

národní úložiště literatury

Primárně duální metoda aktivních množin pro jednostranný kontakt pružných těles s daným třením

Hlaváček, Ivan 2006 Dostupný z http://www.nusl.cz/ntk/nusl-35330

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).

Datum stažení: 02.10.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Primárně duální metoda aktivních množin pro jednostranný kontakt pružných těles s daným třením

I.Hlaváček

Technical report No. 965

March 2006

Primárně duální metoda aktivních množin pro jednostranný kontakt pružných těles s daným třením

I.Hlaváček

Technical report No. 965

March 2006

Abstrakt:

Uvažujeme jednostranný kontakt dvou pružných rovinných nebo prostorových těles. Smíšená variační formulace vede na problém sedlového bodu, který diskretizujeme metodou konečných prvků. K nalezení sedlového bodu aplikujeme novou metodu tzv. primárně duální strategie aktivních množin (PDAS), která se dá ztotožnit se zobecněnou Newtonovou iterační metodou.

V 1. kapitole je analyzováno řešení koercivních i semi-koercivních úloh bez tření. 2. resp. 3. kapitola je věnována kontaktu s "daným" třením podle Trescova modelu ve 2D-, resp. 3D-formulaci. K nalezení příslušného sedlového bodu je navržen iterační algoritmus, který kombinuje projekce z metody Uzawovy s metodou PDAS v každém iteračním kroku.

Keywords:

Jednostranný kontakt, dané tření, metoda konečných prvků, sedlový bod, zobecněná Newtonova metoda

Obsah

Úvo	d		
1	Kontaktní úlohy s nulovým třením		
	1.1	Koerciv	ní úlohy s nulovým třením
		1.1.1	Diskretizace metodou konečných prvků
		1.1.2	Smíšená variační formulace – problém sedlového bodu
		1.1.3	Zobecněná Newtonova metoda – primárně duální metoda aktivních
			množin
		1.1.4	Redukovaná verze algoritmu PDAS
		1.1.5	Globální konvergence
1.2 Semi-koercivní úlohy s nulovým třením		ercivní úlohy s nulovým třením	
		1.2.1	Diskretizace konečnými prvky 13
		1.2.2	Smíšená variační formulace
2	Rovinná tělesa v jednostranném kontaktu s daným třením		
	2.1	Koerciv	ní kontaktní úlohy s daným třením
		2.1.1	Primární variační formulace
		2.1.2	Smíšená variační formulace a její diskretizace
		2.1.3	Zobecněná Newtonova metoda? Alternující algoritmus
	2.2	Semi-ko	ercivní kontaktní úlohy s daným třením
3	Prostorová tělesa v jednostranném kontaktu s daným třením		
	3.1	Koercivní kontaktní úlohy s daným třením	
		3.1.1	Primární variační formulace
		3.1.2	Smíšená variační formulace a její diskretizace
		3.1.3	Zobecněná Newtonova metoda? Alternující algoritmus
	3.2	Semi-ko	ercivní kontaktní úlohy s daným třením

Úvod

Matematický model jednostranného kontaktu pružných těles je popisován ve formě variační nerovnice již od 60.let minulého století. Přibližná řešení se získávají většinou diskretizací metodou konečných prvků (viz např. [5] a literaturu tam uvedenou). Jestliže připustíme na kontaktu možnost tření podle Coulombova modelu, praktické řešení spočívá v iteračním algoritmu, jehož každý krok je modelován tzv. "daným třením", tj. Trescovým modelem ([21, 7]). Případu jednostranného kontaktu s daným třením je věnována řada prací (např. [2, 4, 5, 6, 7, 9, 10, 19], v nichž autoři užívají smíšenou variační formulaci s Lagrangeovými multiplikátory. Tato formulace vede na problém sedlového bodu, který se po diskretizaci konečnými prvky řeší algoritmem Uzawova typu (viz např. [10, 19]). Ve smíšené formulaci je výhodné zavést tzv. duální bázi pro multiplikátory ([14, 15]). Jinou cestou je postup, kdy se vyloučí dále posunutí a řeší se pak duální úloha v Lagrangeových multiplikátorech (např. [6, 7, 21]).

V předložené studii se zaměříme na aplikace nové metody, zvané "primal-dual active set strategy" (PDAS), která se dá ztotožnit se zobecněnou iterační Newtonovou metodou pro řešení nelineárních rovnic – viz [11, 12, 13, 14, 15, 16]. Prozatím byla tato metoda aplikována pouze na úlohy jednostranného kontaktu s nulovým třením ([1, 13, 14, 15]). V práci [11] je dokázáno, že iterace algoritmu PDAS konvergují superlineárně. Ze srovnání s dalšími čtyřmi algoritmy pro kontakt většího počtu těles vychází algoritmus PDAS jako nejrychlejší (viz [1]).

V naší studii se pokusíme rozšířit aplikace metody PDAS (a) na některé úlohy semi-keorcivní a (b) na jednostranný kontakt s daným třením. Budeme uvažovat rovinné i prostorové úlohy. Kapitola 1 je věnována úlohám bez tření pro dvě pružná tělesa dvoj- nebo trojdimenzionální. Kapitoly 2, resp. 3 probírají kontakt s daným třením v 2D, resp. 3D.

1 Kontaktní úlohy s nulovým třením

Uvažujme rovinné či prostorové úlohy dvou pružných těles ve vzájemném kontaktu za předpokladu, že nepůsobí tření. Nechť tedy Ω^1 a Ω^2 jsou oblasti omezené v \mathbb{R}^d , d = 2, 3, s Lipschitzovskou hranicí $\partial \Omega^1$, resp. $\partial \Omega^2$. Nechť

$$\partial\Omega^{i} = \Gamma_{u}^{i} \cup \Gamma_{0}^{i} \cup \Gamma_{c} \cup \Gamma_{p}^{i}, \quad i = 1, 2, \quad \Gamma_{c} = \partial\Omega^{1} \cap \partial\Omega^{2},$$

je rozklad hranice na vzájemně disjunktní části takové, že

$$\begin{split} \mathrm{meas}_{d-1}\Gamma_c > 0, & \mathrm{meas}_{d-1}\Gamma_0^i > 0 & \mathrm{nebo} \quad \Gamma_0^i = \emptyset, \\ & \mathrm{meas}_{d-1}\Gamma_p^i > 0 & \mathrm{nebo} \quad \Gamma_p^i = \emptyset, \\ \mathrm{meas}_{d-1}\Gamma_u^i > 0 & \mathrm{nebo} \quad \Gamma_u^i = \emptyset. \end{split}$$

Na části Γ_u^i je těleso Ω^i upevněno, tj. vektor posunutí

$$u^i = (u_1^i, \dots, u_d^i)^T = 0 \quad \text{na} \quad \Gamma_u^i \tag{1.1}$$

Na Γ_0^i platí podmínky oboustranného kontaktu, tj.

$$u_n^i \equiv u^i \cdot n^i = 0, \qquad (1.2)$$

$$T_{tj}(u_i) \equiv \tau_{jk}^i n_k^i - T_n^i n_j^i = 0, \quad j = 1, \dots, d,$$
(1.3)

kde $\tau_{jk}^i = c_{jkpq}^i \varepsilon_{pq}(u^i)$ je složkou tensoru napětí, $T_n(u^i) = \tau_{jk}^i n_j^i n_k^i$ je normálové napětí a n^i značí jednotkový vektor vnější normály k hranici $\partial \Omega^i$, $\varepsilon_{pq}(u^i) = (\partial u_p^i / \partial x_q + \partial u_q^i / \partial x_p)/2$ je složka tensoru malé deformace.

Na části Γ_p^i jsou zadány povrchové síly P^i , tj.

$$\tau^i_{jk} n^i_j = P^i_k, \quad j = 1, \dots, d.$$
 (1.4)

Část Γ_c je tzv. kontaktní hranice, na které platí podmínky nepronikání

$$[u_n] \equiv u^1 \cdot n^1 + u^2 \cdot n^2 \le 0 \tag{1.5}$$

a podmínky nulového tření

$$T_{tj}(u^1) = -T_{tj}(u^2) = 0, \quad j = 1, \dots, d.$$
 (1.6)

Pro koeficienty $c_{jkpq} \in L^{\infty}(\Omega^i)$ zobecněného Hookeova zákona platí podmínky symetrie

$$c^i_{jkpq} = c^i_{kjpq} = c^i_{pqjk} \tag{1.7}$$

a positivní definit
nosti: existuje kladná konstanta c_0 tak, že

$$c_{jkpq}^i(x)\xi_{jk}\xi_{pq} \ge c_0\xi_{lj}\xi_{lj} \tag{1.8}$$

pro všechny symetrické matice (ξ_{lj}) skoro všude v Ω^i .

Zde i v dalším užíváme sčítací konvence, tj. sčítání od 1 do d pro každý opakovaný index.

Tensor napětí τ^i_{jk} splňuje v každém těles
e Ω^i rovnice rovnováhy

$$\partial \tau^i_{jk} / \partial x_k + F^i_j = 0, \quad j = 1, \dots, d,$$

$$(1.9)$$

kde $F_j^i \in L^2(\Omega^i)$ jsou složky dané objemové síly, a na části Γ_p^i rovnice (1.4). Vyjdeme z variačního principu virtuálních posunutí, který umožní celý problém řešit variační metodou konečných prvků. Za tím účelem definujme nejprve prostory virtuálních posunutí

$$\begin{split} V^i &= \left\{ v \in [H^1(\Omega^i)]^d : v = 0 \text{ na } \Gamma^i_u, v \cdot n^i = 0 \text{ na } \Gamma^i_0 \right\}, \\ \mathbb{V} &= V^1 \times V^2 \,, \end{split}$$

bilineární formy

$$a^{i}(u^{i}, v^{i}) = \int_{\Omega^{i}} c^{i}_{jkpq} \varepsilon_{jk}(u^{i}) \varepsilon_{pq}(v^{i}) dx, \quad i = 1, 2$$

$$(1.10)$$

$$a(u,v) = a^{1}(u^{1},v^{1}) + a^{2}(u^{2},v^{2}),$$
 (1.11)

funkcionál

$$S(v) = \sum_{i=1,2} S^{i}(v^{i}) = \sum_{i=1,2} \left(\int_{\Omega^{i}} F_{j}^{i} v_{j}^{i} dx + \int_{\Gamma_{p}^{i}} P_{j}^{i} v_{j}^{i} ds \right)$$
(1.12)

a množinu přípustných posunutí

$$\mathbb{K} = \{ v \in \mathbb{V} : [v_n] \le 0 \text{ na } \Gamma_c \}.$$
(1.13)

Definice 1.1 *Řekněme, že* $u \in \mathbb{K}$ *je slabé řešení primární úlohy, jestliže*

$$a(u, v - u) \ge S(v - u) \quad \forall v \in \mathbb{K}.$$
 (1.14)

V dalším budeme rozlišovat dva hlavní typy okrajových úloh. Proto zavedeme prostor posunutí tuhých těles

$$\mathcal{R} = \{ v \in [H^1(\Omega^1)]^d \times [H^1(\Omega^2)]^d : |v|' = 0 \},$$
(1.15)

kde

$$|v|' = \left(\sum_{i=1,2} \int_{\Omega^i} \varepsilon_{jk}(v^i) \varepsilon_{jk}(v^i) dx\right)^{1/2}.$$
(1.16)

Jsou-li části hranic Γ_u^i a Γ_0^i takové, že $\mathcal{R} \cap \mathbb{V} = \{0\}$, řekněme že jde o koercivní typ úlohy; když $\mathcal{R} \cap \mathbb{V} \neq \{0\},$ jde o semi-koercivní typ.

1.1 Koercivní úlohy s nulovým třením

Začneme s jednodušším typem úloh, tj. s úlohami koercivního typu. Takový případ nastává např. když

$$\operatorname{meas}_{d-1}\Gamma_u^i > 0, \quad i = 1, 2,$$
(1.17)

nebo když Γ_0^1 i Γ_0^2 mají kladnou (d-1) rozměrnou míru a obě leží ve dvou vzájemně kolmých přímkách (pro d = 2), resp. ve třech rovinách (pro d = 3), vzájemně kolmých.

Lemma 1.1 Nechť $\mathcal{R} \cap \mathbb{V} = \{0\}$. Pak platí Kornova nerovnost, tj. existuje kladná konstanta α_0 taková, že

$$(|v|')^2 \ge \alpha_0 ||v||^2 \quad \forall v \in \mathbb{V},$$

$$(1.18)$$

kde

$$\|v\|^2 = \sum_{i=1,2} \|v^i\|_{1,\Omega^i}^2$$

 $a \|v^i\|_{1,\Omega^i}$ značí standardní normu v prostoru $[H^1(\Omega^i)]^d$.

Důkaz – viz např. [8].

Důsledek 1.1 Nechť $\mathcal{R} \cap \mathbb{V} = \{0\}$. Potom platí

$$a(v,v) \ge c_0 \alpha_0 \|v\|^2 \quad \forall v \in \mathbb{V}.$$

$$(1.19)$$

Důkaz Podle (1.8), (1.10) a (1.12) máme pro všechna $v \in \mathbb{V}$

$$\sum_{i=1,2} a^i(v^i, v^i) \ge c_0 \sum_{i=1,2} \int_{\Omega^i} \varepsilon_{jk}(v^i) \varepsilon_{jk}(v^i) dx = c_0(|v|')^2.$$

Pak stačí použít (1.18).

Věta 1.1 Nechť $\mathcal{R} \cap \mathbb{V} = \{0\}$. Pak existuje právě jedno slabé řešení primární úlohy.

Důkaz Nerovnost (1.14) je ekvivalentní úloze minimalizace celkové potenciální energie, tj. úloze najít

$$u = \arg\min_{v \in \mathbb{K}} \mathcal{L}(v), \qquad (1.20)$$

kde

$$\mathcal{L}(v) = a(v, v)/2 - S(v).$$
(1.21)

Díky Důsledku 1.1 je funkcionál $\mathcal{L}(\cdot)$ koercivní a ryze konvexní v prostoru \mathbb{V} . Protože \mathcal{L} je kvadratický a množina \mathbb{K} je konvexní, uzavřená ve \mathbb{V} , existuje jediné řešení úlohy (1.20).

1.1.1 Diskretizace metodou konečných prvků

Předpokládejme, že hranice $\partial \Omega^1$ a $\partial \Omega^2$ jsou polygonální v rovinné úloze, resp. polyhedrální v prostorové úloze.

Uvažujme standardní triangulace \mathcal{T}_h^i oblastí Ω^i , tj. standardní dělení Ω^i na trojúhelníky, resp. čtyřstěny (viz [5] pro 2D, resp. [19] pro 3D). Definujme konečně-dimenzionální podprostory

$$\begin{split} V_h^i &= \{ v_h \in [C(\overline{\Omega}^i)]^d : v_{h|T} \in [P_1(T)]^d \; \forall T \in \mathcal{T}_h^i, \; v_h = 0 \; \text{na} \; \Gamma_u^i, \; v_h \cdot n^i = 0 \; \text{na} \; \Gamma_0^i \}, \quad i = 1, 2 \; , \\ \mathbb{V}_h &= V_h^1 \times V_h^2 \; ; \end{split}$$

kde T značí libovolný simplex z triangulace \mathcal{T}_h^i a $P_1(T)$ je prostor lineárních polynomů na T.

