € — 6. If by < 0, continuity on the interval [bg, 0] allows us to
draw the same conclusion for b > by (with the constant M replaced by a larger constant that depends
on bo)

To prove (P2), note first that (P1) implies that for fixed e the mapping b — (e, b) is integrable
on intervals of the form [— K, 0o0). Furthermore, Fubini’s Theorem in combination with the argument
for (P1) allows us to change the order of integration. Since all partials with respect to variables other
than y; can be integrated out and evaluated at infinity (where the antiderivatives vanish), we find
that

ot [ agetya= [ [ A% fyatey+bdyds
2¢q J_k ~KJH],
[ —b
[ [ A ime byt dpa
K Jyi=—co JyLlerd-1
%) —b a
[ [ GO wat dy = [ Tty
—K Jy;=—oc0 Jylerd-1 OY1 yleRrd-1
where

0o —b K —Y1
5= [ [ Gt o ana= [ [ "L el + b v

—-K oy

K —Yy1 K
[ G s i = bdbdn = [ (G )80 )

K
= [ Gy watn - K)dn

e
— [ (G ) gl — Kl .

Here we have used integration by parts, properties of # and «, and the decay condition satisfied by
f. The last integral decomposes further as:

15



K-1
(" / )13 og oy — K] di
K-1 1

K-1 (0 d=1¢(y)d
= log|y1_K|(87y1)d 1f( ) +/ (6y1)K_Z(Z’) Y1
Yy1=—00

— 00
K=

()11 f(y) = ()L f (K, y*)

+ (y1 — K)log|y1 — K|

n — K K1
. ) - Gy )
o o ’ K-y
K=1 (52)91 f(y) dys ™9 B
9y1 d—1 d—1 €
- n K, d
| [ G ) — (G Uy ) e
=iy )-I-Iz(yL).
We now integrate with respect to y*. For K > 1 by the Mean Value Theorem:
1
d 1 / / d 1 d—1 d d 1
[ et =1 [ (G ) = G Oy ) e v dy
Cp?=2dQdp
< — ) L <
< Jou s ey < /[o,ws“ 07T 7
—C " L in%"2gcos<fdf < C T
TR L (K - D2 g pawae S TS A S SRy e e a2

where we have used the substitution p = (1/(K —1)2 + 1)tané. As K tends to infinity, this integral
tends to 0.
Likewise,

! ) 1f dy* dy

[ nehat=1 ()" ) dy
R Rd-1 1— K
/K 1/ Pt 2dﬂdpdy1

[0,00) x Sd—2 |y1 K‘(lerp +1) (d—14€)/2

o /K 1/ d20dy1d0
- [y — K| (7 + 1)/2 cos' < 0

de 17 / dyl
< 3 2
2 Joo |y —K|(yf+1)¢/

which uses the inequality cos'=¢0 > (1 — %0)1’E for e <1 and 0 <6 < 7. Ignoring the scale factors
in front and making the substitution v = K — y;, we rewrite the last integral as:

/OO du
L (K w17

/K 1 /KH /1: )u((K—Z;L2 +1)¢/2

1
K—-1 K+1 du [ee) d'U
< e =
< et W ermeoe
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_(E-n /K—l 1 1 K+1 dv
1

Z b —)du+1
G E = “+°g1r<f1+/1 0+ K) 2+ 1)
2(K — 1) €log (K — 1 K+1 o0 d
_ 2 ) ~“log ( ) o K F +/ v _
K K-1 (v+ K)(v2+1)¢/?

As K tends to oo, the first two terms tend to 0, while the integral is dominated by f > ‘ffﬁ = % and
so also tends to 0 by Lebesgue’s Dominated Convergence Theorem. Thus (P2) is ebtablished.

