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Jǐŕı Wiedermann

Technical report No. 966

April 2006
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Abstract: We present a design of cognitive system architecture with an internal world 
model. The internal world model is realized with the help of artificial mirror neurons. We 
consider generalized artificial mirror neurons acting both as a mechanism for assembling 
and learning multimodal sensorimotor information and as associative memory for invoking 
multimodal information given only some of its components. We show that within an 
artificial cognitive system a network of generalized mirror neurons can simultaneously 
serve as an internal world model recognized by the agent and as that of the agent’s position 
within this world. We also specify a self-organizing control mechanism, which is based on 
the basic operations over concepts that were essentially identified by the British 18th 
century philosopher David Hume. This control mechanism makes use of the internal world 
model constructed in agent’s interaction with real world and straightforwardly supports 
imitation learning. Building heavily on the properties of the generalized mirror net and on 
automatic abstract concept creation, we offer an algorithmic explanation of computational 
language acquisition, thinking and consciousness in our model. Rather than describing an 
implementation of the respective mechanisms, the aim of the paper is to establish a proof of 
the principle of algorithmic nature of higher cognitive functions.  
 
 
 

1. Introduction  
 
Cognitive systems are instances of complex systems. In what follows, we will be interested 
in so-called cognitive architectures, i.e., in blueprints of artificial cognitive systems that 
take the form of embodied computers, or robots. Since robots are artifacts, they are 
designed by people to perform certain cognitive tasks.  In order to fulfill these tasks both 
the control and the embodiment of a robot must be tailored to these tasks. In this paper, we 
will assume that each robot consists of a physical body holding the appropriate sensory and 
motor units, and of a control unit – a computer whose task is to learn to control and 
coordinate the available sensorimotor units. The goal of a robot’s design is to produce a 
behavior that is qualified by robot’s designers as a reasonable behavior realizing the 
cognitive tasks. We will neither be interested in the precise form of robot’s embodiment nor 
in its actual construction. Instead, we will be interested in the design of the overall robot’s 
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architecture, i.e., in specification of the robot’s main modules, inclusively sensory, motor 
and control units, in specification of each module’s tasks, and in the flow of information 
among these modules. To emphasize that the form of the embodiment will not be the main 
issue in our considerations, we will often speak about cognitive systems, or cognitive 
agents instead of robots. Our goal will be to devise a schema of a cognitive system, which 
will be as simple as possible, yet capable of offering a plausible algorithmic explanation of 
mechanisms that underlie cognitive functions usually termed as “higher brain functions”. In 
other words, we will want to establish a proof of principle that our architecture will suit its 
task, i.e., that it will support the algorithmic realization of higher cognitive functions such 
as imitation learning, empathy, intentions, language acquisition, thinking and even 
consciousness.  
 
In recent years we have seen a number of proposals of cognitive systems architectures, cf. 
[1], [12], [20], [22], [23] to name a few of them. All these proposals have aimed if not 
towards implementation, then at least towards explanation of higher mental functions. In 
fact, all of them were meant as proposals of experimental architectures with the goal to 
verify their viability in solving advanced cognitive tasks. In order to go beyond 
subsequently incremented subsumption architecture by a task specific robot programming, 
we need automatic mechanisms that will augment the previously acquired knowledge (cf. 
[23]). Moreover, an increased attention should be paid to the idea of internal world models, 
in which an agent could “simulate” alternatives of its future behavior [9], [20]. Recently, 
there was an attempt to formalize the notion of consciousness also in the field of theoretical 
computer science [4].   
 