Nechť \mathcal{T}_h^i je konsinstentní s rozkladem hranice $\partial \Omega^i$ na části Γ_u^i , Γ_0^i , Γ_p^i a Γ_c^i a uzly \mathcal{T}_h^1 a \mathcal{T}_h^2 na Γ_c jsou společné pro obě triangulace. Definujme dále

$$\mathbb{K}_h = \{ v_h \in \mathbb{V}_h : (v_h^1 \cdot n^1 + v_h^2 \cdot n^2)(a_j) \le 0 \quad \text{ve všech uzlech } a_j \in \Gamma_c \}.$$
(1.22)

V každém vrcholu \hat{a}_j kontaktní hranice Γ_c vyjádříme podmínku nepronikání (1.5) z každé strany (pro 2D), resp. z každé stěny (pro 3D), které se stýkají v bodě \hat{a}_j . Pro 2D to jsou dvě podmínky v každém vnitřním vrcholu lomené čáry Γ_c ; pro 3D je to tolik podmínek, kolik stěn S_k se protíná v bodě \hat{a}_j . Můžeme tedy v definici (1.22) psát

$$v_h^1(a_j^1) \cdot n^1(S_k) + v_h^2(\hat{a}_j) \cdot n^2(S_k) \le 0 \quad \forall S_k, \ \hat{a}_j \in S_k, \ 1 \le k \le \overline{k}(\hat{a}_j) \,. \tag{1.23}$$

Protože funkce v_h^i jsou po částech lineární, podmínka (1.5) pak platí ve všech bodech $\Gamma_c \setminus \bigcup_j \hat{a}_j$, tedy $\mathbb{K}_h \subset \mathbb{K}$.

Definice 1.2 *Řekněme, že* $u_h \in \mathbb{K}$ *je konečně-prvkové řešení primární úlohy, když*

$$a(u_h, v_h - u_h) \ge S(v_h - u_h) \quad v_h \in \mathbb{K}_h.$$

$$(1.24)$$

Věta 1.2 Nechť $\mathcal{R} \cap \mathbb{V} = \{0\}$. Pak existuje právě jedno řešení úlohy (1.24).

Důkaz Protože $\mathbb{V}_h \subset \mathbb{V},$ větu dokážeme analogicky jako Větu 1.1.

Je-li systém $\{\mathcal{T}_h\}, h \to 0_+$, regulární a předpokládáme-li jistou regularitu slabého řešení u a normálového napětí $T_n(u)$, lze dokázat apriorní odhady chyb v rovinné úloze

$$\|u_h - u\| \le Ch^{\alpha} \tag{1.25}$$

(viz [5, Sekce 8]), kde $\alpha = 1$, resp. $\alpha = 3/4$ v závislosti na předpokladech. Pro prostorovou úlohu platí analogický výsledek (viz [4, Věta 4.4]).

Úloha (1.24) je ekvivalentní úloze

$$u_h = \arg\min_{v_h \in \mathbb{K}_h} \mathcal{L}(v_h) , \qquad (1.26)$$

tj. minimalizaci kvadratického funkcionálu s vedlejšími podmínkami ve tvaru soustavy nerovností. Tuto úlohu převedeme na problém sedlového bodu pomocí Lagrangeových multiplikátorů.

1.1.2 Smíšená variační formulace - problém sedlového bodu

Úlohu (1.26) přeformulujeme v maticovém tvaru. Označme

 $\mathcal{V} \in \mathbb{R}^{N}$ vektor uzlových hodnot posunutí,

Amatici $(N \times N)$ tuhosti,

 ${\cal S}$ vektor uzlových hodnot zatížení,

B matici $(m \times N)$ podmínek nepronikání.

Potom

$$\mathcal{L}(v_h) = \frac{1}{2} \mathcal{V}^T A \mathcal{V} - S^T \mathcal{V},$$

$$u = \arg \min_{\mathcal{V} \in \mathcal{K}} \left(\frac{1}{2} \mathcal{V}^T A \mathcal{V} - S^T \mathcal{V} \right)$$
(1.27)

kde

$$\mathcal{K} = \{ \mathcal{V} \in \mathbb{R}^N : B\mathcal{V} \le 0 \}.$$
(1.28)

Každé nerovnosti tvaru (1.22) resp.
(1.23) v definici \mathbb{K}_h přiřadíme nezápornou souřadnici
 μ_p vektoru μ Lagrangeových multiplikátorů

$$\mu \equiv (\mu_1, \ldots, \mu_m)^T,$$

kde

$$m = \sum_{a_j \in \Gamma_c} \overline{k}(a_j) \,,$$

 $\overline{k}(\hat{a}_j) > 1$, je-li $a_j \equiv \hat{a}_j$ vrchol Γ_c , $\overline{k}(a_j) = 1$, není-li a_j vrcholem Γ_c .

Předpokládejme, že Γ_0^i jsou úsečky, resp. části rovin, rovnoběžné s osami kartézských souřadnic x_1, \ldots, x_d . Potom lze podmínky $u^i \cdot n^i = 0$ na Γ_0^i splnit přímo.

Definujme množinu

$$M = \{\mu \in \mathbb{R}^m : \mu_p \ge 0, \ p = 1, \dots, m\} \equiv \mathbb{R}^m_+$$

a Lagrangián

$$\mathcal{H}(\mathcal{V},\mu) = \frac{1}{2}\mathcal{V}^T A \mathcal{V} - S^T \mathcal{V} + \mu^T B \mathcal{V}.$$
(1.29)

Pak úlohu (1.27) lze nahradit úlohou sedlového bodu: najít dvojici $(u, \lambda) \in \mathbb{R}^N \times M$ takovou, že

$$\mathcal{H}(u,\mu) \le \mathcal{H}(u,\lambda) \le \mathcal{H}(\mathcal{V},\lambda) \quad \forall (\mathcal{V},\mu) \in \mathbb{R}^N \times M$$
(1.30)

Úloha (1.30) je ekvivalentní následujícímu systému pro $(u, \lambda) \in \mathbb{R}^N \times M$:

$$Au + B^T \lambda - S = 0, \qquad (1.31)$$

$$(\mu - \lambda)^T B u \le 0 \quad \forall \mu \in M.$$
(1.32)

Nerovnici (1.32) lze vyjádřit ekvivalentní rovností

$$\lambda - (\lambda + \rho B u)^+ = 0, \qquad (1.33)$$

kde $\rho \in \mathbb{R}$ je libovolný kladný parametr $a(z)^+ = \max(0, z)$ je kladná část čísla z. (V (1.33) se ovšem kladná část bere po jednotlivých souřadnicích vektoru v závorce.) Protože M je uzavřená konvexní množina v \mathbb{R}^m , $(\lambda + \rho Bu)^+$ je projekce vektoru $\lambda + \rho Bu$ na množinu M.

Celkem tedy pro dvojici $y:=\left(\begin{array}{c} u\\ \lambda \end{array}\right)$ platí

$$\mathcal{F}(y) \equiv \begin{pmatrix} Au + B^T \lambda - S \\ \lambda - (\lambda + \rho Bu)^+ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
(1.34)

1.1.3 Zobecněná Newtonova metoda – primárně duální metoda aktivních množin

Nelineární rovnici (1.34) budeme řešit iterační zobecněnou Newtonovou metodou (viz [11, 13, 15]). Ukážeme nejprve, že funkce $y \mapsto \mathcal{F}(y)$ má zobecněnou derivaci ("slant derivative").

Definice 1.3 Zobrazení $F : X \to Y$, kde X, Y jsou Banachovy prostory, má zobecněnou derivaci v otevřené množině $U \subset X$, existuje-li zobrazení $G : U \to \mathcal{L}(X, Y)$, (zobecněná derivace), takové že

$$||F(y+h) - F(y) - G(y+h)h||_Y / ||h||_X \to 0, \quad kdy\check{z} h \to 0,$$

platí pro každé $y \in U$.

Ukážeme, že funkce \mathcal{F} má zobecněnou derivaci v ($\mathbb{R}^N \times \mathbb{R}^m$). Nejprve zavedeme pro každou množinu $Q \subset \{1, 2, \ldots, m\}$ matici

$$\chi_Q = \operatorname{diag}(q_1, \dots, q_m), \qquad (1.35)$$

kde $q_j=1$ pro $j\in Q,\,q_j=0$ pro $j\not\in Q.$ Dále definujeme aktivní množinu

$$\mathcal{A}(y) = \{ j \in \{1, \dots, m\} : \lambda_j + \rho(Bu)_j > 0 \}$$
(1.36)

a inaktivní množinu

$$\mathcal{I}(y) = \{j \in \{1, \dots, m\} : \lambda_j + \rho(Bu)_j \le 0\}$$

Snadno ověříme, že pomocí definice (1.35) můžeme psát rovnici (1.33) ve tvaru

$$-\chi_{\mathcal{A}(y)}\rho Bu + \chi_{\mathcal{I}(y)}\lambda = 0.$$
(1.37)

Definujeme-li

$$G(y) = \begin{pmatrix} A & B^T \\ -\chi_{\mathcal{A}(y)}\rho B & \chi_{\mathcal{I}(y)} \end{pmatrix}, \qquad (1.38)$$

 pak

$$\mathcal{F}(y) = G(y)y - \left(\begin{array}{c} S\\ 0 \end{array}\right)$$

Nyní vypočteme pro $h=(\delta u,\delta \lambda)^T$

$$\mathcal{F}(y+h) - \mathcal{F}(y) - G(y+h)h = \begin{pmatrix} 0 \\ (\chi_{\mathcal{A}(y)} - \chi_{\mathcal{A}(y+h)})\rho Bu + (\chi_{\mathcal{I}(y+h)} - \chi_{\mathcal{I}(y)})\lambda \end{pmatrix}.$$
 (1.39)

Lemma 1.2 Označme

$$\beta := \min_{1 \le j \le m} \{ |\lambda_j + \rho(Bu)_j| : \lambda_j + \rho(Bu)_j \neq 0 \}.$$

Necht'

$$\|\delta u\|_{\infty} + \|\delta\lambda\|_{\infty} \le \beta (2\max\{1, \rho \|B\|\})^{-1}.$$
(1.40)

Potom pravá strana rovnice (1.39) se anuluje.

Důkaz

1° Nechť $\lambda_j + \rho(Bu)_j = 0 \& \lambda_j + \delta\lambda_j + \rho(Bu + B\delta u)_j > 0$. Potom $j \in I(y) \cap \mathcal{A}(y+h)$, ale pro druhý řádek v (1.39) platí

$$-\rho(Bu)_j - \lambda_j = 0$$

2° Nechť $\lambda_j + \rho(Bu)_j \neq 0$. Protože

$$\left|\delta\lambda_j + \rho(B\delta u)_j\right| \le \left(\|\delta u\|_{\infty} + \|\delta\lambda\|_{\infty}\right) \max\{1, \rho\|B\|\},$$

platí-li (1.40), pak

$$|\delta\lambda_j + \rho(B\delta u)_j| \le \beta/2$$

a tedy

$$j \in \mathcal{A}(y) \Rightarrow j \in \mathcal{A}(y+h) \& j \in I(y) \Rightarrow j \in I(y+h).$$

Z lematu 1.2 a z (1.39) plyne, že limita levé strany pro $||h||_{\infty} \to 0$ je rovna nule. Podle Definice 1.3 je tedy G(y) zobecněnou derivací zobrazení \mathcal{F} v bodě y.

Definujme nyní zobecněnou Newtonovu metodu ve tvaru iterací

$$y^{k+1} = y^{(k)} - (G(y^{(k)})^{-1} \mathcal{F}(y^{(k)})), \quad k = 0, 1, \dots$$
(1.41)

pro nějaké dané $y^{(0)} = (u_0, \lambda_0)^T$, za předpokladu, že existuje inverze $(G(y^{(k)}))^{-1}$.

Lemma 1.3 Zobrazení G(y) je bijektivní pro každé $y \in \mathbb{R}^N \times \mathbb{R}^m$.

 \mathbf{D} ůkaz Zřejmě stačí ukázat, že homogenní systém

$$Az_1 + B^T z_2 = 0$$

$$\rho \chi_{\mathcal{A}} B z_1 + \chi_I z_2 = 0$$

má pouze triviální řešení $z_1 = 0, z_2 = 0.$

Protože matice A je positivně definitní,

$$z_1 = -A^{-1}B^T z_2 \,. \tag{1.42}$$

Dosazením do druhé rovnice dostaneme

$$(\rho \chi_{\mathcal{A}} B A^{-1} B^T + \chi_{\mathcal{I}}) z_2 = 0.$$
(1.43)

Lze ukázat, že matice $Q := BA^{-1}B^T$ je positivně definitní, protože hodnost matice B je m. Rozdělme matici Q a vektor z_2 na bloky:

$$Q = \begin{pmatrix} Q_{\mathcal{A}\mathcal{A}} & Q_{\mathcal{A}\mathcal{I}} \\ Q_{\mathcal{I}\mathcal{A}} & Q_{\mathcal{I}\mathcal{I}} \end{pmatrix}, \quad z_2 = \begin{pmatrix} z_{2\mathcal{A}} \\ z_{2\mathcal{I}} \end{pmatrix}.$$

Rovnice (1.43) pak dává

$$z_{2\mathcal{I}} = 0 ,$$

$$\rho Q_{\mathcal{A}\mathcal{A}} z_{2\mathcal{A}} = 0$$

tedy $z_{2\mathcal{A}} = 0$, protože $Q_{\mathcal{A}\mathcal{A}}$ je regulární matice. Konečně také $z_1 = 0$ plyne z rovnice (1.42).

Věta 1.3 Iterace zobecněné Newtonovy metody (1.38) jsou určeny jednoznačně a konvergují superlineárně k řešení y^* rovnice $\mathcal{F}(y^*) = 0$, je-li $y^{(0)}$ dostatečně blízko k y^* .

Důkaz plyne z Lemmatu 1.3 a z [11, Theorem 1.1].

Iterace (1.38) budeme realizovat následujícím algoritmem.

Algoritmus PDAS (Primal-Dual Active Set strategy)

Krok (0) Zvolíme: $y^{(0)} = (u^{(0)}, \lambda^{(0)}), \, \rho \in (10^3, 10^4).$

Krok (1) Známe-li $y^{(k)}$, vypočteme aktivní a inaktivní množiny (1.36), (1.37)

$$\mathcal{A}(y^{(k)}) = \{ j \in \{1, \dots, m\} : \lambda_j^{(k)} + \rho(Bu^{(k)})_j > 0 \},$$
(1.44)

$$\mathcal{I}(y^{(k)}) = \{ j \in \{1, \dots, m\} : \lambda_j^{(k)} + \rho(Bu^{(k)})_j \le 0 \}.$$
(1.45)

Krok (2) Je-li $k \ge 1$ & $\mathcal{A}(y^{(k)}) = \mathcal{A}(y^{(k-1)})$, STOP. Jinak jdeme na krok (3).

Krok (3) Řešíme pro $y^{(k+1)} = (u^{(k+1)}, \lambda^{(k+1)})^T$:

$$Au^{(k+1)} + B^T \lambda^{(k+1)} = S \tag{1.46}$$

$$j \in \mathcal{A}(y^{(k)}) \Rightarrow (Bu^{(k+1)})_j = 0 \& j \in \mathcal{I}(y^{(k)}) \Rightarrow \lambda_j^{(k+1)} = 0.$$
 (1.47)

Krok (4) Položíme k := (k + 1) a jdeme na krok (1).

Lemma 1.4 Zobecněný Newtonův proces (1.41) a Algoritmus PDAS jsou ekvivalentní.

Důkaz Přepišme (1.41) do tvaru

$$A(u^{(k+1)} - u^{(k)}) + B^T(\lambda^{(k+1)} - \lambda^{(k)}) = S - Au^{(k)} - B^T\lambda^{(k)}$$
(1.48)

$$-\chi_{\mathcal{A}(y^{(k)})}\rho B(u^{(k+1)} - u^{(k)}) + \chi_{\mathcal{I}(y^{(k)})}(\lambda^{(k+1)} - \lambda^{(k)}) = \chi_{\mathcal{A}(y^{(k)})}\rho B(u^{(k)}) - \chi_{\mathcal{I}(y^{(k)})}\lambda^{(k)}$$
(1.49)

Rovnice (1.48) a (1.46) jsou ekvivalentní. Z (1.49) plyne, že

$$j \in \mathcal{A}(y^{(k)}) \Rightarrow (Bu^{(k+1)})_j = 0 \& j \in \mathcal{I}(y^{(k)}) \Rightarrow \lambda_j^{(k+1)} = 0,$$
 (1.50)

tj. podmínky (1.47). Obráceně, z podmínek (1.47) vyplývá splnění (1.49). V důsledku Lemat 1.4 a 1.3 je systém (1.46)-(1.47) jednoznačně řešitelný.