Replacing w; by wy. Since aq = o for d even, we can express wy in terms of Wy, using
fRd = fH:b +fH;b and the oddness of «, as:

wyle.b) = 5 (i s(e,8) — iby(~e, ~b).
Then

/ wy(e,b)f(e-x+b)dedb
Sd—1x(—00,K]
:/ wy(e,b)f(e-x+b)dedb
§d-1x (—o0,K]

—/ 1( wy(e,b) + wys(—e,—b))b(e - x+b) de db.
Sd—1x(—o0,K] 2

The first integral in the last expression tends to f(x) as K tends to co by (12). So it suffices to show
that the second integral tends to 0 as K tends to oco. Indeed, for K >| x ||,

/ (wy(e,b) +ws(—e,—b))f(e-x+b)dedb
§d-1x(—00,K]

:/ W (e, b)e(e.x+b)dedb+/ (e, b)0(—e - x — b) de db
§4=1x (—o00,K]

S4=1x[~K,00)

max {K,— ex} —e'x
e,b)dbde + wyr(e,b)dbde
f
Sd—1 Sd=1 Jmin {—K,—e-x}

:/ / wy(e,b)dbde.
si-1J-K

However, f_KK wy(e,b) db tends to 0 uniformly in e as K tends to oo since by (P1) f;{o tends to 0 and
by (P2) [~ tends to 0. This completes the proof. |

8 Alternative representations

The formulas for w; in the Representation Theorem (Theorem 1) can be written in several alternative
forms, some of which have appeared in the literature under stronger hypotheses.

Kurkovd, Kainen and Kreinovich [19] used distributional techniques from Courant and Hilbert [5]
to show that if f is a compactly supported function on R? with continuous d-th order partials, and d
is odd, then f can be represented as in (4), where wy is as in (15) below.

Tto [13] and Carroll and Dickinson [4] treated both the odd and the even case, basing their work
on Helgason’s book on the Radon Transform [11], and obtained a representation for C*° functions of
rapid descent (Ito) and C* functions of compact support (Carroll and Dickinson).

The connection of previous work to the two propositions below is discussed at the end of this
section.

In the following proposition we make use of principal value integration (cf. Zemanian [20, p. 18]).

Thus p. v. ([za ﬁ’;)fby = limg o4 f{y ey tb|>0) ﬂ_’yﬁg provided the latter exists.
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Proposition 2 Let f be of controlled decay. For d odd

wy(e,b) = aq - AT f(y)dy (8.1)
=aq [ D{Vf(y)dy (8.2)
H,
= aq / DY f(y) duy (8:3)
He b
For d even,
d+2
wi(e,b) =as | AT f(y)ale-y +b)dy (8.4)
R
=ag | D& f(y)ale-y +b)dy (8.5)
Rd
=aq [ DIV (y)logle-y + bl dy (8.6)
R
(d)
B De” f(y)
= —aq p-v. /Rde-y—l—bdy (8.7)
If f is of controlled decay and also satisfies
ord 0°f >d—1 for 0 <|a| <d-—2, (8.8)

then for d odd

wy(e,b) = —aq (%)d </H f(y) dHY) . (8.9)
and for d even
wr(e,b) = —aq (aaa)d (p.v. /Rd e-f}('};)—a dy) » (8.10)

Proof:

The odd case. In the case d = 1 equations (13), (14), (15), and (21) are trivial and wy(e, b)
agrees with Proposition 1. Suppose d > 3. The integral in (13), from Theorem 1,

A= f(y)dy
H_,
is an integral over the half-space where y - e + b < 0. If we adopt a rectangular coordinate system in
d 2 2
which y; = y - e, the iterated Laplacian A%f(y) retains its usual form with A = 8872 + ...+ 8872'
1 d
The integrand consists of a sum of partial derivatives of f of order d 4+ 1 all but one of which can be
expressed in the form gT“ for some i # 1 and some function u, itself a partial derivative of f of order
d, by interchanging the order of differentiation. Integrating each such term, but integrating first with
respect to y;, we find that

~/}\'-Ie,b

ou
8y- (y)d%) dy1~-~dyi—1dyi+1---dyd

.....
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oo

u(y)\ylzfoo dyl---dyi—ldyi+1~-~dyd =0

/ylS_b7(y27"'7yi—17yl+11'~~7yd)€Rd2

since limy, oo u(y) = lim|jy|—oc u(y) = 0. Use of Fubini’s Theorem is justified since |g—;|, a derivative

of order d 4+ 1 dominated at infinity by W, is integrable over R? and over H ob
Accordingly the integral of interest reduces to:

/ ( 0 )dH F(y)dy.