Our proposal also builds on the idea of a cognitive agent having an automatically 
constructed internal model of the world. This model captures that part of the environment 
in which the agent has situated itself (cf. [15] for the notion of situatedness). This internal 
world model includes not only the real world, which the agent has investigated during its 
life through its sensorimotor activities, but also a certain model of self as mediated by 
agent’s exteroception and proprioception. Our model makes intensive use of known 
properties of mirror neurons. Since their discovery in nineteen nineties  (cf. [17]) a great 
attention has been paid to mirror neurons by people interested in the theory of mind. Mirror 
neurons have also found their use in the cognitive models, mainly as a mechanism for 
sensorimotor coupling [8], [13]. Conjectures and theories have appeared pointing to a 
possible central role of mirror neurons in understanding the mechanisms of humanoid 
mind, e.g. language acquisition (cf. [1], [8], [16], [16]). Our model follows these lines of 
development. In our model, we have generalized the discovered ability of mirror neurons, 
viz. their activation, both when a specific motor activity is observed and performed. We 
suggest the artificial mirror neurons which work with arbitrary multimodal information 
composed of exteroceptory, proprioceptory and motor information. Such generalization is 
also supported by conclusions from recent neurobiological experiments (cf. [13]). The 
entire multimodal information is invoked also in cases when only a part of it is available. 
The importance of working with multimodal information has been stressed, e.g. in [5]. A 
net of the generalized mirror neurons is used to represent the frequently occurred “patterns” 
of multimodal information. The information represented in this net is shaped automatically, 
in the process of agent’s interaction with the world.  The net of generalized mirror neurons 



supplies the complete multimodal information to a further control unit called controller. Its 
task is to compute the “next move” of the agent. A possible realization of the controller has 
been introduced by the author during the end of the nineteen nineties (cf. [25], [26], [27], 
[28]) under the name “cogitoid”.  Interestingly, the basic operations of a cogitoid, which 
works with concepts, have been inspired by the work of the English 18th century 
philosopher David Hume [10]. However, later it appeared that the full potential of the 
cogitoid could be exploited only when complementing it by the generalized mirror net. For 
the first time, the resulting model has been described in [29] mainly in the context of 
imitation learning.  Since then, the idea about the cooperation of a controller with the 
generalized mirror net in understanding the humanoid mind has further crystallized. In 
particular, it has become obvious that in the model at hand the generalized mirror neurons 
have indeed played the role of agent’s internal world representation. The current paper 
presents the summary of the author’s current view of the respective problematic. It offers a 
relatively simple framework in which the algorithmic nature of higher brain functions can 
be explained. It presents the first step towards a concise theory of computational humanoid 
cognition, i.e., of non-trivial cognition in artificial entities. This theory is clearly inspired by 
biological reality, but it does not faithfully follow it in all aspects. This development is 
usual in any branch of human technology originally inspired by nature. By gaining more 
insight into the character of the respective processes, the technology eventually deviates 
from its natural template in order to make a good use of the already available achievements.  
 
To simplify the references to our model we decided to call it HUGO.   Unlike in other cases 
of “named” cognitive architectures, HUGO is not an acronym. Rather, this name refers to 
its Old German or Frank origin where it has meant “mind, thought, spirit, understanding, 
intelligence”.  
 
The structure of the paper is as follows. In Section 2 we present HUGO’s blueprint and we 
specify the tasks of its individual modules and the flow of information among them. We 
concentrate to the functional specification of two essential modules: the net of generalized 
mirror neurons and the controller. We sketch how the net of the generalized mirror neurons 
is automatically formed, how the concepts in the controller develop and organize 
themselves and how the mirror net supports the working of the controller. In Section 3 we 
explain the mechanism of imitation learning, of empathy, of intentions, and based on this 
the evolution of inter-agent communication. From here, we go straightforwardly to the 
mechanism of thinking in HUGO and we sketch the conditions under which one might 
expect the development of consciousness. All our explanations will be based on 
specifications of individual HUGO’s modules; we will not be concerned with details how 
these properties could be realized although we will occasionally suggest possible ways to 
do so. Thus, in analogy with the complex computational system design methodology used 
in the software engineering HUGO can be seen as the first phase of the design of such a 
system − namely its informal functional specification. 
 
 
 
 



2. HUGO’s architecture and functional specification  
 
HUGO’s architecture is depicted in Fig. 1. It consists of four main parts: there are 
sensorimotor units, the internal world model represented by a mirror net, control unit, and 
the body. Arrows depict the data flow between these parts.  Next, we specify the actions 
performed by HUGO’s parts. All data transferred along the arrows are of digital nature. 
 