Poznámka 1.1 Zastavovací kriterium – krok (2) – je motivováno tím, že když

$$\mathcal{A}(y^{(k)}) = \mathcal{A}(y^{(k-1)}) \tag{1.51}$$

potom platí $\mathcal{F}(y^{(k)}) = 0.$

Vskutku, platí-li (1.51), pak

$$j \in \mathcal{A}(y^{(k)}) \Rightarrow (Bu^{(k)})_j = 0 \& j \in \mathcal{I}(y^{(k)}) \Rightarrow \lambda_j^{(k)} = 0,$$

takže je splněna rovnice (1.37). Protože platí též (1.46) pro k-tou iteraci $y^{(k)}$, je $\mathcal{F}(y^{(k)}) = 0$.

1.1.4 Redukovaná verze algoritmu PDAS

Efektivitu algoritmu PDAS můžeme podstatně zvýšit tím, že předem eliminujeme uzlové parametry posunutí, které nepatří uzlům kontaktní hranice Γ_c (viz článek [7]). Rozložme tedy vektor posunutí na dvě části:

$$u = (u_D, u_\Gamma)^T, \quad u_D \in \mathbb{R}^{N-2dm}, \quad u_\Gamma \in \mathbb{R}^{2dm},$$

kde souřadnice u_D odpovídají uzlům mimo Γ_c a souřadnice u_{Γ} a uzlům na Γ_c . Rovněž matice A, B a vektor S rozložíme odpovídajícím způsobem:

$$A = \begin{pmatrix} A_{DD} & A_{D\Gamma} \\ A_{\Gamma D} & A_{\Gamma\Gamma} \end{pmatrix}, \quad B = (0, \hat{B}), \quad S = (S_D, S_{\Gamma})^T$$

kde \hat{B} je matice $m \times 2dm$. Potom rovnice (1.31) se rozpadne na systém

$$A_{DD}u_D + A_{D\Gamma}u_{\Gamma} - S_D = 0, \qquad (1.52)$$

$$A_{\Gamma D}u_D + A_{\Gamma \Gamma}u_{\Gamma} + \hat{B}^T\lambda - S_{\Gamma} = 0.$$
(1.53)

Vypočteme-li z rovnice (1.52) u_D a dosadíme do (1.53), dostaneme rovnici

$$\hat{A}u_{\Gamma} + \hat{B}^T \lambda - \hat{S} = 0, \qquad (1.54)$$

kde

$$\hat{A} = A_{\Gamma\Gamma} - A_{\Gamma D} A_{DD}^{-1} A_{D\Gamma} ,$$

$$\hat{S} = S_{\Gamma} - A_{\Gamma D} A_{DD}^{-1} S_{D} .$$
(1.55)

Protože A je symetrická a positivně definitní matice, také její Schurův doplněk \hat{A} je symetrická a positivně definitní matice $(2dm \times 2dm)$.

Snadno ověříme, že podmínky nepronikání lze přepsat do tvaru

$$\hat{B}u_{\Gamma} \le 0. \tag{1.56}$$

Redukovaná verze problému (1.34) tedy zní

$$\hat{\mathcal{F}}(\hat{y}) \equiv \begin{pmatrix} \hat{A}u_{\Gamma} + \hat{B}^{T}\lambda - \hat{S} \\ \lambda - (\lambda + \rho\hat{B}u_{\Gamma})^{+} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(1.57)

pro $\hat{y} = (u_{\Gamma}, \lambda)^T \in \mathbb{R}^{2dm} \times \mathbb{R}^m$.

Definujme aktivní a inaktivní množiny

$$\begin{aligned} \mathcal{A}(\hat{y}) &= \{ j \in \{1, \dots, m\} : \lambda_j + \rho(\hat{B}u_{\Gamma})_j > 0 \} \,, \\ \mathcal{I}(\hat{y}) &= \{ j \in \{1, \dots, m\} : \lambda_j + \rho(\hat{B}u_{\Gamma})_j \le 0 \} \,, \end{aligned}$$

kde $\hat{y}=(u_{\Gamma},\lambda)^{T}.$ Pak druhou rovnici (1.57) lze psát ve tvaru

$$-\chi_{\mathcal{A}(\hat{y})}\rho\hat{B}u_{\Gamma}+\chi_{\mathcal{I}(\hat{y})}\lambda=0;$$

a dokázat (analogicky jako dříve pomocí (1.39) a Lematu 1.2), že

$$\hat{G}(\hat{y}) = \begin{pmatrix} \hat{A} & \hat{B}^T \\ -\chi_{\mathcal{A}(\hat{y})}\rho \hat{B} & \chi_{\mathcal{I}(\hat{y})} \end{pmatrix}$$

je zobecněná derivace zobrazení $\hat{\mathcal{F}}$ v bodě \hat{y} ve smyslu Definice 1.3.

Lemma 1.5 Matice $\hat{B}\hat{A}^{-1}\hat{B}^{T}$ je positivně definitní.

Důkaz plyne z toho, že matice \hat{B}^T má hodnost m (srv. [13, Proposition 3.2]).

Lemma 1.6 Zobrazení $\hat{G}(\hat{y})$ je bijektivní pro každé $\hat{y} \in \mathbb{R}^{2dm} \times \mathbb{R}^m$.

Důkaz je analogický důkazu Lemmatu 1.3 a opírá se o Lemma 1.5.

Úlohu můžeme dále zjednodušit *záměnou proměnných*. Znásobíme-li rovnici (1.54) maticí $\hat{B}\hat{A}^{-1}$, dostaneme $\hat{B}u_{\Gamma} + \hat{B}\hat{A}^{-1}\hat{B}^{T}\lambda - \hat{B}\hat{A}^{-1}\hat{S} = 0.$ (1.58)

$$Bu_{\Gamma} + BA^{-1}B^{T}\lambda - BA^{-1}S = 0.$$
(1.58)

Položme

$$\hat{v} := \hat{B}u_{\Gamma} \tag{1.59}$$

a označme

$$\hat{Q} := (\hat{B}\hat{A}^{-1}\hat{B}^T)^{-1}$$

Znásobíme-li rovnici (1.58) maticí Q, dostaneme

$$\hat{Q}\hat{v} + \lambda - \hat{q} = 0, \qquad (1.60)$$

kde

$$\hat{q} = \hat{Q}\hat{B}\hat{A}^{-1}\hat{S} \,.$$

Z rovnice (1.60) a druhé rovnice (1.57) plyne, že

$$\hat{Q}\hat{v} - \hat{q} \le 0 \tag{1.61}$$

Ukážeme ještě, že

$$\hat{v}^T(\hat{Q}\hat{v} - \hat{q}) = 0.$$
(1.62)

Vskutku, dosadíme-li (1.59) do definice $\mathcal{A}(\hat{y})$ a $\mathcal{I}(\hat{y})$, pak

$$\begin{aligned} j \in \mathcal{A}(\hat{y}) &\Rightarrow \hat{v}_j = 0, \\ j \in \mathcal{I}(\hat{y}) &\Rightarrow \lambda_j = 0 \end{aligned}$$
(1.63)

vyplývá z 2.
rovnice (1.57), tj. ze vztahu

$$\lambda_j = (\lambda_j + \rho \hat{v}_j)^+ \,. \tag{1.64}$$

Protože

$$\hat{Q}\hat{v} - \hat{q} = -\lambda$$

jak plyne z (1.60), a $\hat{v}^T \lambda = 0$ podle (1.63), dostaneme odtud (1.62).

Shrneme-li podmínky nepronikání (viz (1.56), (1.59))

$$\hat{v} \le 0, \qquad (1.65)$$

dále (1.61) a (1.62), vznikne komplementární systém dvou nerovností (1.61), (1.65) a jedné rovnosti (1.62). Tento systém vyjadřuje ekvivalentně problém min $\left\{\frac{1}{2}\hat{v}^T\hat{Q}\hat{v} - \hat{v}^T\hat{q}\right\}$ s vedlejší podmínkou $\hat{v} \leq 0$.

Na základě rovnic (1.60) a (1.64) můžeme nyní definovat modifikovanou úlohu: najít vektor $\tilde{y}:=(\hat{v},\lambda)^T,$ pro který

$$\tilde{\mathcal{F}}(\tilde{y}) := \begin{pmatrix} \hat{Q}\hat{v} + \lambda - \hat{q} \\ \lambda - (\lambda + \rho\hat{v})^+ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
(1.66)

Pak zobrazení

$$\tilde{\mathcal{G}}(\tilde{y}) = \begin{pmatrix} \hat{Q} & E\\ -\chi_{\mathcal{A}(\tilde{y})}\rho E & \chi_{\mathcal{I}(\tilde{y})} \end{pmatrix}$$
(1.67)

kde E značí jednotkovou $(m \times m)$ matici, je zobecněná derivace zobrazení $\tilde{\mathcal{F}}$ v bodě \tilde{y} .

Snadno odvodíme, že zobecněné Newtonově metodě pak odpovídá

Algoritmus PDAS pro modifikovanou úlohu (1.66)

Krok (0) Zvolíme $\tilde{y}^{(0)} = (\hat{v}^{(0)}, \lambda^{(0)})^T$.

Krok (1) Vypočteme množiny

$$\begin{split} \mathcal{A}(\tilde{y}^{(k)}) &= \{ j \in \{1, \dots, m\} : \lambda_j^{(k)} + \rho \hat{v}_j^{(k)} > 0 \} \,, \\ \mathcal{I}(\tilde{y}^{(k)}) &= \{ j \in \{1, \dots, m\} : \lambda_j^{(k)} + \rho \hat{v}_j^{(k)} \le 0 \} \,. \end{split}$$

Krok (2) Je-li $k \ge 1$ a $\mathcal{A}(y^{(k)}) = \mathcal{A}(y^{(k-1)})$, STOP. Jinak jdeme na krok (3).

Krok (3) Řešíme pro $\tilde{y}^{(k+1)}$ systém:

$$\hat{Q}\hat{v}^{(k+1)} + \lambda^{(k+1)} = \hat{q} \tag{1.68}$$

$$j \in \mathcal{A}(\tilde{y}^{(k)}) \Rightarrow \hat{v}_j^{(k+1)} = 0 \& j \in \mathcal{I}(\tilde{y}^{(k)}) \Rightarrow \lambda_j^{(k+1)} = 0.$$

$$(1.69)$$

Krok (4) Položíme k := (k+1) a jdeme na krok (1).

Poznámka 1.2 Rozložíme-li \hat{Q} , \hat{q} , $\hat{v}^{(k+1)}$ a $\lambda^{(k+1)}$ na bloky podle množin $\mathcal{A}(\tilde{y}^{(k)})$, $\mathcal{I}(\tilde{y}^{(k)})$, potom řešení systému (1.68), (1.69) je možno psát takto:

$$\hat{v}_{\mathcal{A}} = 0, \quad \hat{v}_{\mathcal{I}} = (\hat{Q}_{\mathcal{I}\mathcal{I}})^{-1} \hat{q}_{\mathcal{I}},$$
$$\lambda_{\mathcal{A}} = \hat{q}_{\mathcal{A}} - \hat{Q}_{\mathcal{A}\mathcal{I}} \hat{v}_{\mathcal{I}} = \hat{q}_{\mathcal{A}} - \hat{Q}_{\mathcal{A}\mathcal{I}} (\hat{Q}_{\mathcal{I}\mathcal{I}})^{-1} \hat{q}_{\mathcal{I}}.$$

Zpět k řešení úlohy (1.57) se vrátíme pomocí rovnice (1.54), takže

$$u_{\Gamma} = \hat{A}^{-1}(\hat{S} - \hat{B}^T\lambda).$$

Z rovnice (1.52) pak odvodíme, že

$$u_D = A_{DD}^{-1} (S_D - A_{D\Gamma} u_{\Gamma}) \,.$$

Poznámka 1.3 Dá se ukázat (viz [13, Proposition 3.3]), že je-li počáteční iterace $\tilde{y}^{(0)} = (\hat{B}u_{\Gamma}^{(0)}, \lambda^{(0)})$, pak iterace zobecněné Newtonovy metody (tj. iterace PDAS) pro zkrácenou – redukovanou verzi PDAS splývají s algoritmem PDAS pro modifikovanou úlohu (1.66).

1.1.5 Globální konvergence

Předpoklad z Věty 1.1 o podmínce dostatečné blízkosti počáteční volby $y^{(0)}$ k řešení y^* rovnice $\mathcal{F}(y^*) = 0$ znamená, že jde o *lokální* konvergenci. Algoritmus PDAS se v praxi však chová jako globálně konvergentní, tj. konverguje pro libovolnou volbu $y^{(0)}$. Analýza tohoto jevu spočívá na formulaci (1.61)-(1.62)-(1.65) prostřednictvím komplementárního systému (viz článek [12, Theorem 3.2]). Výsledkem je

Věta 1.4 Nechť $\hat{Q} = \hat{K} + \hat{P}$, kde \hat{K} je regulární *M*-matice typu $(m \times m)$ a \hat{P} je matice perturbací typu $(m \times m)$, taková, že norma $\|\hat{P}\|_1$ je dostatečně malá.

Pak algoritmus PDAS pro původní úlohu i pro modifikovanou úlohu konverguje pro libovolnou volbu počáteční aproximace. V praktických úlohách se osvědčila volba $\rho \in (10^3, 10^4)$. (viz [13]).

Semi-koercivní úlohy s nulovým třením 1.2

Opustíme nyní předpoklad, že $\mathcal{R} \cap \mathbb{V} = \{0\}$ a budeme uvažovat tělesa Ω^1 a Ω^2 v situaci, kdy pouze jedno z nich, např. Ω^1 , je upevněno, zatímco druhé těleso Ω^2 se může pohybovat jako tuhý celek. Takové případy jsou podrobeny analýze v článcích [17] a [10] pomocí smíšené variační formulace a za předpokladu, že jde o rovinný problém. Po diskretizaci metodou konečných prvků je opět úloha převedena na problém sedlového bodu.

V této studii na rozdíl od [17] a [10] nebudeme sedlový bod hledat algoritmem Uzawova typu, nýbrž nasadíme algoritmus PDAS jako v předchozí sekci 1.1. Abychom však mohli pracovat s positivně definitní maticí tuhosti, jako v případě koercivním, užijeme koncept umělého "magnetického" šroubu, který byl aplikován v článcích [17, 10].

Navíc rozšíříme metodiku z rovinného problému na prostorový problém. Nechť tedy

$$\begin{split} \mathrm{meas}_{d-1} \ \Gamma^1_u > 0, & \Gamma^2_u = \emptyset \,, \\ \Gamma^1_0 = \emptyset, & \mathrm{meas}_{d-1} \ \Gamma^2_0 > 0 \,. \end{split}$$

přičemž Γ_0^2 se skládá z úseček (pro d = 2) rovnoběžných s osou x_2 , resp. částí rovin (pro d = 3), kolmých k ose x_2 .