Em
Then we integrate with respect to y; first of all, obtaining;:

/RH (a‘;)dﬂy) -
-/ (fyl)dfeb,yﬂdyi

—- (ja)d ([, rcayha)

where shifting the partial derivatives outside the integral is justified below. The above expressions are

identical, except for the omitted factor agq, with (14), (15), and (21) above since dyt = dgy, and 8%1

and its iterates are directional derivatives in the direction of e, i.e., normal to the hyperplane He .
Shifting the partials is permitted if we show that

for any real number b where v = (%)if fori =0,...,d—1. By the definition of a derivative, it suffices
to show that '

e,b

y1=—>b
dyg...dyd

)

a=b

a=b

/ (U(ib7h7yl_) 71}(7b,yl_) v
Rd—1 h 8y1

L ow v
E - _b7 1y —b— h, 1 ds)d 1
Lo Gyt = b= sy dshay

tends to 0 as h approaches 0.

The controlled decay property and (20) imply that limy | g—;(y)||y| = 0 for all v consid-

|d—1+e

ered. The last integral over R4~ decomposes into two parts: one for ||y*|| large, say, larger than R,

where the inner integral is dominated by —r2%— and integration with respect to dy* = p?~2dpd
lly+le=1+

with p = ||y *|| yields an answer dominated by 260?% (which can be made arbitrarily small by letting

R tend to infinity); while the other part is over the compact set C = {y* : |ly*| < R} where uniform
continuity of aa—yvl(fb, y+) guarantees that for h sufficiently close to 0 the integrand and the integral
over C are arbitrarily small. Thus the entire integral tends to 0 as h does, to complete the argument.

The even case. The representation in (16) derives from Theorem 1. In a rectangular coordi-
nate system in which y; = y-e, just as in the odd case, by dropping terms that have partial derivatives

with respect to variables other than y;, we arrive at the following equations, with De = %:
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i 0
G [ G ) gl + ] dy

wy(e,b) 9 \dto
- - +b)d S
y o 8y1) f(y)a(yr +b)dy 5y
(i) 0 4 1
Y v 2 — 4
by (/Rd(ayl) f(y)y1+b y)
d
(iid) 9 fly)
= — = . V. d
<6a> <p v re Y1+ a Y a:b’

The left side of (i) is (17). So if we establish (i), (ii), and (iii), then (18), (19), and (22) follow.
An integration by parts with respect to the variable y; yields (i). As the function log|y; 4+ b| =

—a/(y1 + b) has a singularity at y; = —b, Lebesgue integration is required.
Another integration by parts leads to (ii). Indeed, for § > 0

9
/ (7)d+1f(y) log [y, + b dy =
{y ! |lyi+b/>8} 9Y1
-/ (D) p (b4 6.y ) logs dy* — / (i) L ay
Rri-1 Oy {y ! y1+b>6} oy y1+b
9 4 L L / 9 4 1
+ I ydp(—p— 6,y )logs dyt — < 4
/Rd_1<ay1) fobmayoms dyt— [ (G Sy
o, 1
—d
y)y1+b y

! 0
§logd (—/ / F ) (b -ty dtdyL) —/ e
Rd-1 t:_1<3y1) ( ) {v: Iyl+b|25}(8y1

The coefficient of §logd is a well-defined finite integral, and as § tends to 0+, d logd tends to 0.

To show (iii), we must establish the following:

— 0 v(y)
v g = (DN () / d
e (L) == () (ve [w)

for all real numbers b and v = (%)if for i =0,...,d — 1. Consider now the differential quotient

Uy [ 0] i)
- (/R 1 v(ylhvyl)v(y)Jrav(Y))dy)

a1 +0 h oy

- (/R ylin(y,h)dy>
L H(y.m) dy)

1
= H(y,h)dy | + p. v. /
(/{yem D yith|>1y Y1 O {yeR : |yi+bl<1} Y1 +D

a=b

=: I (h) + I (h),

where
1
ov v
(y1 — sh,y™)) ds.