The sensorimotor units receive so-
called motor instructions from the 
control unit. These are not only 
instructions for locomotive organs of 
the agent, but also instructions for 
pointing the sensors in a certain 
direction, for changing their settings, 
etc. At the same time, these 
instructions flow into the mirror net. 
The sensorimotor units deliver two 
kinds of data back to the mirror net. 
The first kind of data is exteroceptory 
data that deliver information from the 
sensory units scanning agent’s 
environment. In this case, the sensory 
units act as a transformer of analog 
inputs (images, electromagnetic waves, 
sounds, etc.) into the digital form. In 

general, this transformation cannot be described mathematically since it depends on the 
physical/technical characteristics of the sensory units. The second kind of data is 
proprioceptory data delivering information from the internal sensors placed within the 
sensorimotor units or within the agent’s body. For instance, this can be information about 
the current settings of the units or current conditions of the unit. 

 

Control  
unit 

Senzori-
motor 
units

Body 

Internal 
world  
model 

Perception
(proprioception,
exteroception)

Multimod al 
informa tion Motor

Environment 

Fig.1: Embodied cognitive agent with 
an internal world model 

 
The next part is the mirror net. It is a network of artificial mirror neurons. In each unit of 
this net (which might consists of several neurons), the data from sensorimotor units meet 
with the instructions from the controller.  This joint information is called multimodal 
information. The task of the mirror net is threefold: 
• Learning: the net learns frequently occurring multimodal information and stores its 

representation;  
• Identification: the net finds multimodal information already stored in the net which is 

“most similar” to the incoming information; 
• Associative recall: given only partial multimodal information in which the inputs from 

some sensorimotor unit are missing, the net finds the entire multimodal information of 
which the partial information is available.  

 
In order to work in this way, we must establish that there is only a finite amount of 
“important” multimodal information stored in the mirror net; this can be achieved by a 



proper combination of “granularity” of perceptory data and finite increments in motor 
instructions. One can also consider some preprocessing of the information entering the 
mirror net, e.g., only “well separable” multimodal information is stored in the net, and to 
the incoming information its “nearest neighbor”, in some sense, is sought. Fuzzy 
approaches seem to be attractive alternatives. The next requirement concerns the parts of 
the multimodal information. In order that the associative recall can work well, the entire 
multimodal information must be uniquely determined by any of its significant parts. For 
reasons that will be explained in the next section, we assume that if there is a motor part in 
multimodal information then this part alone determines the rest of multimodal information.  
 
Each part of the mirror net specializes in learning and recognizing specific multimodal 
information corresponding to one “behavioral unit”. Learning is done perpetually, when 
complete multimodal information appears at the input to the mirror net.  Such circumstance 
is called standard learning mode. Learning proceeds by Hebbian principles, i.e., by 
strengthening the weights of neurons representing the respective multimodal information it 
is recognized each time.   
 
Thus, in any case, irrespectively whether all parts or only a (significant) part of the 
multimodal information enters the net, the net outputs complete multimodal information, 
which proceeds into the control unit called controller. In the context of controller, the 
representations of multimodal information are called the concepts. The task of the control 
unit is, given the current multimodal information represented by the active concepts, to 
produce the new set of active concepts. The motor part of multimodal information 
corresponding to these concepts is sent both to the sensorimotor units and to the mirror net. 
Thus, the control unit determines the next action of an agent.  
 
Within the control unit there are concepts corresponding to each occurrence of multimodal 
information in the mirror net. Moreover, new (abstract) concepts are formed within a 
control unit. Associations of various strengths connect the concepts within it. The concepts 
and the associations among them are all stored in the control unit and form the agent’s 
memory. 
 
Between any pair of the concepts, there can simultaneously be both inhibitive and 
excitatory associations, or only one kind of them.  The rules of forming new concepts and 
strengthening the associations among them are based on the following principles; the first 
three of them have been identified already by Hume [10]: 
• contiguity in space: two concepts get associated (or the respective association gets 

strengthened) if they frequently occur simultaneously; also, a new concept 
corresponding to the union of the two concepts gets formed; 

• contiguity in time: two concepts get associated (or the respective association gets 
strengthened) if they frequently occur one after the other; 

• similarity: a concept gets associated with another concept if the former is similar to the 
latter and vice versa; the notion of similarity must be appropriately defined (e.g., by 
requiring a sufficient overlap in multimodal information); 



• abstraction: the common part of two similar concepts forms an abstraction of the two; 
the respective “abstract” concept  is added to the concepts represented in the cogitoid. 