Dále nechť

$$\operatorname{neas}_{d-1}\Gamma_c > 0\,,$$

a pro d = 2 je $n_2^2 < 0$ skoro všude na Γ_c ,

$$\begin{aligned} \mathcal{R} \cap \mathbb{V} &= \{ r = (r^1, r^2) : r^1 = (0, 0), r^2 = (0, a) \} \\ \mathcal{R} \cap \mathbb{K} &= \{ r = (r^1, r^2) : r^1 = (0, 0), r^2 = (0, a), a \ge 0 \} ; \quad a = \text{const.} , \end{aligned}$$

pro d = 3 nechť je $n_3^2 < 0$ skoro všude na Γ_c ,

$$\begin{split} \mathcal{R} \cap \mathbb{V} &= \{ r = (r^1, r^2) : r^1 = 0, r^2 = (a_1 - bx_3, 0, a_3 + bx_1)^T, a_1, a_3, b \text{ libovolné reálné konstanty} \}; \\ \mathcal{R} \cap \mathbb{K} &= \{ r \in \mathcal{R} \cap \mathbb{V} : a_1, a_3, b \text{ jsou takové konstanty, že} \\ & [r_n] = (a_1 - bx_3)n_1^2(x) + (a_3 + bx_1)n_3^2(x) \le 0 \text{ na } \Gamma_c \} \,. \end{split}$$

Lemma 1.7 Nechť existuje slabé řešení primární úlohy (1.14). Potom

$$S(r) \le 0 \quad \forall r \in \mathcal{R} \cap \mathbb{K} \,. \tag{1.70}$$

Důkaz Protože řešení u splňuje podmínku nepronikání (1.5), pro $r \in \mathcal{R} \cap \mathbb{K}$ je $u + r \in \mathbb{K}$. Dosadíme-li toto do nerovnosti (1.14), dostaneme tvrzení lemmatu, neboť

$$a(u,r) = 0 \quad \forall r \in \mathcal{R}.$$

Věta 1.5 Nechť $\mathcal{R}^* = \{r \in \mathcal{R} \cap \mathbb{K} : [r_n] = 0 \text{ na } \Gamma_c\}$ a

$$S(r) < 0 \quad \forall r \in \mathcal{R} \cap \mathbb{K} \setminus \mathcal{R}^*, \quad S(r) = 0, \quad \forall r \in \mathcal{R}^*.$$
(1.71)

Pak řešení primární úlohy (1.14) existuje.

Jsou-li $u \neq \hat{u}$ dvě řešení, pak $u - \hat{u} \in \mathcal{R} \cap \mathbb{V}\&S(u - \hat{u}) = 0.$ **Důkaz** Viz např. [5, Theorem 6.2]. Nechť u, \hat{u} jsou dvě řešení. Z definice (1.14) odvodíme, že

$$a(u-\hat{u},\hat{u}-u) \ge 0.$$

Označme $z : u - \hat{u}$. Potom $a(z, z) \leq 0$ a z (1.8) vyplývá |z|' = 0, tedy $z \in \mathcal{R} \cap \mathbb{V}$.

Z rovnosti hladin energie plyne

$$0 = \mathcal{L}(\hat{u}) - \mathcal{L}(u) = -S(\hat{u}) + S(u) = S(z),$$

12

protože $a(\hat{u}, z) = 0.$

Poznámka 1.4 Pro d = 2 je $\mathcal{R}^* = \{0\}$; pro d = 3 je situace složitější. Je-li např. Γ_c částí roviny $x_3 = konst., \mathcal{R}^* = \{r^1 = 0, r^2 = (a_1, 0, 0)^T\}, a_1 \in \mathbb{R}.$

Věta 1.6 Nechť
$$d = 2$$
 a

$$\mathcal{V}_2^2 := \int_{\Omega^2} F_2^2 dx + \int_{\Gamma_P^2} P_2^2 ds < 0.$$
(1.72)

Pak existuje právě jedno řešení.

Důkaz Z předpokladu (1.72) plyne (1.71). Nechť

$$z = u - \hat{u}, \quad z^1 = 0, \quad z^2 = (0, a)^T, \quad a \in \mathbb{R}.$$

Podle Věty 1.5

$$0 = S(z) = a\mathcal{V}_2^2.$$

Z předpokladu (1.72) pak dostáváme a = 0, tedy z = 0.

V prostorové úloze obecně jednoznačnost řešení primární úlohy neplatí.

Vzhledem k tomu, že podle Věty 1.5 rozdíl dvou řešení je v podprostoru \mathcal{R} , tensor deformace i tensor *napětí* jsou určeny *jednoznačně*.

Lemma 1.8 Nechť d = 3, platí (1.71), a řešení u primární úlohy je dostatečně hladké. Pak existuje otevřená část $\Gamma_{c0} \subset \Gamma_c$ taková, že

$$[u_n] = 0 \quad \text{na} \ \Gamma_{c0} \,.$$

Důkaz Zvolme $r = (r^1, r^2)$. $r^1 = 0$, $r^2 = (0, 0, 1)^T$. Potom $r \in \mathcal{R} \cap \mathbb{K} \setminus \mathcal{R}^*$, neboť podle předpokladu je

$$[r_n]=r^2\cdot n^2=n_3^2<0\quad \mathrm{na}\;\Gamma_c$$

Z předpokladu (1.71) vyplývá

$$0 > S(r) = \int_{\Omega^2} F_3^2 dx + \int_{\Gamma_P^2} P_3^2 ds \equiv \mathcal{V}_3^2 \,. \tag{1.73}$$

Nechť $[u_n] < 0$ skoro všude na Γ_c . Při dostatečné regularitě řešení u lze odvodit (komplementární) podmínku

$$[u_n]T_n = 0$$
 na Γ_c

(viz [5, Theorem 6.1 a (5.12)]). Tedy $T_n = 0$ skoro všude na Γ_c . Pak ale celková podmínka rovnováhy ve směru x_3 pro těleso Ω^2 je porušena, neboť

$$\int_{\Gamma_c} T_n n_3^2 ds + \mathcal{V}_3^2 = \mathcal{V}_3^2 < 0 \,,$$

což je spor.

1.2.1 Diskretizace konečnými prvky

Za předpokladu, že hranice $\partial \Omega^1$ a $\partial \Omega^2$ jsou polygonální, resp. polyhedrické, provedeme standardní triangulaci \mathcal{T}_h^i , i = 1, 2, těles Ω^i , tj. dělení na simplexy T. Definujeme

$$\begin{split} V_h^1 &= \{ v_h \in [C(\Omega^1)]^d : v_{h|T} \in [P_1(T)]^d \; \forall T \in \mathcal{T}_h^1, v_h = 0 \; \mathrm{na} \; \Gamma_u^1 \} \,, \\ V_h^2 &= \{ v_h \in [C(\Omega^1)]^d : v_{h|T} \in [P_1(T)]^d \; \forall T \in \mathcal{T}_h^1, v_h \cdot n^2 = 0 \; \mathrm{na} \; \Gamma_0^2 \} \,, \\ \mathbb{V}_h &= V_h^1 \times V_h^2 \,. \end{split}$$

Nechť \mathcal{T}_h^i jsou konsistentní s dělením hranic $\partial \Omega^i$ a uzly \mathcal{T}_h^1 a \mathcal{T}_h^2 jsou na Γ_c společné pro obě triangulace. Definujeme dále

 $\mathbb{K}_h = \left\{ v_h \in \mathbb{V}_h : \left[v_{hn}(a_j) \right] \le 0 \text{ pro všechny uzly } a_j \in \Gamma_c \right\},\$

přičemž ve vrcholech \hat{a}_j vyjádříme podmínku nepronikání z každé strany, resp. stěny zvlášť – viz (1.23). Konečně-prvkové řešení definujeme jako prvek $u_h \in \mathbb{K}_h$, který vyhovuje variační nerovnici

$$a(u_h, v_h - u_h) \ge S(v_h - u_h) \quad v_h \in \mathbb{K}_h.$$

$$(1.74)$$

Věta 1.7 Nechť platí (1.71), tj.

 $S(r) < 0 \quad \forall r \in \mathcal{R} \cap \mathbb{K} \setminus \mathcal{R}^*, \quad S(r) = 0, \quad \forall r \in \mathcal{R}^*.$

Pak existuje řešení variační nerovnice (1.74). Každé dvě řešení u_h , \hat{u}_h se liší o prvek $u_h - \hat{u}_h \in \mathcal{R} \cap \mathbb{V}_h$, $S(u_h - \hat{u}_h) = 0.$

Důkaz Protože $[v_{hn}]$ je lineární funkcí na každé straně, resp. stěně triangulace \mathcal{T}_h , platí

$$\mathbb{K}_h \subset \mathbb{K} \,. \tag{1.75}$$

S využitím Věty 1.5 odtud usoudíme, že funkcionál \mathcal{L} (1.21) je koercivní na \mathbb{K}_h . Navíc platí zřejmě i

$$\mathcal{R} \cap \mathbb{V}_h = \mathcal{R} \cap \mathbb{V}.$$

Protože \mathbb{K}_h je uzavřená a konvexní množina, existuje prvek u_h , minimalizující \mathcal{L} na \mathbb{K}_h , tj. řešení (1.74). Zbytek důkazu je analogický důkazu Věty 1.5.

Věta 1.8 Nechť d = 2 a platí $\mathcal{V}_2^2 < 0$. Pak existuje nejvýše jedno řešení nerovnice (1.74).

Důkaz je analogický důkazu Věty 1.6.

Lemma 1.9 Nechť d = 2 a platí $\mathcal{V}_2^2 < 0$. Pak pro řešení u_h úlohy (1.74) existuje uzel $a_j \in \Gamma_c$ takový, že $[u_{hn}(a_j)] = 0$, (je-li a_j vrcholem, tedy tato podmínka kontaktu platí aspoň z jedné strany).

Důkaz povedeme sporem. Označme

$$m := \max_{a_j \in \Gamma_c} [u_{hn}(a_j)]$$

a předpokládejme, že m < 0. Zvolíme $r = (r^1, r^2), r^1 = 0, r^2 = (0, m)^T$. Potom

$$\hat{u}_h = u_h + r \in \mathbb{K}_h$$

Vskutku, pro všechna $a_j \in \Gamma_c$ máme

$$[u_{hn}(a_j) + r_n(a_j)] = [u_{hn}(a_j)] + mn_2^2(a_j) \le m - m = 0.$$

Na druhé straně však platí

$$\mathcal{L}(\hat{u}_h) = \mathcal{L}(u_h) - S(r) = \mathcal{L}(u_h) - m\mathcal{V}_2^2 < \mathcal{L}(u_h),$$

tedy u_h není řešením nerovnice (1.74), což je spor.

1.2.2 Smíšená variační formulace

Podobně jako v odstavci 1.1.2 převedeme úlohu (1.74) pomocí smíšené variační formulace na úlohu sedlového bodu. Abychom však dostali matici A regulární, použijeme ideu "magnetických šroubů" (pro d = 2 viz např. [17] nebo [10]). Zvolíme totiž vhodné uzly $\alpha_{\kappa} \in \Gamma_c$, v nichž budeme předpokládat kontakt, tj.

$$[u_n(\alpha_\kappa)] = 0 \quad \kappa = 1, \dots, \overline{\kappa}$$

v prostorových úlohách bude však někdy zapotřebí doplnit ještě další podmínku ve tvaru

p(u) = 0

kde $p \in \mathbb{V}_h^*$ je vhodný lineární spojitý funkcionál.

Lemma 1.10 Nechť d = 2. Definujme

 $\mathbb{V}_h^{\alpha} = \left\{ v \in \mathbb{V}_h : \left[v_n(\alpha) \right] = 0 \right\},\$

kde $\alpha \in \Gamma_c$ je vhodně volený uzel. Pak

 $\mathcal{R} \cap \mathbb{V}_h^\alpha = \{0\}.$

Důkaz Protože $\mathcal{R} \cap \mathbb{V}_h \subset \mathcal{R} \cap \mathbb{V} = \{(r^1, r^2) : r^1 = 0, r^2 = (0, a), a \in \mathbb{R}\}, [v_n(\alpha)] = 0 \Rightarrow an_2^2(\alpha) = 0.$ Díky předpokladu $n_2^2 < 0$ na Γ_c je tedy a = 0.

Lemma 1.11 Nechť d = 3. Předpokládejme, že na Γ_c existují 3 uzly α_{κ} , $\kappa = 1, 2, 3$, tak, že pro $r^2 = (a_1 - bx_3, 0, a_3 + bx_1)^T$ platí

$$r^2 \cdot n^2(\alpha_\kappa) = 0, \quad \kappa = 1, 2, 3 \Rightarrow a_1 = a_3 = b = 0.$$
 (1.76)

Definujme

$$\mathbb{V}_{h}^{\alpha} = \{ v \in \mathbb{V}_{h} : [v_{n}(\alpha_{\kappa})] = 0, \ \kappa = 1, 2, 3 \}.$$

Pak

$$\mathcal{R} \cap \mathbb{V}_h^\alpha = \{0\}$$

Důkaz plyne bezprostředně z definice $\mathcal{R} \cap \mathbb{V}_h$ a z podmínek (1.76).

Poznámka 1.5 Předpoklad (1.76) nelze splnit, je-li Γ_c částí roviny. Je-li Γ_c blízká části rotační plochy s osou kolmou k rovině x_1x_3 , mohou nastat potíže s numerickou realizací, neboť determinant soustavy podmínek (1.76) (pro neznámé a_1 , a_3 , b) je téměř nulový. V těchto případech zavedeme ještě dodatečnou podmínku, jak uvádíme v následujícím Lemmatu 1.12.

Poznámka 1.6 Zavedeme-li pomocný souřadný systém $(\overline{x}_1, x_2, \overline{x}_3)$ tak, že $\alpha_1 = (0, 0, 0)^T$, $\overline{n} \equiv \overline{n}^2(\alpha_1) = (0, 0, -1)^T$, pak ze soustavy podmínek (1.76) plyne, že $a_3 = 0$ a zbývající parametry a_3 , b se anulují právě když determinant

$$\begin{vmatrix} \overline{n}_1(\alpha_2) & \overline{x}_1(\alpha_2)\overline{n}_3(\alpha_2) - \overline{x}_3(\alpha_2)\overline{n}_1(\alpha_2) \\ \overline{n}_1(\alpha_3) & \overline{x}_1(\alpha_3)\overline{n}_3(\alpha_3) - \overline{x}_3(\alpha_3)\overline{n}_1(\alpha_3) \end{vmatrix} \neq 0.$$

Lemma 1.12 Nechť d = 3. Předpokládejme, že

(a) Γ_c je část roviny

$$n_1 x_1 + n_2 x_2 + n_3 x_3 + c = 0 \,.$$

Zvolme rovinu $x_2 = konst.$ tak, aby na jejím průniku γ s Γ_c ležely uzly α_1, α_2 . Definujme

$$\mathbb{V}_{hp}^{\alpha} = \{ v \in \mathbb{V}_h : [v_n(\alpha_{\kappa})] = 0, \kappa = 1, 2 \& p(v) = 0 \}$$
(1.77)

kde

$$p(v) = \int_{\gamma_0} (v_1^2 n_3 - v_3^2 n_1) ds \tag{1.78}$$

 $a \gamma_0 \subset \gamma$ je vhodná úsečka.