H(Yah) = /S:O(aiyl y A

It suffices to show that I;(h) and Iz(h) tend to 0 as h does.
Since f is of controlled decay and we may now assume (20) holds, then

o .
lim (=—)'v d=lte —
(g, @)yl
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for j =0,1,2.

Counsider I;(h). In the subregion where |y; + b| > 1 and ||y|| > R, R suitably large, the integrand
ylin(y, h) is dominated by ‘u|(u2+p226)(2d_1+6)/2 where we write u = y; + b and p = ||y*||. Integrating
over the subregion, we find that the integral is dominated by

260

110 /2P
/{<u,yi> ulz ey 2z Rz [ul(u? 4 p?)aira 2
* du ™/2 tan?=2 0 sec? 0db
< 460‘%*1(/1 F)(/ —ocd—trcg )
4 _
< 0% ax (X, T,
€ 2¢" 2
where the substitution p = u tan § has been used as well as the inequality cos'™“ 6 > (1 — 26)'~¢ when
e<land 0 <6< 7. Since ¢ can be taken arbitrarily small for R sufficiently large, this term can be
made as small as we like. In the remaining subregion, where |y; +b| > 1 and |ly|| < R, we have

=2 dpdQdu

|H(y,h)|
ly1 + 0|
and the results of its integration can be made arbitrarily small by taking h sufficiently close to 0
because of uniform continuity of 6‘9—;’1 on a compact set. So I;(h) tends to 0 with h.
As for Iy(h), setting

< [H(y,h)]

! Lo 0?v
G(y,h) ::/ / (75 (=b+ty1 +b),y") — 25 (~b—sh+t(y1 +b),y")) dtds,
s=0Ji=0 OYi e

H(y,h
I;(h) = p. v. / Ldy
{yilyi+bl<1y Y1+

H((-b,yY),h
-/ Gy.my+ p. v. | H(=by).h) 4 )
fyilyitbl<ty {y:ly1+b|<1} y1+b

The principal value integration yields 0 since the order of integration can be changed, and the integral
becomes a product of two integrals:

H((— iR
bV, / ((=b,y~),h) dy
{y:|y1+b|<1} y1+0

1
= ( H((=b,y*),h) dy¢> - p. V. / bdyl) =0,
Rd-1 {vr @ lytbl<iy Y1t

where the first factor is well-defined and the second is 0. It remains for us to show that the integral

/ G(y,h)dy
{y:ly1+b|<1}
tends to zero as h does.

For |ly]| > R, R suitably large, the integrand is dominated by m and the integral is

we have

dominated by :

2

e p
/{<u,yi> ul<tullyL PRy (p2)dT1H/2

! < dp dwq—1
< Adwqy_ / du / = .
a1 0+ ) R PHE) eRe

=20 pdQdu
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For R sufficiently large this integral is accordingly negligible. Finally, in the remaining compact
subregion {y : |y1 + b < 1,|ly|]l < R} the integrand G(y,h) can be made as small as we like by
82

that region tends to 0 with h, to complete the proof.

choosing h sufficiently close to 0 since is uniformly continuous there. Accordingly its integral over

The argument in the odd-dimensional case can be thought of as a variant of the Divergence
Theorem [3, p. 423] in d dimensions, in which an integral on the half-space H_, is replaced by an
integral on the bounding hyperplane He . ’

Note that the extra condition needed for (21) and (22) is more stringent than the one in Theorem
1 when |a| < d — 2. For (15) we can require one less order of differentiablility on f than in the
Representation Theorem (but at the same time we require that the highest order derivatives vanish
to one higher power of ||x|| at 0o).

Let d be odd. We call a function f of weakly controlled decayif f : R* — R is d-times continuously
differentiable and ord 9“f > 0 for all multi-indices o with 0 < |a| < d, and ord 8*f > d + 1 for all
multi-indices with |a| = d. Note that neither controlled decay nor weakly controlled decay implies
the other.

Proposition 3 Let d be odd. If f is of weakly controlled decay, then f has the representation (4)
with wy given by (15).