 
The control unit should work according to the following rules.  At each time, some 
concepts in it should be in active state. These concepts represent the current “mental state” 
of the agent. When new multimodal information enters the control unite it activates a new 
set of concepts. Based on the current mental state and the set of newly activated concepts a 
new set of concepts is activated. This set represents the new mental state of the agent and 
determines the next motor action of the unit.  
 
Note that the new mental state is computed from an old one and from the new input. This 
mechanism reminds much the control mechanism in the finite automata. The idea is that the 
new mental state should be computable via associations stored among the concepts. In 
detail, the currently and newly activated concepts jointly excite, via the associations, a set 
of passive concepts. This excitation strengthens all the respective associations by a little 
amount. At the same time, small amount weakens the remaining associations. This models 
the process of forgetting. From among the set of all excited concepts, the set of the most 
excited concepts gets activated and the previously active concepts are deactivated. The set 
of currently active concepts is also strengthened. This set then represents the current mental 
state. The set of currently active concepts can be seen as the short-term (operational) 
memory of the agent. The set of all concepts with all settings of associations and weights 
can be seen as the long-term memory of the agent. 
 
Based on these principles the control unit is capable of solving simple cognitive tasks: 
learning simultaneous occurrence of concepts (by contiguity in space), their sequence, so-
called simple conditioning (by contiguity in time), similarity, and to compute their 
abstractions. In fact, these are the unit’s basic operations.   
 
The control unit handles, e.g., similarity-based behavior in the following way.  Assume that 
in the control unit there is an association between concepts A and B, denoted as A→B, and 
that there is concept C similar to A: A~C. Now, if C becomes active, then C invokes A via 
similarity and A invokes B via simple conditioning. The mechanism is now capable to 
realize Pavlovian conditioning (cf. [22] p. 217), in which the control unit can be 
conditioned to produce a response R to an apparently unrelated stimulus A. The basic idea 
is first to learn via simple conditioning S→R.  Then, in the training process, we add a 
further stimulus A. Then, after some time, A alone invokes R (so-called cheating). In our 
model, this is because a simultaneous occurrence of S and A will cause the composed 
concept A∨S to form (by contiguity in space) and the conditioning will produce the 
behavior A∨S →R. Now, if only A will appear, A→A∨S →R will be realized (by 
similarity and conditioning).  Interestingly, repeating the cheating many times A will cease 
to invoke S (so-called extinction). This is because in the absence of stimulus S 
accompanying A a new “parasitic” association A→X gets formed and strengthened (where 
X denotes the concept “nothing particular has happened”). Eventually, the association 
A→X prevails over A→A∨S and thus the elicitation of R will cease. It can be shown that a 



third phenomenon, called inhibition, is also within the reach of the controller designed 
along the previous lines (for details, see [27]).  
 
If one wants to go farther in the realization of the cognitive tasks one should consider 
special concepts called affects. The affects come in two forms: positive and negative ones. 
The basic affects are activated directly from the sensors. Those corresponding to the 
positive feelings are positive whereas those corresponding to the negative feelings are 
negative. The associations can arise also among affects and concepts.  
 
The role of the affects is to modulate the excitation mechanism.  An activation of a positive 
(negative) affect excites (inhibits) the associated concepts more than a standard (i.e. non-
affecting) concept. Moreover, the concepts that get strongly associated with some affect 
“inherit” its quality - they also start to behave like affects as far as the excitation is 
concerned. With the help of affects, one can simulate the reinforcement learning (so-called 
operant conditioning) and the delayed reinforcement learning. Reinforcement learning is 
learning where behavior is shaped and maintained by stimuli occurring after the responses 
rather than before. Delayed reinforcement learning is learning where the reinforcement 
stimulus – a reward or a punishment – does not necessary appear immediately after the step 
that will be reinforced. Pavlovian conditioning, reinforcement learning and delayed 
reinforcement learning seems to be the minimal test, which a cognitive system aspiring to 
produce a non-trivial behavior should pass.  As a matter of interest, it appears that after a 
suitable training a control unit designed in accordance with the previous principles, with 
sensorimotor units à la Turing machine tape and heads, can alone simulate any Turing 
machine [27]. The purpose of the training is to teach the system the transition function of 
the simulated Turing machine. In general, the controller is able to learn frequently repeated 
sequences of mental states, by connecting the respective concepts by chains of strong 
associations. Such sequences are also called habits. Habits can be seen as a rudimentary 
form of intentionality.  
 