(b) Γ_c je aproximací části rotační plochy s osou kolmou k rovině x_1x_3 . Zvolme rovinu $x_2 = konst.$ tak, aby na jejím průniku γ s Γ_c ležely uzly α_1 , α_2 . Definujme \mathbb{V}_{hp}^{α} podle (1.77), kde však

$$p(v) = \int_{\gamma_0} (x_3 v_1 - x_1 v_3) ds$$

kde γ_0 je lomený oblouk, patřící do průniku γ . Potom platí

$$\mathcal{R} \cap \mathbb{V}_{hp}^{\alpha} = \{0\}$$

Důkaz

(a) Zavedeme-li kartézské souřadnice tak, aby průnik γ byl v ose \overline{x}_1 , dostaneme

$$r \in \mathcal{R} \cap \mathbb{V}_h \& [r_n(\alpha_\kappa)] = 0, \kappa = 1, 2 \Leftrightarrow r^1 = 0, r^2 = (\overline{a}_1, 0, 0)^T, \overline{a}_1 \in \mathbb{R},$$
$$p(r) = \int_{\gamma_0} \overline{a}_1 ds = 0 \Rightarrow \overline{a}_1 = 0.$$

(b) Důkaz je analogický. Po upevnění dvěma "magnetickými" šrouby zbývá jen možnost pootočení tělesa Ω^2 , tj.

$$r^2 = (-bx_3, 0, bx_1)^T, \quad b \in \mathbb{R}$$

Konečně

$$p(r) = \int_{\gamma_0} (x_3 r_1^2 - x_1 r_3^2) ds = -b \int_{\gamma_0} (x_1^2 + x_3^2) ds = 0 \Rightarrow b = 0.$$

Poznámka 1.7 Pro případ (a) v Lemmatu 1.12 platí

$$\mathcal{R}^* = \{ r \in \mathcal{R} \cap \mathbb{V}_h : [r_n(\alpha_\kappa)] = 0, \kappa = 1, 2 \}.$$

Podmínky v uzlech α_{κ} jsou v souladu s tvrzením Lemmatu 1.8. Vzhledem k tvrzení tohoto Lemmatu je na místě volit uzly α_{κ} , $\kappa = 1, 2, 3$, blízko sebe.

Místo prostoru \mathbb{V}_h budeme nyní uvažovat v rovinných úlohách prostor \mathbb{V}_h^{α} , definovaný v Lemmatu 1.10.

V prostorových úlohách místo \mathbb{V}_h vezmeme \mathbb{V}_h^{α} z Lemmatu 1.11 nebo \mathbb{V}_{hp}^{α} z Lemmatu 1.12. Podle tvrzení těchto lemmat bude vždy

$$\mathcal{R} \cap \mathbb{V}_h^{\alpha} = \{0\}, \quad \text{resp. } \mathcal{R} \cap \mathbb{V}_{hp}^{\alpha} = \{0\}$$

a tedy příslušná matice tuhosti bude positivně definitní.

Pak můžeme aplikovat postup uvedený pro koercivní problémy v Sekci 1.1.1 až 1.1.4 s tím, že

v definici \mathbb{K}_h (1.22) nahradíme \mathbb{V}_h prostorem \mathbb{V}_h^{α} , resp. \mathbb{V}_{hp}^{α} . V každém kroku algoritmu PDAS je vhodné vypočítat λ_{α} (pro d = 2), resp. $\lambda_{\alpha\kappa}$, $\kappa = 1, \ldots, \overline{\kappa}$ (pro d = 3) z rovnic celkové rovnováhy tělesa Ω^2 . Tak např. pro d = 2 to bude rovnice (srv. [10, (5.15)])

$$r^T B^T \lambda = \mathcal{V}_2^2 \,, \tag{1.79}$$

kde $r = \ker A$, tj. vektor $r \in \mathbb{R}^N$ se složkami $r_i^1 = 0$, i = 1, 2 v uzlech $\overline{\Omega}^1$ a $r_1^2 = 0$, $r_2^2 = 1$ v uzlech $\overline{\Omega}^2$. Zde v rovnici (1.79) ovšem matice B^T i vektor λ jsou úplné, tedy B^T má m sloupců a $\lambda \in \mathbb{R}^m$.

Pro d = 3 za předpokladu z Lemmatu 1.11 definujeme v souřadném systému $\{\overline{x}_1, x_2, \overline{x}_3\}$ (viz Poznámka 1.6)

$$\ker A = \operatorname{span} \{ K(1), K(2), K(3) \},\$$

kde

$$K(i) \in \mathbb{R}^N, \quad K(i) = (0, K^2(i))^T$$

tj. vektor K(i) má všechny složky nulové v uzlech $\overline{\Omega}^1$, zatímco ve všech uzlech $a_j \in \overline{\Omega}^2$ má vektor

$$K^{2}(1)$$
 složky $(1, 0, 0)^{T}$,
 $K^{2}(2)$ složky $(0, 0, 1)^{T}$,
 $K^{2}(3)$ složky $(-\overline{x}_{3}(a_{i}), 0, \overline{x}_{1}(a_{i}))^{T}$

Podmínky rovnováhy pak lze zapsat ve tvaru

$$(K(1))^{T}\overline{B^{T}\lambda} = \overline{\mathcal{V}}_{1}^{2},$$

$$(K(2))^{T}\overline{B^{T}\lambda} = \overline{\mathcal{V}}_{3}^{2},$$

$$(K(3))^{T}\overline{B^{T}\lambda} = \overline{\mathcal{M}}^{2},$$

(1.80)

kde $\overline{\mathcal{V}}_1^2$, resp. $\overline{\mathcal{V}}_3^2$ jsou výslednice vnějšího zatížení ve směru \overline{x}_1 , resp. \overline{x}_3 a \mathcal{M}^2 je výslednice momentu, tj.

$$\begin{aligned} \overline{\mathcal{V}}_i^2 &= \int_{\Omega^2} \overline{F}_i^2 dx + \int_{\Gamma_p^2} \overline{P}_i^2 ds, \quad i = 1, 3, \\ \overline{\mathcal{M}}^2 &= \int_{\Omega^2} (\overline{x}_1 \overline{F}_3^2 - \overline{x}_3 \overline{F}_1^2) dx + \int_{\Omega^2} (\overline{x}_1 \overline{P}_3^2 - \overline{x}_3 \overline{P}_1^2) ds, \end{aligned}$$

a $\overline{B^T\lambda}$ je transformovaný vektor $B^T\lambda$.

Ze systému (1.80) vypočteme $\lambda_{\alpha 1}$, $\lambda_{\alpha 2}$, $\lambda_{\alpha 3}$ (protože ostatní složky vektoru $\lambda^{(k+1)}$ známe z algoritmu PDAS).

Poznámka 1.8 Výpočet λ_{α} (pro d = 2), resp. $\lambda_{d\kappa}$ (pro d = 3), je motivován tím, že umožní rovnici (1.46) v kroku (3) algoritmu PDAS řešit separovaně na oblastech Ω^1 a Ω^2 (viz [17] nebo [10, Section 6]).

Poznámka 1.9 Matice systému (1.80) pro $\lambda_{\alpha\kappa}$, $\kappa = 1, 2, 3$ je regulární, právě když pro souřadný systém z Poznámky 1.6 je determinant

$$\begin{vmatrix} \overline{n}_1^2(\alpha_2) & \overline{n}_3^2(\alpha_2)\overline{x}_1(\alpha_2) - \overline{n}_1^2(\alpha_2)\overline{x}_3(\alpha_2) \\ \overline{n}_1^2(\alpha_3) & \overline{n}_3^2(\alpha_3)\overline{x}_1(\alpha_3) - \overline{n}_1^2(\alpha_3)\overline{x}_3(\alpha_3) \end{vmatrix} \neq 0$$

Předpokládejme nyní, že Γ_c je součást roviny

$$n_1 x_1 + n_2 x_2 + n_3 x_3 + c = 0$$

podle Lemmatu 1.12 (a).

Zavedeme nové kartézské souřadnice podle Poznámky 1.6. Pak průnik γ roviny $x_2 =$ konst. s Γ_c je obsažen v ose \overline{x}_1 (viz důkaz Lemmatu 1.12). Platí opět podmínky rovnováhy ve tvaru (1.80). První z rovnic (1.80) však nelze využít. Vskutku, na levé straně $\overline{n}_1(\alpha_1) = \overline{n}_1(\alpha_2) = 0$ a na pravé straně $\overline{\mathcal{V}}_1^2 = 0$, což je důsledek Poznámky 1.7 a Věty 1.5 ($S(r) = 0 \ \forall r \in \mathcal{R}^*$).

Případ, že Γ_c je "téměř" částí rotační plochy, řešíme analogicky. Zavedeme opět souřadný systém podle Poznámky 1.6. Třetí z rovnic (1.80) má nyní tvar $0 \doteq 0$ a využijeme tedy jen 1. a 2. rovnici rovnováhy ve směrech \overline{x}_1 a \overline{x}_3 .

Ověření správnosti volby pomocných "magnetických" uzlů

Po ukončení algoritmu PDAS je ovšem zapotřebí ověřit, že jsme volili "magnetické" uzly správně. To provedeme na základě znaménka příslušné složky λ_{α} , resp. složek $\lambda_{\alpha\kappa}$, $\kappa = 1, \ldots, \overline{\kappa}$.

Pro d = 2 vyjde-li $\lambda_{\alpha} < 0$, je nutné zvolit jiný, např. sousední uzel a celý postup opakovat.

Pro d = 3 je nutné změnit volbu uzlů α_{κ} v případě, že aspoň jedna hodnota $\lambda_{\alpha\kappa}$ je záporná.

2 Rovinná tělesa v jednostranném kontaktu s daným třením

V této kapitole budeme uvažovat dvě pružná tělesa v \mathbb{R}^2 , kde kromě podmínky nepronikání (1.5) na kontaktní hranici Γ_c bude platit ještě model tzv. "daného" tření podle Trescy.

V části 2.1 se omezíme na koercivní úlohy a v části 2.2 na semi-koercivní úlohy. Podobně v kapitole 1. uvedeme primární variační formulaci a pomocí Lagrangeových součinitelů přejdeme ke smíšené variační formulaci a k vhodné diskretizaci metodou konečných prvků. Na řešení takto vzniklého problému sedlového bodu použijeme zčásti zobecněnou Newtonovu metodu, která vede na algoritmus typu PDAS (primárně duální strategii aktivních množin), alternující s algoritmem Uzawova typu.

Rovinné koercivní úlohy kontaktu s daným třením byly studovány v celé řadě prací (viz Literatura v článku [10]). Semi-koercivní problémy jsou tématem daleko menšího počtu publikací. jsou to např. [5, 9, 2].

2.1 Koercivní kontaktní úlohy s daným třením

Uvažujme opět dvě pružná těles
a $\Omega^1,\,\Omega^2$ v kontaktu, jako v 1. kapitole, přičemž

$$\operatorname{meas} \Gamma_u^i > 0, \quad i = 1, 2 \tag{2.1}$$

nebo meas $\Gamma_0^i>0,\,i=1,2,$ kde Γ_0^i leží ve dvou vzájemně kolmých přímkách.

Platí tedy (1.1), (1.2), (1.4), (1.5) a (1.7)-(1.13) s tím, že d = 2. Navíc – místo (1.6) – na Γ_c platí podmínky Trescova modelu tření:

$$|T_t(u)| \le g, \quad |T_t(u)| < g \Rightarrow [u_t] = 0, \qquad (2.2)$$

$$|T_t(u)| = g, \Rightarrow \text{ existuje } \Theta > 0 \text{ takové, že } [u_t] = -\Theta T_t(u), \qquad (2.3)$$

kde $g \in L^{\infty}(\Gamma_c)$ je daná mez tření, $[u_t] = u^1 \cdot t^1 + u^2 \cdot t^2$ a $t^i = (-n_2^i, n_1^i)^T$ je tečný jednotkový vektor.

2.1.1 Primární variační formulace

Kromě funkcionálů (1.10), (1.11) a (1.12) zavedeme ještě funkcionál

$$j(v) = \int_{\Gamma_c} g|[v_t]| ds \,. \tag{2.4}$$

Definice 2.1 Řekneme, že $u \in \mathbb{K}$ je slabé řešení primární kontaktní úlohy s daným třením, jestliže

$$a(u, v - u) + j(v) - j(u) \ge S(v - u) \quad \forall v \in \mathbb{K}.$$
(2.5)

Dá se ukázat, že každé klasické řešení (tj. vyhovující rovnicím (1.9) a okrajovým podmínkám (1.1), (1.2), (1.4), (1.5) a (2.2), (2.3)) je slabým řešením a obráceně, je-li slabé řešení dostatečně hladké, je klasickým řešením (viz [5, 7.1]). Platí rovněž

Věta 2.1 Existuje jediné slabé řešení. Toto řešení minimalizuje celkovou potenciální energii

$$\mathcal{L}(v) := a(v, v)/2 + j(v) - S(v)$$
(2.6)

na množině K.

Důkaz viz Důsledek 1.1 a [5, Theorem 7.3].

2.1.2 Smíšená variační formulace a její diskretizace

Abychom se vyhnuli funkcionálu j(v), který není diferencovatelný, přejdeme ke smíšené variační formulaci pomocí Lagrangeových multiplikátorů. Tento postup je popsán podrobně např. v [5, Section 9] a v řadě dalších prací z posledních let – viz [10] a literaturu tam uvedenou.

Zde budeme vycházet z výsledků práce [10]. Definujeme: množinu Lagrangeových součinitelů $\mathcal{M} = \mathcal{M}_n \times \mathcal{M}_t$,

$$\mathcal{M}_n = \{\mu_n \in W^* : \mu_n \ge 0\},$$
(2.7)

kde W^* je duální prostor k prostor
uWstop na Γ_c funkcí $[v_n]$ pro
 $v \in \mathbb{V},$

$$\mathcal{M}_t = \{\mu_t \in L^2(\Gamma_c) : |\mu_t| \le 1 \text{ s. v. na } \Gamma_c, \, \mu_t = 0 \text{ mimo supp } g\},$$
(2.8)

bilineární formu na $\mathbb{V}\times\mathcal{M}$

$$b(\mu, v) = \langle \mu_n, [v_n] \rangle + \int_{\Gamma_c} g\mu_t[v_t] ds , \qquad (2.9)$$

a Lagrangián

$$\mathcal{H}(v,\mu) = a(v,v)/2 - S(v) + b(\mu,v).$$
(2.10)

Budeme řešit problém sedlového bodu: najít dvojici $(w, \lambda) \in \mathbb{V} \times \mathcal{M}$ takovou, že

$$\mathcal{H}(w,\mu) \le \mathcal{H}(w,\lambda) \le \mathcal{H}(v,\lambda) \quad \forall (v,\mu) \in \mathbb{V} \times \mathcal{M} \,.$$
(2.11)

Věta 2.2 Nechť $\Gamma_c \cap \Gamma_u = \emptyset$ a $\Gamma_c \cap \Gamma_0 = \emptyset$. Pak existuje jediný sedlový bod (w, λ) , w se ztotožňuje se slabým řešením u primární úlohy a

$$\lambda_n = -T_n(u), \quad g\lambda_t = -T_t(u). \tag{2.12}$$

Přejdeme nyní k diskretizaci problému (2.11) metodou konečných prvků. Provedeme standardní triangulace \mathcal{T}_h^i těles Ω^i , i = 1, 2, které jsou konsistentní s dělením hranic $\partial \Omega^i$ na Γ_u , Γ_p , Γ_0 a Γ_c . Uzly na Γ_c nechť jsou společné pro obě triangulace.

Předpokládejme, že Γ_c se skládá nejvýše z několika málo úseček Γ_{cp} , $p = 1, \ldots, \overline{p}$. Na každé úsečce Γ_{cp} nechť uzly triangulace tvoří *rovnoměrné* dělení s uzly

$$s_0, s_1, \ldots, s_m; \quad m = m(h_p)$$

a s intervaly $e_j = (s_j, s_j + h_p), h_p = \text{konst.}, j = 0, 1, \dots, m-1.$ Množinu \mathcal{M}_n nahradíme množinou

$$M_{hn} = \bigcup_{p=1}^{\overline{p}} M_{hn}^{(p)} \,,$$

kde

$$M_{hn}^{(p)} = \{\mu_{hn} \in C(\Gamma_{cp}) : \mu_{hn|e_j} \in P_1(e_j), \ j = 0, \dots, m-1, \ \mu_{hn} \ge 0\}.$$
 (2.13)

Množinu \mathcal{M}_t nahradíme množinou

$$M_{Ht} = \bigcup_{p=1}^p M_{Ht}^{(p)} \,,$$

kde

$$M_{Ht}^{(p)} = \{\mu_{Ht} \in L^{\infty}(\Gamma_{cp}) : \mu_{Ht|(z_j, z_{j+1})} \in P_0((z_j, z_{j+1})), \ |\mu_{Ht}| \le 1, \mu_H = 0 \text{ mimo supp} g_h\}, \quad (2.14)$$

kde z_j jsou středy intervalů e_j a g_h je lineární interpolace funkce $g, g_h \in M_{hn}$.

