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1 Introduction

Let Θ ⊂ Rm be a space of parameters and X = (X1, ..., Xn) a vector of
random variables i.i.d. according to Cramér-Rao regular continuous distri-
bution Fθ(x) with unknown true value θ ∈ Θ, which is to be estimated from
a realization (x1, ..., xn) of X. The standard problem has a standard solution:
the maximum likelihood estimate θ̂.

However, there are some distributions, the vector θ of which has no com-
ponent characterizing a ’center’ and/or dispersion of distribution Fθ, so that
θ̂ does not offer numbers describing ’center’ and/or the dispersion of the ob-
served data. The usual measures of the central tendency and dispersion, the
mean and variance, do not usually exist if the distribution is heavy-tailed.
Robust estimates of a ’center’ and dispersion of data samples, such as MAD
and median deviation, do not take into account of prior information.

In the present paper we at first define Johnson score and show that for
a certain class of distributions it coincides with likelihood score for the most
important parameter. This part accomplishes the approach consisting in
viewing distributions with interval support as transformed ’prototypes’ with
’full’ support R, introduced by Johnson (1949) and generalized by Fabián
(2001).

In the rest of the paper, by means of the Johnson score, we suggest new
measures of central tendency and the dispersion of continuous probability
distributions. They exist for common model distributions and their estimates
can be constructed by means of the maximum likelihood estimates without
any additional effort.

2 Johnson score

Distribution with distribution function F is said to be supported by interval
(a, b) ⊆ R if its density f(x) = dF (x)/dx satisfies relation

f(x) =

{
> 0 for x ∈ (a, b)
= 0 for x ∈ R− (a, b).
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Definition 1.
A mapping η : (a, b) → R given by

η(x) =





x if (a, b) = R
log(x− a) if −∞ < a < b = ∞
log

(x− a)
(b− x)

if −∞ < a < b < ∞
log(b− x) if −∞ = a < b < ∞

(1)

will be called a modified Johnson transformation.
(1) is the Johnson’s transformation (Johnson 1949, cf. Johnson, Kotz and

Ballakrishnan, 1995) adapted to arbitrary interval support.
Definition 2.
Let (a, b) ⊆ R and η be given by (1). Let F be an absolutely continuous

distribution supported by (a, b) with continuously differentiable density f(x).
Let function T (x) be given by formula

T (x) =
1

f(x)

d

dx

(
− 1

η′(x)
f(x)

)
. (2)

Let the solution x∗ of equation

T (x) = 0 (3)

be unique. The value x∗ will be called the Johnson point (J-point) and
function

S(x) = η′(x∗)T (x) (4)

the Johnson score (J-score) of distribution F.
If F has ’full’ support R, η′(x) = 1 and J-score S(x) = −f ′(x)/f(x) is the

score function. To show what J-score means when a distribution has ’par-
tial’ support (a, b) 6= R, we have to study parametric distributions with full
support and with location and scale form, transformed to (a, b) by mapping
η.

Definition 3.
Let G be distribution supported by R, η : (a, b) → R be given by (1)

and F = Gη be the transformed distribution on (a, b). G will be called a
prototype of F.

Let g be the density of G. Then the transformed distribution F = Gη has
density

f(x) = g(η(x))η′(x). (5)
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Definition 4.
Let the density g of distribution G supported by R be continuously dif-

ferentiable and unimodal with

g′(0) = 0. (6)

Let Gµ,s = {Gµ,s : µ ∈ R, s ∈ (0,∞)} be a parametrized family of distribu-
tions with parent G and densities in the form

gµ,s(y) =
1

s
g

(
y − µ

s

)
.

Let η : (a, b) → R be given by (1) and

F (a,b)
t,s = {Ft,s : Ft,s = Gµ,sη, t = η−1(µ)} (7)

be a family of transformed distributions with support (a, b). A set of all

families in form (7) is denoted by Π
(a,b)
t,s and called a set of distributions on

(a, b) with location and scale prototypes.

(5) and (7) implies that density of Ft,s ∈ F (a,b)
t,s is

ft,s(x) =
1

s
g

(
η(x)− η(t)

s

)
η′(x) (8)

(Proposition 5, Fabián and Vajda, 2003). Parameter

t = η−1(µ) (9)

of distributions from Π
(a,b)
t,s will be called the Johnson parameter.