As far as the mechanism of abstraction is concerned, it is always on. Once a concept is 
activated, associations to similar concepts are automatically established and/or 
strengthened. New abstract concepts are formed via the relation of similarity, as the 
common part of the respective concepts.  The “willingness” to create abstractions is 
controlled by the measure of similarity of the respective concepts and it could depend on 
the kind of overlapping multimodal information (motor, visual, etc.). In the memory of the 
controller, the concepts start to self-organize into so-called clusters. A cluster is a set of 
concepts that share a common abstraction, which lies in the center of the cluster. Note that 
via associations emerging due to similarity of concepts, the centers of clusters are activated 
always when any member of that cluster gets excited. This strengthens the presence of 
cluster centers. If a concept belongs to two or more clusters, all the respective centers are 
activated. The joint excitation of a concept from the activated clusters may activate that 
concept. This is how the activity in the controller changes from one mental state to the next 
one.   
 
Obviously, all clusters are structurally similar - they are “made of” concepts and 
associations among them. However, they differ by their semantics. We can distinguish 



three kinds of clusters: contextual, object, and functional ones. Contextual clusters evolve 
by a superposition (i.e., as abstractions via similarity relation) of concepts corresponding to 
multimodal information gained by perceptory units when observing the environment, i.e., 
the “context” in which an agent finds itself. Such concepts are also called episodic 
memories. In their centers, the abstract concepts characterizing the context prevail. Thus, a 
given context will excite the respective center, which abstracts, in sense, the most important 
features of the context. We see a form of attentional mechanism. Examples of contextual 
clusters are “on the street”, “in the forest”, “Christmas”, etc. Object clusters evolve around 
specific objects. A respective object (or rather: its abstract representation) is in the center of 
the cluster and in the members of that cluster, the motor information prevails stating, what 
can be done with the object. Thus, the object clusters serve as a role assignment mechanism 
for objects.  To select some concrete role, additional excitation from other concepts is 
needed. As an example, an object cluster named “key” can be mentioned, containing as its 
members contexts in which a key can be used, e.g. unlocking or locking a door, a safe, a 
car, etc. Finally, there are functional clusters. These are formed around frequently 
performed motor activities. A common abstraction of each of these activities presents the 
center of the respective cluster. In a sense, these clusters are “inverted” object clusters. 
They say, what for a motor activity is good. Thus, we can imagine functional clusters for 
unlocking a door, a safe, etc. 
 
In a well-developed agent’s memory, the chains of cluster centers forming habits govern 
the behavior of the agent at hand. Habits are present very strongly since they are 
continuously reinforced each time they are realized. As a result, an agent behaves as if 
seeking actively for opportunities to make use of habits that are appropriate to the given 
occasion.  
 
We can conclude that the behavior of an agent is driven both by the chains of acquired 
associations as well as by the current context in which an agent finds itself. The current 
context activates similar, more abstract concepts that ``trigger” the respective behavior as 
dictated by the chain of the respective associations. Only occasionally, at “crossings” of 
some habits, an agent might enter a situation where an additional input, i.e. an additional 
excitation from other concepts is needed to direct the agent's further steps. The requirement 
to get additional input is also a part of the respective habit. Nevertheless, under similar 
circumstances, an agent with sufficiently evolved clusters and chains of associations will 
behave similarly as in the past. Even under a novel circumstance, chains of abstraction at 
higher levels will be found to “match” the current circumstance and drive agent's behavior. 
Thus in practice an agent can never find itself in a position when it does not “know” what 
to do.  Note that in standard cases the agent’s behavior will unfold effortlessly, without the 
necessity of making some additional “considerations”. 
 
As seen from the previous sketch, the algorithmic operation of a control unit tends to be 
quite involved. The experiments with simple controllers (cogitoids) have shown (cf. [3]) 
that the above-sketched mechanism seems to be very sensitive to settings of its various 
parameters  (the excitatory/inhibitory increments, the weights of affects, etc.) and 
computationally quite demanding. Nevertheless, at present we are only interested in the 
specification of the control unit, rather than in its implementation. For the purpose of our 



next explanations, the previous description should be sufficient. For earlier attempts to 
realize a controller in form of a cogitoid, cf. [25], [26], [27], [28].  
 