Funkce μ_{hn} jsou tedy po částech lineární a spojité, funkce μ_{Ht} jsou po částech konstantní.

Bilineární formu $b(\cdot,\cdot)$ budeme aproximovat formou

$$b_{hH}(\mu_{hH}, v_h) = \sum_{p=1}^{\overline{p}} \sum_{i=0}^{m(h_p)} \mathcal{M}_i \kappa_i \mathcal{V}_i + \int_{\Gamma_c} g_h \mu_{Ht}[v_{ht}] ds , \qquad (2.15)$$

kde $\mu_{hH} := (\mu_{hn}, \mu_{Ht}),$

$$\mathcal{M}_{j} = \mu_{hn}(s_{j}), \qquad \mathcal{V}_{i} = [v_{hn}](s_{j}), \kappa_{0} = \kappa_{m} = h_{p}/2, \qquad \kappa_{j} = h_{p} \quad j = 1, \dots, m-1,$$
(2.16)

a definujeme aproximovaný Lagrangián pro $v_h \in \mathbb{V}_h, \ \mu_{hH} \in M_{hn} \times M_{Ht}$:

$$\mathcal{H}_{hH}(v_h, \mu_{hH}) = a(v_h, v_h)/2 - S(v_h) + b_{hH}(\mu_{hH}, v_h).$$
(2.17)

Poznámka 2.1 Integrál v definici (2.15) lze vyčíslit přesně Simpsonovým pravidlem, protože integrovaná funkce je po částech kvadratická. Předchozí člen odpovídá numerické integraci pomocí lichoběžníkového pravidla.

Aproximovaný problém sedlového bodu: najít dvojici $(u_h, \lambda_{hH}) \in \mathbb{V}_h \times (M_{hn} \times M_{Ht})$ takovou, že

$$\mathcal{H}_{hH}(u_h, \mu_{hH}) \le \mathcal{H}_{hH}(u_h, \lambda_{hH}) \le \mathcal{H}_{hH}(v_h, \lambda_{hH} \quad \forall (v_h, \mu_{hH}) \in \mathbb{V}_h \times (M_{hn} \times M_{Ht}).$$
(2.18)

Věta 2.3 Existuje jediné řešení aproximovaného problému sedlového bodu.

Důkaz Existence se dá dokázat pomocí [5, Theorem 3.8]. Jednoznačnost je důsledkem [10, Lemmatu 3.1], (tj. podmínky stability). Viz též [4, Theorem 2.1]. □

Přepíšeme nyní aproximovaný problém sedlového bodu do ekvivalentního maticového tvaru.

Označíme uzlové parametry funkce u_h jako vektor u, λ_{hn} jako vektor \mathcal{M}^* , parametry λ_{Ht} jako vektor Λ^* a definujeme matice $B_{\mathcal{M}}$, B_{Λ} , S pomocí vztahů

$$(B_{\mathcal{M}}u)_j = [u_{hn}](s_j), \quad (B_{\Lambda}u)_j = \int_{\Gamma_c} \chi_j g_h[u_{ht}] ds, \quad S(v) = v^T S,$$

kde χ_j je charakteristická funkce intervalu (z_j, z_{j+1}) .

Pak z (2.18) plyne rovnice

$$Au + B_{\mathcal{M}}^T(\operatorname{diag} \kappa)\mathcal{M}^* + B_{\Lambda}^T\Lambda^* - S = 0$$
(2.19)

a nerovnice

 $u^{T}B_{\mathcal{M}}^{T}(\operatorname{diag} \kappa)(\mathcal{M}-\mathcal{M}^{*})+u^{T}B_{\Lambda}^{T}(\Lambda-\Lambda^{*}) \leq 0 \quad \forall \mathcal{M} \geq 0, \quad \forall |\Lambda| \leq 1, \ \Lambda_{j} = 0 \ \operatorname{pro} (z_{j}, z_{j+1}) \cap \operatorname{supp} g_{h} = \emptyset.$ (2.20) Z (2.20) odvodíme dvě nelineární rovnice (srv. [10, (5.16)-(5.21)]

$$\mathcal{M}^* - (\mathcal{M}^* + \rho B_{\mathcal{M}} u)^+ = 0, \qquad (2.21)$$

$$\Lambda^* - \pi (\Lambda^* + \rho B_\Lambda u) = 0, \qquad (2.22)$$

kde π je projekce na interval [-1,1],tj. $\pi(x) = \left\{ \begin{array}{ccc} x & \mathrm{pro} & |x| < 1 \\ \mathrm{sgn}\, x & \mathrm{pro} & |x| \geq 1 \end{array} \right.$

Poznámka 2.2 Rovnice (2.20) a (2.21) mají tvar rovnic (1.31) a (1.33), když zde položíme $g_h \equiv 0$, tedy $B_{\Lambda} = 0$.

Pro trojici $y: (u, \mathcal{M}^*, \Lambda^*)^T$ platí tedy rovnice

$$\mathcal{F}(y) := \begin{pmatrix} Au + B_{\mathcal{M}}^T(\operatorname{diag} \kappa)\mathcal{M}^* + B_{\Lambda}^T\Lambda^* - S\\ \mathcal{M}^* - (\mathcal{M}^* + \rho B_{\mathcal{M}}u)^+\\ \Lambda^* - \pi(\Lambda^* + \rho B_{\Lambda}u) \end{pmatrix} = 0.$$
(2.23)

2.1.3 Zobecněná Newtonova metoda? Alternující algoritmus

Postupujme nyní analogicky jako v odstavci 1.1.3 pro kontakt bez tření. Ukážeme, že funkce \mathcal{F} má zobecněnou derivaci a pak se budeme snažit definovat zobecněnou Newtonovu iterační metodu na řešení rovnice (2.23).

Definujme tedy aktivní množiny a inaktivní množiny vzhledem k multiplikátorům \mathcal{M} , resp. Λ :

$$\mathcal{A}^{\mathcal{M}}(y_1) = \{ s_j : \mathcal{M}_j + \rho(B_{\mathcal{M}}u)_j > 0 \}, \\ \mathcal{I}^{\mathcal{M}}(y_1) = \{ s_j : \mathcal{M}_j + \rho(B_{\mathcal{M}}u)_j \le 0 \},$$
(2.24)

kde $y_1 :\equiv (u, \mathcal{M})^T$.

$$\begin{aligned}
\mathcal{A}^{\Lambda}(y_2) &= \{(z_j, z_{j+1}) : |\Lambda_j + \rho(B_{\Lambda}u)_j| < 1\}, \\
\mathcal{I}^{\Lambda}_+(y_2) &= \{(z_j, z_{j+1}) : \Lambda_j + \rho(B_{\Lambda}u)_j \ge 1\}, \\
\mathcal{I}^{\Lambda}_-(y_2) &= \{(z_j, z_{j+1}) : \Lambda_j + \rho(B_{\Lambda}u)_j \le -1\},
\end{aligned}$$
(2.25)

kde $y_2 = (u, \Lambda)^T$.

Poznámka 2.3 Zatímco v Coulombově modelu tření jsou inaktivní množiny u_n a u_t závislé, neboť v bodech kontaktní hranice platí

$$[u_n] < 0 \Rightarrow T_n(u) = 0 \Rightarrow T_t(u) = 0 \Rightarrow [u_t] \neq 0$$

(viz např. [3]), v modelu podle Trescy jsou tyto množiny nezávislé.

Podobně jako v odstavci 1.1.3 lze odvodit, že druhý řádek v definici $\mathcal{F}(y)$ lze psát jako

$$-\chi(\mathcal{A}^{\mathcal{M}}(y))\rho B_{\mathcal{M}} + \chi(\mathcal{I}^{\mathcal{M}}(y))\mathcal{M}$$

a třetí řádek jako

$$-\chi(\mathcal{A}^{\Lambda}(y))\rho B_{\Lambda} + \chi(\mathcal{I}^{\Lambda}_{+}(y))(\Lambda^{*}-1) + \chi(\mathcal{I}^{\Lambda}_{-}(y))(\Lambda^{*}+1)$$

Pak ověříme, že

$$\mathcal{F}(y) = G(y)y - (S, 0, \chi(\mathcal{I}_{+}^{\Lambda}(y)) - \chi(\mathcal{I}_{-}^{\Lambda}(y)))^{T}, \qquad (2.26)$$

kde

$$G(y) = \begin{pmatrix} A & B_{\mathcal{M}}^{T}(\operatorname{diag} \kappa) & B_{\Lambda}^{T} \\ -\chi(\mathcal{A}^{\mathcal{M}}(y))\rho B_{\mathcal{M}} & \chi(\mathcal{I}^{\mathcal{M}}(y)) & 0 \\ -\chi(\mathcal{A}^{\Lambda}(y))\rho B_{\Lambda} & 0 & \chi(\mathcal{I}_{+}^{\Lambda}(y)) + \chi(\mathcal{I}_{-}^{\Lambda}(y)) \end{pmatrix}$$
(2.27)

je zobecněná derivace zobrazení ${\mathcal F}$ ve smyslu Definice 1.3.

Mohli bychom tedy definovat zobecněnou iterační Newtonovu metodu (1.41) za předpokladu, že existuje inverzní zobrazení $G(y)^{-1}$, tedy, že platí analogie Lemmatu 1.3. Tato analogie zůstává však otevřenou otázkou.

Dokážeme, že redukovaný "operátor tření" G_Λ je invertibilní.

Lemma 2.1 Definujeme-li zobrazení

$$G_{\Lambda}(z) = \begin{pmatrix} A & B_{\Lambda}^{T} \\ -\chi(\mathcal{A}^{\Lambda}(z))\rho B_{\Lambda} & \chi(\mathcal{I}_{+}^{\Lambda}(z)) + \chi(\mathcal{I}_{-}^{\Lambda}(z)) \end{pmatrix}, \qquad (2.28)$$

pak $G_{\Lambda}(z)$ je bijektivní pro každé $z \in \mathbb{R}^N \times \mathbb{R}^m$.

Důkaz Zřejmě stačí ukázat, že homogenní systém

$$G_{\Lambda}(z) \left(\begin{array}{c} \omega \\ \lambda \end{array} \right) = 0$$

má pouze triviální řešení $\omega = \lambda = 0$. Protože matice tuhosti A je positivně definitní, platí

$$\omega = -A^{-1}B_{\Lambda}^T \lambda \,. \tag{2.29}$$

Dosazením do druhé rovnice dostaneme

$$[\chi(\mathcal{A})\rho Q + \chi(\mathcal{I}_{+}) + \chi(\mathcal{I}_{-})]\lambda = 0, \qquad (2.30)$$

kde $Q = B_{\Lambda} A^{-1} B_{\Lambda}^{T}$. Protože hodnost matice B_{Λ} je maximální, Q je positivně definitní. Rozdělíme-li matici Q na bloky podobně jako λ , tedy $\lambda = (\lambda_{\mathcal{A}}, \lambda_{\mathcal{I}_{+}}, \lambda_{\mathcal{I}_{-}})^{T}$, odvodíme z rovnice (2.30), že $\lambda_{\mathcal{I}^{+}} = \lambda_{\mathcal{I}_{-}} = 0$ a

$$\rho Q_{\mathcal{A}\mathcal{A}}\lambda_{\mathcal{A}} = 0 \, .$$

Protože $Q_{\mathcal{A}\mathcal{A}}$ je regulární matice, $\lambda_{\mathcal{A}} = 0$. Konečně také $\omega = 0$ plyne z rovnice (2.29). Definujme nyní

Alternující algoritmus Uzawa-PDAS:

Zvolme $y^0 = (u^0, \mathcal{M}^0, \Lambda^0)^T$, $\rho \in (10^3, 10^4)$. Známe-li $y^k = (u^k, \mathcal{M}^k, \Lambda^k)^T$, aplikujme

$$\begin{split} \mathbf{Krok} \ \mathbf{1} \quad & (\mathrm{Výpočet} \ y^{k+1/2} = (u^{k+1/2}, \mathcal{M}^{k+1/2}, \Lambda^{k+1/2})^T). \\ & \mathrm{a}) \ \Lambda_j^{k+1/2} = \pi(\Lambda_j^k + \rho(B_\Lambda u^k)_j), \ j = 0, \dots, m-1; \\ & \mathrm{b}) \ \mathrm{Vypočteme \ množiny} \\ & \mathcal{A}^{\mathcal{M}}(y_1^k), \quad \mathcal{I}^{\mathcal{M}}(y_1^k) \\ & \mathrm{pro} \ y_1^k = (u^k, \mathcal{M}^k)^T \ \mathrm{podle} \ (2.24); \\ & \mathrm{c}) \ \mathrm{Vy\check{r}e\check{s}\check{i}me} \ y_1^{k+1/2} = (u^{k+1/2}, \mathcal{M}^{k+1/2})^T \ \mathrm{ze} \ \mathrm{systemu} \\ & \quad A u^{k+1/2} + B_{\mathcal{M}}^T (\mathrm{diag} \ \kappa) \mathcal{M}^{k+1/2} = S - B_{\Lambda}^T \Lambda^{k+1/2}, \\ & \quad s_j \in \mathcal{I}^{\mathcal{M}}(y_1^k) \Rightarrow (B_{\mathcal{M}} u^{k+1/2})_j = 0, \\ & \quad s_j \in \mathcal{I}^{\mathcal{M}}(y_1^k) \Rightarrow \mathcal{M}_j^{k+1/2} = 0. \end{split}$$

Krok 2 (Výpočet $y^{k+1} = (u^{k+1}, \mathcal{M}^{k+1}, \Lambda^{k+1})^T$).

a)
$$\mathcal{M}_{j}^{k+1} = (\mathcal{M}_{j}^{k+1/2} + \rho(B_{\mathcal{M}}u^{k+1/2})_{j})^{+}, j = 0, \dots, m;$$

b) Vypočteme množiny

$$\mathcal{A}^{\Lambda}(y_2^{k+1/2}), \quad \mathcal{I}^{\Lambda}_+(y_2^{k+1/2}), \mathcal{I}^{\Lambda}_-(y_2^{k+1/2})$$

pro $y_2^{k+1/2} = (u^{k+1/2}, \Lambda^{k+1/2})^T$ podle (2.25);

c) Vyřešíme $y_2^{k+1} = (u^{k+1}, \Lambda^{k+1})^T$ ze systému

$$Au^{k+1} + B_{\Lambda}^{T}\Lambda^{k+1} = S - B_{\mathcal{M}}^{T}(\operatorname{diag} \kappa)\mathcal{M}^{k+1},$$

$$(z_{j}, z_{j+1}) \in \mathcal{A}^{\Lambda}(y_{2}^{k+1/2}) \Rightarrow (B_{\Lambda}u^{k+1})_{j} = 0,$$

$$(z_{j}, z_{j+1}) \in \mathcal{I}_{+}^{\Lambda}(y_{2}^{k+1/2}) \Rightarrow \Lambda_{j}^{k+1} = 1,$$

$$(z_{j}, z_{j+1}) \in \mathcal{I}_{-}^{\Lambda}(y_{2}^{k+1/2}) \Rightarrow \Lambda_{j}^{k+1} = -1.$$

Poznámka 2.4 Kroky 1a, 2a odpovídají příslušným projekcím v algoritmu Uzawova typu (viz [10, (5.13), (5.14)]).