Proof: Borrowing a technique from [19, p. 1068], we introduce a function ¢ on R? that is C>
and non-negative, vanishes for [x|| > 1 and has integral over R? equal to 1. Then we define a
sequence of functions f, on R¢ by fn(x fR" (n(x—y))dy. Each f, is C*, and 9% f,,(x) =

Jra F(¥)02(np(n(x —y)) dy = [ra f( ( )'a‘a‘y”( ¢( (x—y))dy = [a 0°f(y)nid(n(x —y))dy,
the last formula holding provided |«| S d. Since f and all of its derivatives of order < d vanish
at infinity, it is straightforward to show that f,, converges uniformly to f on R¢ and 9°f, likewise
converges uniformly to 9%f on R? for |a| < d. If the functions {f,} satisfy the integral formula (4)
with wy, asin (15), then f will satisfy this integral formula with wy as in (15).

Indeed,

f(x) = lim f,(x)= lim wy, (e,b)d(e - x + b) dedb

n— o0 n—00 [gd—1yR

= lim aq / / D f,.(y)d(e - x + b) dgydedb,
Sd=1xR e.b

= / wy(e,b)d(e-x+ b) dedb
Sd-1xR

where Lebesgue’s Dominated Convergence Theorem can be applied to move the limit all the way
inside. This follows from the fact that

D 1)) =1 [ DL papnotnly —=)d

¢ Ny -zl <1} < K
Y —z|| = <
(H HQ + 1)(d+1+6 (||y||2 + 1)(d+1+6)/2

< sup{

for suitable constants C' and K that are independent of n and e. Since for d > 3
/ / L 9 +b) dgydedb
e-x e
si-1xr Ju,, (|12 + 1)(d+1+e/2 "

/ / p?2dpd(e - x + b) dedb
=w
-t si-1xR J[0,00) (b7 + p? + 1)(d+14e)/2
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< 00,

71'/ Ye-x+b)dedb 7r/°° db
2 /s 2

< Wi 11— —~ - o — -
S Wa—1 wr (24 1)(2+6)/2 > Wa—1Wd x| (b2 + 1)(2+e)/2

the dominating function is integrable. The case d = 1 can be worked out trivially, but this exercise is
superseded by Proposition 1.

We must still establish that {f,} satisfies the hypotheses of the Representation Theorem. Since
0% f vanishes at infinity for |a| < d, by Lemma 0 it suffices to show that the order |a| = d + 1
derivatives of f,, satisfy ord 0% f,, > d + 1. However, for |a| = d + 1, using the extra increment in the
order of vanishing, we have:

0Ll = | @) @ln(x =yt dy

9¢
= 1[I0 x =y ay]
1
Dy

(]| + 1)rrta/z

where a =  + u;, u; a coordinate vector with 1 in the ¢-th position and 0 elsewhere for some 7 such
that a; > 1. |

Proposition 3 generalizes the result of Kurkovd, Kainen and Kreinovich [19]. Proposition 2, (15)
and (19), extends the result of Ito [13], while Proposition 2, (21) and (22), extends the result of Carroll
and Dickinson [4].

9 Discussion

The history of the representations above is of some interest. Helgason’ book [11] offers generalizations
and at the same time points back to antecedent ideas, including papers of Funk and Radon. Gel’fand,
Graev, and Vilenkin [9] also obtained a Radon-type representation. Indeed the history of this repre-
sentation probably extends back beyond Radon and Hilbert to such figures as Cauchy, Poisson, and
Laplace.

Properties of the weight function in the integral formula can be developed further. In our present
setting w; is a continuous function on S9°! x R, is integrable on this set (along with (e,b) —
wy(e,b)f(e - x + b)) and satisfies lim,| o wy(e,b)[b|' = 0. In the proof of Theorem 1 we found a
class of weight functions (e, b) — wy(e, b) + ws(—e, —b), each of which represents the zero function.
Since wy is not unique, one can seek choices for it that minimize various measures of cost.