The last component of HUGO’s architecture is its body. Its purpose is to support the 
agent’s sensorimotor units and to enclose all its parts into one protective envelope. 
  

3. Towards higher cognitive functions 
 
In the previous section, we described mechanisms realizing the basic cognitive tasks in 
HUGO. Now we proceed towards cognitive tasks that are more complex. The first of them 
is imitation. Its working principle is simple, since the possibility of its straightforward 
realization has been the main reason for incorporating the internal model of the agent’s 
world in form of the mirror net into the architecture. 
 
At first sight, a mirror net does not look much as a model of the world.  Nevertheless, in the 
mirror net “fragments” of the real world are indeed stored: its contents are in fact “episodic 
memories” consisting of multimodal complexes of related perceptions and actions as 
cognized by agent’s perceptions and “verified” in practice by its motor activities.  It is 
thanks to the learning mechanism of the mirror net that only those complexes are 
remembered here that have repeatedly shown up useful sometimes in the past. Note that 
since proprioceptory information with semantics, “how it is like to perceive this and that 
stimuli and to perform this and that action”, is always present, also agent’s own model is in 
fact available in the mirror net. Each piece of multimodal information represented in the 
mirror net describes “repository of atomic behavioral units” of the respective agent (cf. [13] 
for a similar observation).  The agent’s control unit assembles meaningful sequences from 
these pieces. These sequences govern the agent’s behavior.  
 
When it goes to imitation, imagine the following situation: agent A observes agent B 
performing a certain well distinguishable task. If A has in its repository of behavioral units 
multimodal information, which matches well the situation mediated by its sensors, then A’s 
mirror nets will identify the entire corresponding multimodal information (by virtue of 
associativity). At the same time, it will complement it, by the flag saying, “this is not my 
own experience” and deliver it to the central unit where it will be processed adequately. 
Thus, A knows what B is about to do, and hence, it can forecast the future actions of B. The 
“forecasting” is done by following the habit triggered by the current observation.  Agent A 
can even reconstruct “feelings” of B, since they are parts of the recovered multimodal 
information.  This might be called empathy in our model. Moreover, if we endow our agent 
by the ability to memorize short recent sequences of its mental states, than A can repeat the 
observed actions of B. This, of course, is imitation.  
 
The same mechanism helps to form a more detailed model of self. Namely, observing the 
activities of a similar agent from a distance helps the observer to “fill in” the gaps in its 
own internal world model, since from the beginning an observer only knows “what it looks 
like” if it observes its own part of the body while doing the actions at hand. At this stage, 
we are close to primitive communication done with the help of gestures. Indicating some 



action via a characteristic gesture, an agent “broadcasts” visual information that is 
completed by the observer‘s associative memory mechanism to the complete multimodal 
information. That is, with the help of a single gesture complex information can be 
mediated. By the way, here computational emotions can enter the game as a component of 
the communication. Their purpose is to modulate agent’s behavior, similarly as was the 
purpose of affects. However, emotions are triggered by different mechanisms than affects. 
The latter are controlled “directly” by sensors, the former are controlled by activities of 
appropriate concepts (which, eventually, could be grounded in affects). Of course, for such 
a purpose the agents must be appropriately equipped (e.g., by specific mimics, possibility 
of color changes, etc.).  Once we have articulating agents, it is possible to complement and 
subsequently even substitute gestures by articulated sounds. It is the birth of a language. It 
is good to observe that the agents “understand” their gestures (language) via empathy in 
terms of their grounding in the same sensorimotorics, and in the more involved case, in the 
same habits, respectively.  One important remark: the transition from gestures to 
articulation does not only mean that gestures get associated with the respective sounds, but 
above all, with the movements of speaking organs. Further, this facilitates still “speaking to 
oneself” and later the transition towards thinking (see in the sequel).  Note that our model 
explains, and thus supports, the classical linguistic hypothesis by Shapir-Whorf [19], [24], 
viz. language formation precedes thinking.   
 