Kroky 1b, 1c odpovídají zobecněné Newtonově metodě pro kontakt s nulovým třením, kde pravá strana v (1.46) je modifikována (viz (1.46), (1.47) a Lemma 1.4.

V důsledku Lemmat 1.3 a 1.4 je systém kroku 1c řešitelný.

Lemma 2.2 Kroky 2b, 2c odpovídají zobecněné "parciální" Newtonově metodě pro rovnici

$$\mathcal{F}_{\Lambda}(y_2) := G_{\Lambda}(y_2)y_2 - \tilde{S} = 0,$$

kde

$$\tilde{S} = \tilde{S}(y_2, \overline{\mathcal{M}}) = \begin{pmatrix} S - B_{\mathcal{M}}^T(\operatorname{diag} \kappa) \overline{\mathcal{M}} \\ \chi(\mathcal{I}_+^{\Lambda}(y_2)) - \chi(\mathcal{I}_-^{\Lambda}(y_2)) \end{pmatrix}.$$

Důkaz lze provést podobně jako důkaz Lemmatu 1.4. Iterační krok zobecněné "parciální" Newtonovy metody přepíšeme v ekvivalentním tvaru

$$G_{\Lambda}(y_2^{k+1/2})(y_2^{k+1}-y_2^{k+1/2}) = -\mathcal{F}_{\Lambda}(y_2^{k+1/2}),$$

kde $\overline{\mathcal{M}} = \mathcal{M}^{k+1}$. Porovnáním obou stran odtud plynou rovnice a implikace kroku 2c. Řešitelnost je důsledkem Lemmatu 2.1.

Poznámka 2.5 Efektivitu algoritmu lze zvýšit v krocích 1c, 2c podobně jako v odstavci 1.1.4 tím, že předem eliminujeme uzlové parametry funkce posunutí, které nepatří hranici Γ_c .

2.2 Semi-koercivní kontaktní úlohy s daným třením

Vynecháme-li jeden z předpokladů (2.1) pro i = 1, 2, dostaneme semi-koercivní problém. Budeme tedy uvažovat situaci, kdy těleso Ω^1 je upevněno, zatímco těleso Ω^2 se může jako tuhý celek pohybovat podél části hranice Γ_0 . Tato situace byla probrána v článku [10].

Primární variační formulace má právě jedno řešení, když výslednice \mathcal{V}_2^2 vnějšího zatížení je shora omezená (viz [10, Corollary 1.1]). Konečně-prvkové řešení smíšeného variačního modelu je definováno a podrobně analyzováno v článku [10]. Pro numerické řešení je pak aplikována metoda umělého "magnetického šroubu" a algoritmus Uzawova typu.

Aniž bychom zacházeli do podrobností, nahradíme pouze v 5. odstavci článku [10] algoritmus Uzawův alternujícím algoritmem Uzawa-PDAS. K efektivnímu výpočtu v krocích 1c, 2c můžeme použít např. metodu rozkladu oblasti, podobně jako v 6.odstavci článku [10], (viz též (1.79) a Poznámku 1.8).

3 Prostorová tělesa v jednostranném kontaktu s daným třením

Budeme uvažovat dvě pružná tělesa v \mathbb{R}^3 , přičemž na kontaktní hranici Γ_c kromě podmínky nepronikání (1.5) budou platit ještě podmínky tření podle Trescova modelu:

$$||T_t(u)|| \le g, \quad ||T_t(u)|| < g \Rightarrow [u_t] = 0$$
(3.1)

$$||T_t(u)|| = g, \Rightarrow \text{ existuje skalár } \Theta > 0 \text{ takový, že } [u_t] = -\Theta T_t(u),$$
(3.2)

kde $g\in L^\infty(\Gamma_c),\,g\geq 0$ je daná "mez skluzu", $[u_t]=u^1\cdot t^1+u^2\cdot t^2$ a $\|\cdot\|$ je euklidovská norma vektorů z $\mathbb{R}^2.$

3.1 Koercivní kontaktní úlohy s daným třením

Prostorové úlohy s třením Trescova typu jsou tématem práce [6]. Analýza v [6] je založena na předpokladu koercivity a smíšené variační formulaci s konečnými prvky. Pro posunutí autoři použili triangulace na čtyřstěny s lineárními polynomy a pro Lagrangeovy multiplikátory dělení Γ_c na obdélníky s po částech konstantními funkcemi.

3.1.1 Primární variační formulace

Předpokládejme, že $\mathcal{R} \cap \mathbb{V} = \{0\}$. Definujeme množinu přípustných posunutí K podle (1.13), formu a(u, v) podle (1.10), (1.11), S(v) podle (1.12) a dále

$$j(v) = \int_{\Gamma_c} g \| [v_t] \| ds \,. \tag{3.3}$$

Slabým řešením primární úlohy nazýváme funkci $u \in \mathbb{K}$, pro kterou

$$a(u, v - u) + j(v) - j(u) \ge S(v - u) \quad \forall v \in \mathbb{K}.$$
(3.4)

Pro existenci a jednoznačnost slabého řešení zůstává v platnosti Věta 2.2. Vskutku z předpokladu $\mathcal{R} \cap \mathbb{V} = \{0\}$ vyplývá pomocí Důsledku 1.1 koercivita funkcionálu celkové potenciální energie.

3.1.2 Smíšená variační formulace a její diskretizace

Abychom odstranili ve variační formulaci nediferencovatelný člen $j(\cdot)$, zavedeme smíšenou variační formulaci, podobně jako v odstavci 2.1.2. Definujme tedy množinu Lagrangeových součinitelů

$$\mathcal{M} = \mathcal{M}_n \times \mathcal{M}_t,$$

$$\mathcal{M}_n = \{ \mu_n \in W^*; \mu_n \ge 0 \},$$
(3.5)

$$\mathcal{M}_t = \{\mu_t \in [L^2(\Gamma_c)]^2 : \|\mu_t\| \le 1 \text{ s.v.}, \ \mu_t = 0 \text{ na } \Gamma_c \backslash \text{supp}g\},$$
(3.6)

bilineární formu

$$b(\mu, v) = \langle \mu_n, [v_n] \rangle + \int_{\Gamma_c} g\mu_t \cdot [v_t] ds$$
(3.7)

a Lagrangián

$$\mathcal{H}(v,\mu) = a(v,v)/2 + b(\mu,v) - S(v).$$
(3.8)

Budeme řešit problém sedlového bodu: najít dvojici $(w, \lambda) \in \mathbb{V} \times \mathcal{M}$ takovou, že

$$\mathcal{H}(w,\mu) \le \mathcal{H}(w,\lambda) \le \mathcal{H}(v,\lambda) \quad \forall v \in \mathbb{V}, \ \mu \in \mathcal{M}.$$
(3.9)

Věta 3.1 Nechť $-T_n(u) \in \mathcal{M}_n$, $\Gamma_c \cap \Gamma_0 = \emptyset$ a $\Gamma_c \cap \Gamma_u = \emptyset$. Potom problém sedlového bodu (3.9) má právě jedno řešení. Navíc platí

$$w = u, \quad \lambda_n = -T_n(u), \quad \lambda_t = -T_t(u),$$

kde u je řešení primární úlohy.

Důkaz je založen na zobecněné Greenově formuli – viz [4, Theorem 1.2] nebo [10, Theorem 2.1]. \Box

Aproximace metodou konečných prvků

Jako v odstavcích 1.1.1 a 1.1.2 budeme uvažovat standardní triangulace na čtyřstěny oblastí Ω^1 , Ω^2 , které jsou konsistentní s dělením hranic podle okrajových podmínek.

Nechť Γ_c se skládá nejvýše z malého počtu rovinných částí Γ_{cp} , $p = 1, \ldots, \overline{p}$, na Γ_c uzly triangulací \mathcal{T}_h^1 a \mathcal{T}_h^2 splývají a

$$\Gamma_{cp} = \bigcup_j \Delta_j \,,$$

kde Δ_j jsou stěny čtyřstěnů z \mathcal{T}_h^i , i = 1, 2.

Množinu \mathcal{M}_n budeme aproximovat množinou

$$M_{hn} = \bigcup_{p=1}^{p} M_{hn}^{(p)}, \qquad (3.10)$$

kde

$$M_{hn}^{(p)} = \{\mu_{hn} \in C(\Gamma_{cp}) : \mu_{hn|\Delta_j} \in P_1(\Delta_j) \ \forall \Delta_j \subset \Gamma_{cp}, \ \mu_{hn} \ge 0\}.$$

Dále nechť $\mathcal{T}_{H}^{(p)}$ je dělení Γ_{cp} na trojúhelníky Δ_{H} , přičemž

$$\max_{\mathcal{T}_{H}^{(p)}}(\operatorname{diam}\Delta_{H}) = H$$

Množinu \mathcal{M}_t nahradíme množinou

$$M_{Ht} = \bigcup_{p=1}^{\overline{p}} M_{Ht}^{(p)}, \qquad (3.11)$$

kde

$$M_{Ht}^{(p)} = \{ \mu_{Ht} \in L_{H}^{(p)} : \|\mu_{Ht}\| \le 1, \ \mu_{Ht} = 0 \text{ na } \Gamma_{cp} \setminus \text{supp } g_h \}, L_{H}^{(p)} = \{ \mu \in [L^{\infty}(\Gamma_{cp})] : \mu|_{\Delta_H} \in [P_0(\Delta_H)]^2 \ \forall \Delta_H \subset \Gamma_{cp} \}$$

a $g_h \in M_{hn}$ je interpolace funkce g.

Funkce μ_{hn} jsou tedy spojité a po částech lineární, funkce μ_{Ht} jsou po částech konstantní. Bilineární formu $b(\mu, v)$ nahradíme formou

$$b_{hH}(\mu_{hH}, v_h) = \int_{\Gamma_c} \mu_{hn}[v_{hn}]ds + \int_{\Gamma_c} g_h \mu_{Ht} \cdot [v_{ht}]ds \qquad (3.12)$$

a definujeme aproximovaný Lagrangián pro $v_h \in \mathbb{V}_h, \ \mu_{hH} \in M_{hn} \times M_{Ht}$:

$$\mathcal{H}_{hH}(v_h, \mu_{hH}) = a(v_h, v_h)/2 - S(v_h) + b_{hH}(\mu_{hH}, v_h).$$
(3.13)

Pak definujeme aproximovaný problém sedlového bodu: najít dvojici $(u_h, \lambda_{hH}) \in \mathbb{V}_h \times (M_{hn} \times M_{Ht})$ takovou, že

$$\mathcal{H}_{hH}(u_h,\mu_{hH}) \le \mathcal{H}_{hH}(u_h,\lambda_{hH}) \le \mathcal{H}_{hH}(v_h,\lambda_{hH}) \quad \forall (v_h,\mu_{hH}) \in \mathbb{V}_h \times (M_{hn} \times M_{Ht}).$$
(3.14)

Předpoklad 3.1 (podmínka stability). Nechť platí implikace

$$\left\{\mu_{H} \in L_{H} := \bigcup_{p} L_{H}^{(p)}, \, \mu_{H} = 0 \text{ na } \Gamma_{c} \setminus \operatorname{supp} g_{h}, \, \int_{\Gamma_{c}} g_{h} \mu_{H} \cdot [v_{ht}] \mathrm{d}\Gamma = 0 \, \forall v_{h} \in \mathbb{V}_{h} \right\} \Rightarrow \mu_{H} = 0. \quad (3.15)$$

Poznámka 3.1 Předpoklad 3.1 je postačující pro jednoznačnost tangenciální složky λ_{Ht} sedlového bodu (3.14). V rovinné kontaktní úloze je tento předpoklad splněn díky [10, Lemmatu 3.1].

Poznámka 3.2 K apriornímu odhadu chyby je zapotřebí splnění tzv. podmínky Babušky a Brezziho, která má tvar

$$\sup_{v_h \in \mathbb{V}_h} b_{hH}(\mu_{hH}, v_h) / \|v_h\|_1 \ge \beta \|\mu_{hH}\|_{-1/2, \Gamma_c} \quad \forall \mu_{hH} \in M_{hn} \times M_{Ht} ,$$
(3.16)

kde β nezávisí na h, H. (Viz analogický předpoklad [6, (4.5)], který je podle [6, Lemmatu 4.1] splněn za jistých předpokladů o regularitě jistého pomocného eliptického okrajového problému, je-li poměr h/H dostatečně malý.)

Z podmínky (3.16) plyne ovšem splnění předpokladu 3.1.

Věta 3.2 Existuje řešení aproximovaného problému sedlového bodu (3.14). Za předpokladu 3.1 řešení je jediné.

Důkaz existence plyne na základě [5, Theorem 3.8]. Jednoznačnost je důsledkem předpokladu 3.1 (Srv. též [4, Theorem 2.1]). \Box

Maticový tvar aproximovaného problému sedlového bodu.

Postupujme analogicky jako v rovinném případě, tj. v odstavci 2.1.2. Uzlové parametry λ_{hn} označme \mathcal{M}^* ; parametry $\Lambda^* := (\Lambda_1^*, \Lambda_2^*)^T$ označují po trojúhelnících Δ_j konstantní hodnoty $(\lambda_{Ht})_i$, i = 1, 2, tj. složky vektorů $\lambda_{Ht}(\Delta_j)$ v ortogonálním systému souřadnic, který přiřadíme každé z rovinných částí $\Gamma_{cp}, p = 1, \ldots, \overline{p}$. Definujeme matice $B_{\mathcal{M}}, B_{\Lambda}$ a S pomocí rovností

$$(B_{\mathcal{M}}u)_j = [u_{hn}](s_j), \quad S(v) = v^T S,$$
 (3.17)

$$(B^{(i)}_{\Lambda}u)_j = \int_{\Gamma_c} g_h \chi_j[u_{ht}]_i \mathrm{d}\Gamma, \quad i = 1, 2, \qquad (3.18)$$

kde χ_j značí charakteristickou funkci trojúhelník
a $\Delta_j \subset \mathcal{T}_H$ a

$$B_{\Lambda}: \left(\begin{array}{c} B_{\Lambda}^{(1)} \\ B_{\Lambda}^{(2)} \\ B_{\Lambda}^{(2)} \end{array}\right)$$

Pak z definice (3.14) plyne rovnice

$$Au + B^T_{\mathcal{M}}G\mathcal{M}^* + B^T_{\Lambda}\Lambda^* - S = 0 \tag{3.19}$$

a nerovnice

$$u^{T}B_{\mathcal{M}}^{T}G(\mathcal{M}-\mathcal{M}^{*})+u^{T}B_{\Lambda}^{T}(\Lambda-\Lambda^{*}) \leq = 0 \quad \forall \mathcal{M} \geq 0, \quad \forall \|\Lambda\| \leq 1, \Lambda_{j} = 0 \text{ pro } \Delta_{j} \cap \text{supp } g_{h} = \emptyset, \quad (3.20)$$

kdeG je Grammova matice po trojúhelnících lineární báze standardních konečných prvků na $\Gamma_c.$

Z(3.20)odvodíme dvě nelineární rovnice

$$\mathcal{M}^* - (\mathcal{M}^* + \rho GB_{\mathcal{M}}u)^+ = 0, \qquad (3.21)$$

$$\Lambda^* - \pi (\Lambda^* + \rho B_\Lambda u) = 0, \qquad (3.22)$$

kde π je projekce na jednotkovou kouli, tzv.

$$\pi(x) = \begin{cases} x & \forall \|x\| < 1\\ x/\|x\| & \forall x \in \mathbb{R}^2, \ \|x\| \ge 1 \end{cases}$$

a ρ je kladný parametr (libovolná kladná konstanta).