It is apparent that the representation applies to functions other than those given in Theorem 1,
and Propositions 2 and 3. Ito [13] points out that the conditions on the functions can be loosened
considerably but does not provide details. In the one-dimensional case, Proposition 1 and Lemma 1
both demonstrate that the growth conditions can be weakened, or even abandoned. In the proof of the
Representation Theorem use was made of representations of ||x|| and 8(||x||) by integral combinations
of Heavisides. Similar representations can be made for any polynomial x — p(||x — y||).

Also of interest is how a finite sum approximating the integral formulas can be selected (choices
of weights and half-spaces). “A quadrature formula is a numerical rule whereby the value of a definite
integral is approximated by the use of information about the integrand only at discrete points (where
the integrand is defined)” (Engels, [7, p. 1]). A quadrature of the integral formula from Theorem 1
would determine parameters of a Heaviside perceptron network that should be useful information for
designing a learning algorithm. Elsewhere we have shown that for every n > 1, integrable functions
f on [0,1]? have best approximations by combinations of n or fewer Heavisides ([17], [14]), but these
best approximations cannot vary continuously with f ([18], [15]). Perhaps quadrature can be achieved
by an algorithm which first chooses among distinct alternatives and then proceeds continuously.
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The integral representation even suggests the possibility of neural computation through some
physical process that estimates wy directly from the data.

24



Bibliography

Barron, A. R. (1993). Universal approximation bounds for superposition of a sigmoidal
function. IEEFE Transactions on Information Theory, 39, 930-945.

Bleistein, N. & Handelsman, R. A. (1975). Asymptotic Expansions of Integrals. New York:
Holt, Rinehart & Winston.

Buck, R. C. (1965). Advanced Calculus. New York: McGraw-Hill.

Carroll, S. M. & Dickinson, B. W. (1989). Construction of neural nets using the Radon
transform. In Proceedings of IJCNN (pp. I. 607-611). New York: IEEE Press.

Courant, R. & Hilbert, D. (1962). Methods of Mathematical Physics, vol. 2. New York:
Wiley.

Davies, B. (1985). Integral Transforms and Their Applications. 2nd Edition. New York:
Springer.

Engels, H. (1980). Numerical Quadrature and Cubature. London: Academic Press.

Funahashi, K. (1989). On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2, 183-192.

Gel'fand, I. M., Graev, M. 1. & Vilenkin, N. Ya. (1966). Generalized Functions, v.5. New
York: Academic Press.

Girosi, F. & Anzellotti, G. (1993). Rates of convergence for radial basis function and neu-
ral networks. In Artificial Neural Networks for Speech and Vision (pp. 97-113). London:
Chapman & Hall.

Helgason, S. (1980). The Radon Transform. Boston: Birkh&user.
Hewitt, E. & Stromberg, K. (1965). Real and Abstract Analysis. New York: Springer-Verlag.

Tto, Y. (1991). Representation of functions by superpositions of a step or sigmoid function
and their applications to neural network theory. Neural Networks, 4, 385-394.

Kainen, P. C., Kurkové, V. & Vogt, A. (2003). Best approximation by linear combinations
of characteristic functions of half-spaces. Journal of Approzimation Theory, 122, 151-159.

Kainen, P. C., Kurkova, V. & Vogt, A. (2000). Geometry and topology of continuous best
and near best approximations. Journal of Approximation Theory, 105, 252-262.

Kainen, P. C.; Kurkovd, V. & Vogt, A. (2000). An integral formula for Heaviside neural
networks. Neural Network World, 3, 313-319.

Kainen, P. C., Kurkova, V. & Vogt, A. (2000). Best approximation by Heaviside perceptron
networks. Neural Networks, 13, 695-697.

Kainen, P. C., Karkovd, V. & Vogt, A. (1999). Approximation by neural networks is not
continuous. Neurocomputing, 29, 47-56.

25



[19] Kurkova, V., Kainen, P. C. & Kreinovich, V. (1997). Estimates of the number of hidden
units and variation with respect to half-spaces. Neural Networks, 10, 1061-1068.

[20] Zemanian, A. H. (1987). Distribution Theory and Transform Analysis. New York: Dover.

26