Having communication ability, an agent is close to thinking. In HUGO, thinking is nothing 
else than communication with oneself. By communicating with oneself, an agent triggers 
the mechanism of discriminating between external stimuli  (I listen what I am talking) and 
the internal ones.  This mechanism may be termed as self-awareness in our model.   By a 
small modification (from the viewpoint of the agent’s designer), one can achieve that the 
still self-communication can be arranged without the involvement of speaking organs at all. 
In this case, the respective instructions will not reach these organs; the instructions will 
merely proceed to the mirror net (see Fig. 1).  Here they will invoke the same multimodal 
information as in the case when an agent directly hears the spoken language or perceives its 
gestures via proprioception (here we make use of our assumption that a motor part of 
multimodal information is sufficient to determine its rest). Obviously, while thinking an 
agent “switches off” any interaction with the external world (i.e., both perception and motor 
actions). Thus, in Fig. 1 do the dark parts of the schema depict an agent in a “thinking 
mode“; this is captured by the cycle from the controller to the mirror net and back to the 
controller.  In such a case, from the viewpoint of its internal mechanisms an agent operates 
as in the case of standard learning mode, i.e., when it receives the “real” perceptory 
information and executes all motor instructions. In the thinking mode, the same processes 
go on, but this time they are based on the virtual, rather than real, information mediated by 
the mirror net. One can say that in the thinking mode an agent works “off-line”, while in 
the standard mode it works “on-line”. Note that once an agent has the power of  “shutting 
itself off” from the external world in the thinking mode then this agent in fact distinguishes 
between a thought and reality. According to Alfred Smee [21], an English physician of the 
19th century, this is a hallmark of consciousness. George Dyson in [6] has suggested that 
this definition of consciousness has not yet been improved upon.  
 



In our model, we will define consciousness yet as a higher-level mental faculty than Smee 
has envisaged, still subsuming his idea. Our approach is much in the spirit of Minsky’s idea 
that “consciousness is a big suitcase”, carrying many different mental abilities [14]. In our 
model, a prologue to consciousness is communication and thinking. The “definition” of 
consciousness assumes that the agents are able to communicate in a higher-level language. 
A higher-level language is not a language of motor commands (a machine language, 
speaking in the programming jargon). Rather, a higher-level language is an “abstract” 
language in which a relatively complex action (corresponding to a sequence of mental 
states) or an abstract concept is substituted by a word expression or a gesture. A language 
level is the higher the “richer” the language is, i.e., the greater and more abstract is the set 
of things about which one can communicate.  Agents can be thought of as being conscious, 
as long as their language ability has reached such a level that they are able: 
• to speak or think on their own past, present and future experience, feelings, intentions 

and observed objects and actions and  to explain their own behavior and expected 
phenomena; 

• to imitate the observed activities of other agents, to speak or think on their (i.e., of other 
agents) past, present and future experience, feelings, and actions and to explain their 
observed or described behavior and intentions; 

• to learn, and 
• to realize activities given their verbal description in a high-level language. 
 
Note that such a state of matters cannot be achieved without agents having an internal 
world model to their disposal along with the knowledge of world’s functioning and that of 
their own functioning within this world; this state cannot be achieved without the agents 
being constructed so that they can learn.  It is also good to realize that we do not require 
that the agents share the same construction principles (are of the same phenotype). What is 
the prerequisite for consciousness to emerge is an interaction among agents in a higher-
level language with the same or similar semantics.  
 
When speaking about speaking, thinking (which is almost the same in our model), and 
consciousness, a “standard” question arises: how does an agent understand what it is 
speaking?  In general, when speaking, an agent need not make any considerable effort. This 
is because we have indicated above that in our model, speaking is a (complex) habit, and as 
such, it must be learned. As explained in the previous section, habits follow association 
paths along more abstract concepts, which are centers of clusters. Some of these clusters 
represent “crossroads” where the speech production can branch. Various branches can be 
taken in accordance with the current mental state. In the standard mode there is no need to 
“understand” the language similarly as there is no need to “understand” one’s acquired 
behavior. Much like the behavior, also speaking unfolds with ease, without the agent’s 
permanent control, what it is speaking or thinking. The situation changes in the case of a 
conscious agent. Assume that we want a conscious agent to give a verbal explanation of a 
given word meaning. The word at hand, being an abstract notion, is a center of various 
clusters: e.g., of a context cluster, of an object cluster, of a functional cluster, and of other 
“unnamed” clusters. The members of each of these clusters in fact define this word. Giving 
the meaning of a word (or of an object named by that word) means to follow some paths 