Pro trojici $y := (u, \mathcal{M}^*, \Lambda^*)^T$ platí tedy rovnice

$$\mathcal{F}(y) := \begin{pmatrix} Au + B_{\mathcal{M}}^T G \mathcal{M}^* + B_{\Lambda}^T \Lambda^* - S \\ \mathcal{M}^* - (\mathcal{M}^* + \rho G B_{\mathcal{M}} u)^+ \\ \Lambda^* - \pi (\Lambda^* + \rho B_{\Lambda} u) \end{pmatrix} = 0$$
(3.23)

3.1.3 Zobecněná Newtonova metoda? Alternující algoritmus

Postupujme jako v odstavci 2.1.3 pro rovinný problém kontaktu s daným třením.

Dá se odvodit, že zobrazení \mathcal{F} má zobecněnou derivaci ve smyslu Definice 1.3. Protože však nejsme schopni dokázat, že existuje inverse této derivace, nemůžeme definovat iterační Newtonovu metodu.

Podobně jako v odstavci 2.1.3 se nabízí možnost definovat alternující algoritmus Uzawa-PDAS. Za tím účelem nejprve zavedeme aktivní a inaktivní množiny vzhledem k multiplikátorům \mathcal{M} , resp. Λ .

$$\mathcal{A}^{\mathcal{M}}(y_1) = \{s_j : \mathcal{M}_j + \rho(GB_{\mathcal{M}}u)_j > 0\}$$

$$\mathcal{I}^{\mathcal{M}}(y_1) = \{s_j : \mathcal{M}_j + \rho(GB_{\mathcal{M}}u)_j \le 0\}$$
(3.24)

kde $y_1 := (u, \mathcal{M})^T;$

$$\mathcal{A}^{\Lambda}(y_2) = \{ \Delta_j \in \mathcal{T}_H : \|\Lambda_j + \rho(B_{\Lambda}u)_j\| < 1 \}$$

$$\mathcal{I}^{\Lambda}(y_2) = \{ \Delta_j \in \mathcal{T}_H : \|\Lambda_j + \rho(B_{\Lambda}u)_j\| \ge 1 \}$$
(3.25)

kde $y_2 := (u, \Lambda)^T$.

Lemma 3.1 Definujeme-li matici

$$G_{\Lambda}(z) = \begin{pmatrix} A & B_{\Lambda}^{T} \\ -\chi(\mathcal{A}^{\Lambda}(z))\rho B_{\Lambda} & \chi(\mathcal{I}^{\Lambda}(z)) \end{pmatrix}.$$

pak $G_{\Lambda}(z)$ je bijektivní zobrazení pro každé z.

Důkaz je analogický důkazu Lemmatu 2.1.

Alternující algoritmus Uzawa-PDAS:

Zvolme $y^0 = (u^0, \mathcal{M}^0, \Lambda^0)^T$, $\rho \in (10^3, 10^4)$. Známe-li $y^k = (u^k, \mathcal{M}^k, \Lambda^k)^T$, aplikujeme Krok 1 (Výpočet $y^{k+1/2} = (u^{k+1/2}, \mathcal{M}^{k+1/2}, \Lambda^{k+1/2})^T$).

- a) $\Lambda_j^{k+1/2} = \pi(\Lambda_j^k + \rho(B_\Lambda u^k)_j), \forall j;$
- b) Vypočteme množiny

$$\mathcal{A}^{\mathcal{M}}(y_1^k), \quad \mathcal{I}^{\mathcal{M}}(y_1^k)$$

pro $y_1^k = (u^k, \mathcal{M}^k)$ podle (3.24);

c) Vyřešíme $y_1^{k+1/2} = (u^{k+1/2}, \mathcal{M}^{k+1/2})^T$ ze systému

$$Au^{k+1/2} + B_{\mathcal{M}}^T G \mathcal{M}^{k+1/2} = S - B_{\Lambda}^T \Lambda^{k+1/2} ,$$

$$s_j \in \mathcal{A}^{\mathcal{M}}(y_1^k) \Rightarrow (G B_{\mathcal{M}} u^{k+1/2})_j = 0 ,$$

$$s_j \in \mathcal{I}^{\mathcal{M}}(y_1^k) \Rightarrow \mathcal{M}_j^{k+1/2} = 0 .$$

Krok 2 (Výpočet $y^{k+1} = (u^{k+1}, \mathcal{M}^{k+1}, \Lambda^{k+1})^T$).

a)
$$\mathcal{M}_{j}^{k+1} = (\mathcal{M}_{j}^{k+1/2} + \rho(GB_{\mathcal{M}}u^{k+1/2})_{j})^{+}, \forall j;$$

b) Vypočteme množiny

$$\mathcal{A}^{\Lambda}(y_2^{k+1/2}), \quad \mathcal{I}^{\Lambda}(y_2^{k+1/2})$$

pro $y_2^{k+1/2} = (u^{k+1/2}, \Lambda^{k+1/2})^T$ podle (3.25);

c) Vyřešíme
$$y_2^{k+1} = (u^{k+1}, \Lambda^{k+1})^T$$
 ze systému

$$\begin{aligned} Au^{k+1} + B_{\Lambda}^T \Lambda^{k+1} &= S - B_{\mathcal{M}}^T G \mathcal{M}^{k+1} \,, \\ \Delta_j &\in \mathcal{A}^{\Lambda}(y_2^{k+1/2}) \Rightarrow (B_{\Lambda} u^{k+1})_j = 0 \,, \\ \Delta_j &\in \mathcal{I}^{\Lambda}(y_2^{k+1/2}) \Rightarrow \Lambda_j^{k+1} = \pi(\Lambda_j^{k+1/2} + \rho(B_{\Lambda} u^{k+1/2})_j) \,. \end{aligned}$$

Poznámka 3.3 Kroky 1a, 2a odpovídají příslušným projekcím v algoritmu Uzawova typu.

Kroky 1b, 1c odpovídají zobecněné Newtonově metodě pro kontakt s nulovým třením, kde pravá strana v (1.46) je modifikována (viz (1.46), (1.47) a Lemma 1.4.

V důsledku Lemmat 1.3 a 1.4 je systém kroku 1c řešitelný.

Lemma 3.2 Kroky 2b, 2c odpovídají zobecněné "parciální" Newtonově metodě pro rovnici

$$\mathcal{F}_{\Lambda}(y_2) := G_{\Lambda}(y_2)y_2 - \tilde{S} = 0, \qquad (3.26)$$

kde

$$\tilde{S} = \tilde{S}(y_2, \overline{\mathcal{M}}) = \begin{pmatrix} S - B_{\mathcal{M}}^T G \overline{\mathcal{M}} \\ \chi(\mathcal{I}^{\Lambda}(y_2)) \pi(\Lambda + \rho B_{\Lambda} u) \end{pmatrix}$$
(3.27)

 $a \overline{\mathcal{M}} = \mathcal{M}^{k+1}$ je získáno z kroku 2a.

Důkaz – analogický důkazu Lemmatu 2.2.

Poznámka 3.4 Efektivitu uvedeného algoritmu lze zvýšit tím, že v krocích 1c, 2c předem eliminujeme uzlové parametry funkce posunutí u, které nepatří hranici Γ_c (srv. odstavec 1.1.4).

3.2 Semi-koercivní kontaktní úlohy s daným třením

Uvažujme situaci jako v odstavci 1.2 s tím, že d = 3. Tedy těles
o Ω^1 je upevněno, zatímco těleso Ω^2 se může pohybovat pod
él části hranice $\Gamma_0^2 \subset \partial \Omega^2$.

Nechť Γ_0^2 se skládá z části rovin kolmých k os
e $x_2,$

$$\operatorname{meas}_2 \Gamma_u^1 > 0, \quad \Gamma_0^1 = \emptyset, \\ \Gamma_u^2 = \emptyset, \quad \operatorname{meas} \Gamma_0^2 > 0.$$

Dále nechť Γ_c se skládá (jako v odstavci 3.1) z několika rovinných částí, tj.

$$\Gamma_c = \bigcup_{p=1}^{\overline{p}} \Gamma_{cp} \,, \tag{3.28}$$

přičemž $n_3^2 < 0$ na Γ_c .

Definujme množiny $\mathcal{R} \cap \mathbb{V}$, $\mathcal{R} \cap \mathbb{K}$, stejně jako na začátku odstavce 1.2 pro d = 3, a funkcionál $j(\cdot)$ podle (3.3).

Dále definujeme (na rozdíl od definice ve Větě 1.5)

$$\mathcal{R}^* \{ r \in \mathcal{R} \cap \mathbb{K} : j(r) = 0 \& [r_n] = 0 \text{ na } \Gamma_c \}.$$
(3.29)

Slabým řešením primární úlohy nazveme funkci $u \in \mathbb{K}$, pro kterou platí nerovnice (3.4).

Věta 3.3 Nechť

$$S(w) < j(w) \quad \forall w \in \mathcal{R} \cap \mathbb{K} \setminus \{0\}.$$
(3.30)

Pak funkcionál $\mathcal{L}(\cdot)$ (viz (2.6)) je koercivní na množině \mathbb{K} a existuje slabé řešení primární úlohy. Když

$$|S(w)| > j(w) \quad \forall w \in \mathcal{R} \cap \mathbb{V} \setminus \{0\},$$
(3.31)

řešení je jediné. Když

$$|S(w)| \le j(w) \quad \forall w \in \mathcal{R} \cap \mathbb{V},$$

pro každá dvě řešení u, u* platí

$$u^* - u \in \mathcal{R} \cap \mathbb{V} \& S(u^* - u) = j(u^*) - j(u).$$

Důkaz V našem případě je $\mathcal{R}^* = \{0\}$. Důkaz existence a koercivity pak vyplývá z [20, Theorem 1.1]. Ostatní tvrzení dokážeme stejně jako [9, Theorem 4.1] pro d = 2.

Pro *smíšenou variační formulaci* platí (3.5)-(3.9). Platí analogie Věty 3.1, což dokáže stejně jako [10, Theorem 2.1].

Diskretizaci problému sedlového bodu metodou konečných prvků provedeme stejně jako v koercivní úloze (tj. v odstavci 3.1.1), spolu se zavedením předpokladu 3.1.

Existenci a jednoznačnost aproximovaného sedlového bodu, tj. analogii Věty 3.2, lze za předpokladu 3.1, (3.30) a (3.31) dokázat obdobným postupem jako [10, Theorem 3.1].

Dále použijeme metodiku umělých "magnetických šroubů" z odstavce 1.2.2, abychom dostali úlohu sedlového bodu s regulární maticí tuhosti. Podle Lemmatu 1.12 – části a) budeme předpokládat, že Γ_c je částí roviny. Definujeme "menší" prostor \mathbb{V}_{hp}^{α} podobně jako v (1.77) a (1.78). Definici funkcionálu $p(\cdot)$ však nahradíme jinou, která se bude lépe realizovat v případě daného tření:

$$p(v) = \int_{\Delta_0} g_h[v_t]_1 d\Gamma, \qquad (3.32)$$

kde Δ_0 je vhodně vybraný trojúhelník dělení \mathcal{T}_H takový, že $\Delta_0 \subset \text{supp } g_h, [v_t]_1$ je složka vektoru $[v_t]$ ve směru přímky γ (tj. průniku Γ_c s rovinou $x_2 = \text{konst.}$).

Pak jako v Lemmatu 1.12 dokážeme snadno, že

$$\mathcal{R} \cap \mathbb{V}_{hp}^{\alpha} = \{0\}, \qquad (3.33)$$

takže v podprostoru \mathbb{V}_{hp}^{α} bude "redukovaný" aproximovaný problém sedlového bodu koercivní. K řešení tohoto redukovaného problému můžeme nasadit *alternující algoritmus* Uzawa-PDAS z odtavce 3.1.3.

Poznámka 3.5 Neznámé vektory \mathcal{M} a Λ se redukují, a to \mathcal{M} o dvě složky \mathcal{M}_j , $j = \alpha_1, \alpha_2$ a Λ o složku $\Lambda_1(\Delta_0)$, (srv. [10, Definition 5.1]).

Abychom umožnili v krocích 1c, 2c řešit úlohu separovaně na oblastech Ω^1 a Ω^2 , je vhodné dopočítat tyto 3 složky z podmínek celkové rovnováhy (srv. (1.80) v úloze s nulovým třením, resp. [10, (5.15)] v rovinné úloze s daným třením). Pak použijeme postup uvedený v [10, Section 6].

Poděkování

Autor tímto děkuje za podporu uvedeného výzkumu grantem FT-TA/087 Ministerstva průmyslu a obchodu České republiky.

Literatura

- Ainsworth M., Mihai A.: A comparison of solvers for linear complementarity problems. Appl. Math. 51 (2006), 93–128.
- [2] Daněk J., Hlaváček I., Nedoma J.: Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity. Math. Computers in Simulation 68 (2005), 271– 299.
- [3] Eck Ch., Jarušek J.: Existence results for the static contact problem with Coulomb friction. Math. Models Methods Appl. Sci. 8 (1998), 445–468.
- [4] Haslinger J., Hlaváček I.: Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appls 86 (1982), 99–122.
- [5] Haslinger J., Hlaváček I., Nečas J.: Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, eds. P.G. Ciarlet and J.L. Lions, vol. IV, North-Holland, Amsterdam 1996, 313-485.
- [6] Haslinger J., Sassi T.: Mixed finite element approximation of 3D contact problems with given friction: error analysis and numerical realization. Math. Model. and Numer. Anal., 38 (2004), 563–578.
- [7] Haslinger J., Tvrdý M.: Approximation and numerical realization of contact problems with friction. Apl. Mat. 28 (1983), 55–71.
- [8] Hlaváček I., Nečas J.: On inequalities of Korn's type. Arch. Rational Mech. Anal. 36 (1970), 305–334.
- [9] Hlaváček I., Nedoma J.: On a solution of a generalized semi-coercive contact problem in thermoelasticity. Math. and Computers in Simulation 60 (2002), 1–17.
- [10] Hlaváček I.: Mixed finite element analysis of semi-coercive unilateral contact problems with given friction. Appl. Math. 51 (2006).
- [11] Hintermüller M., Ito K., Kunisch K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003), 865–888.
- [12] Hintermüller M., Kovtunenko V.A., Kunisch K.: Semismooth Newton method for a class of unilaterally constrained variational problems. Adv. Math. Sci. Appl. 14 (2004), 513–535.
- [13] Hintermüller M., Kovtunenko V.A., Kunisch K.: Generalized Newton methods for crack problems with nonpenetration condition. Numer. Meth. for Part. Diff. Eqs. 21 (2005), 586–610.
- [14] Hüeber S., Wohlmuth B.I.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43 (2005), 156–173.
- [15] Hüeber S., Wohlmuth B.I.: A primal-dual active set strategy for non-linear multibody contact problems. Comput. Meth. Appl. Mech. Engr., 194 (2005), 3147–3166.
- [16] Hüeber S., Matei A., Wohlmuth B.I.: Efficient algorithms for problems with friction. Tech. Rep. Univ. Stuttgart SFB404 2005-07.

- [17] Janovský V., Procházka P.: Contact problem for two elastic bodies Parts I-III. Apl. Mat. 25 (1980), 87–145.
- [18] Kestřánek Z., Nedoma J.: The conjugate projected gradient method numerical tests and results. Tech. Rep. V-677, ICS AS CR, Praha 1996.
- [19] Kestřánek Z.: Numerická analýza 3D kontaktní úlohy Signoriniho typu se třením v termopružnosti. H-verze konečněprvkové aproximace. Autoreferát disertační práce, Fakulta Jaderného a fyzikálního inženýrství ČVUT, Praha 1999.
- [20] Hlaváček I., Lovíšek J.: Semi-coercive variational inequalities with uncertain input data. Applications to shallow shells. Math. Models Meth. Appl. Sci. 15 (2005), 273–299.
- [21] Haslinger J., Kučera R., Dostál Z.: An algorithm for numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math., 164–165 (2004), 387–408.