(associations) and to speak about them. Thus, contextual clusters describe situations in 
which the agent had encountered the given object described by that word; object clusters 
offer various roles which the respective object can play, and finally, functional clusters 
define the activities that can be related to (the objects denoted by) that word. Thus, in fact, 
“understanding” means to be able to generate many different short stories about the object 
of our interest, which are tailored to the agent’s specific experience with that notion, or its 
prior knowledge about it. This ability follows from our definition of consciousness. The 
choice of a story depends on the circumstance the agent is in at this very moment  (on its 
current sensory input, current emotions, association strengths settings, etc.).  It seems that a 
similar conclusion also follows from [4]. In our scenario, the “proof of understanding” is 
given by the agent’s explanation. Of course, instead of giving a verbal explanation an agent 
can merely think of the meaning of a word. In this way, he also becomes conscious of the 
meaning of that word. 
 
In our model, consciousness is not a “yes” or “no” property, which an entity does possess, 
or not. Rather, it is a continuous quality, which ranges from rudimentary forms towards the 
higher ones, which are beyond our imagination since our human consciousness is not 
obviously its terminal instance. E.g., one can imagine consciousness endowed by a 
mechanism of exact recall of whatever we have seen, heard, felt, and experienced. On the 
other hand, it is also obvious that one cannot assume or “grow-up” a consciousness in too 
simple agents whose architecture or embodiment is too poor to handle, e.g., imitation.  
 
It is interesting to observe that in spite of its relative simplicity our model in fact 
strengthens the Shapir-Whorf hypothesis: the language primary is not only in the 
development of thinking, it is even predominant in the development of consciousness. Only 
at a high level of abstract language development (and thus, of consciousness development) 
one can think of diminishing the dependence between mental development and 
embodiment and situatedness. Thus, we have reached the often-studied problem of a brain 
in the vat (cf. [17]). Such a brain could perhaps ponder on mathematical problems, but it 
will be devoid of any joy of life.    
 
The above “definition” of consciousness can be seen as a test to be applied to an entity in 
order to determine whether it is conscious according to that definition. Note, however, that 
we have brought arguments that a cognitive agent, designed in accordance with the 
proposed architecture, in principle could be conscious. From the functional and structural 
viewpoint, such an agent fulfills all assumptions needed for consciousness to emerge. It is a 
matter of the proper embodiment, of appropriate technical parameters (memory capacity, 
operational speed, properties of sensorimotor units, etc.) of its modules, and of suitable 
“education”, whether consciousness will develop or not. The situation here is somewhat 
analogical to that in computing: any properly designed computer (obeying von Neumann 
architecture, say) is in principle a universal computer, but in order to do useful things it 
must be properly engineered and properly programmed. The same holds for our 
architecture with respect to thinking and consciousness. We believe that by our proposal we 
have made the first steps towards determining cognitive potential of a system not by testing 
the respective device but by “opening it” and inspecting its architecture. 
 



4. Conclusion 
 
We have presented architecture (called HUGO) of an embodied cognitive agent with an 
incorporated world model. Its two main ingredients were the internal world model and the 
controller. The internal model of the world was based on the generalized idea of mirror 
neurons. The controller was based on the idea of self-organizing memory in which new 
concepts and association among them form automatically. We have presented “functional 
specifications” of these two units, which were sufficient to give plausible explanation of the 
evolution of higher cognitive faculties in our model, such as imitation learning, empathy, 
communication, thinking and eventually consciousness. HUGO seems to be one of the first 
cognitive models, which is able to explain the respective cognitive phenomena to such an 
extent. It represents a bridge between the theory of mind and the computational models of 
mind. So far, this model presents a proof of principle demonstrating the algorithmic nature 
of higher cognitive tasks. The model presents but the first step towards realization of 
genuine cognitive systems exhibiting interesting cognitive behavior. At the same time, it 
represents an attempt to characterize cognitive systems possessing advanced cognitive 
abilities “structurally”, by their architecture.  In order to advance along these lines, a further 
development of the model, based on experiments aimed at validation of ideas presented in 
this paper, is needed.    
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