Now we show that the J-score of a distribution with location and scale
prototype is the likelihood score for the Johnson parameter.

Proposition 1.
Let Ft,s ∈ Π

(a,b)
t,s . Its J-point is x∗ = t and the J-score

St,s(x) =
∂

∂t
log ft,s(x).

Proof. Let us set

u =
η(x)− η(t)

s
.
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By (4), (2), (8) and the chain rule for differentiation

St,s(x) = η′(t)Tt,s(x) =
η′(t)

ft,s(x)

d

dx

(
− 1

η′(x)
ft,s(x)

)

=
η′(t)

g(u)η′(x)

d(−g(u))

du

∂u

∂x
,

so that

St,s(x) = −η′(t)
s

g′(u)

g(u)
. (10)

From (10) and (6) is follows that St,s(t) = 0. The second assertion follows
from the fact that, using (8),

∂

∂t
log ft,s(x) =

1

ft,s(x)

∂

∂t
ft,s(x) =

1

g(u)

dg(u)

du

∂u

∂t
= −η′(t)

s

g′(u)

g(u)

equals to (10).

The J-scores of distributions either i/ supported by R or ii/ from Π
(a,b)
t,s

are thus well-known important functions. J-scores of distributions without
Johnson parameter are unknown. We suppose that they could be of similar
importance as i/ and ii/ are.

Remark.
The modified Johnson transformation is preferred since i/prototype of the

lognormal distribution is the normal one, ii/ score function of the uniform
distribution on (0, 1) is linear, iii/ (η(x)− η(t)) is continuous when b → ∞.
However, for some distributions, simpler formulas can be obtained by the
use of other η : (a, b) → R; for instance, for distributions described by
means of trigonometric functions on (−π/, π/2), a more suitable mapping is
η(x) = tan(x).

3 Numerical characteristics of distributions

The J-point of a distribution can be taken as a measure of its centrality.
Proposition 2.
Let F satisfy the assumptions of Definition 2. Then its J-point exists.
Proof. Let G = Fη−1 be a prototype of F and SG(y) = −g′(y)/g(y). By

(2) and (5),

T (x) =
1

g(η(x))η′(x)

d

dx
(−g(η(x))) = −g′(η(x))

g(η(x))
,
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that is,
T (x) = SG(η(x)). (11)

By assumptions, SG is continuous and for large y0 > 0 it holds that−g′(−y0) <
0 and −g′(y0) > 0, which accomplishes the proof.

Since η′(x) > 0, the J-point can be defined instead of (3) by equation
S(x∗) = 0. x∗ is unique if the density of the prototype is unimodal. Function
T (x) was introduced by relation (11) under the name core function in Fabián
(2001).

Now we introduce a number which can serve as a measure of dispersion
of a distribution around its J-point.

Definition 5.
Let the assumptions of Definition 2 hold for F with J-score S and let the

second J-score moment,

IS = ES2 =

∫ b

a

S2(x)f(x) dx, (12)

be finite. The value σ2
S = I−1

S will be called the Johnson variance (J-variance)
of distribution F.

Taking into account (12) and Proposition 1, for distributions from Π
(a,b)
t,s ,

σS is the reciprocal value of Fisher information for the Johnson parameter.
Proposition 3.
Let Ft,s ∈ Π

(a,b)
t,s and St,s be the corresponding J-score. Let Gµ,s, the

prototype of Ft,s, have parent G with density g, score function SG(u) =
−g′(u)/g(u) and Fisher information

ISG
=

∫ ∞

−∞
S2

G(u)g(u)du. (13)

Then the J-variance of Ft,s is given by

σ2
S =

s2

[η′(t)]2ISG

. (14)

Proof. (14) follows immediately from the expectation of the square of
(10).

Corollary.
The J-variance of distributions from Π

(0,∞)
t,s is σ2

S = t2s2/ISG
.

5



The J-variance of a distribution on (0,∞) is thus the squared product of
the scale of the prototype and of the coordinate of its ’central point’, which
seems to be a reasonable measure of dispersion of the distribution. The
square root of the J-variance we call a standard Johnson deviation.

4 Examples

Example 1.
Let g(z) = eze−ez

be density of the parent of Gumbel family Gµ,s. Gµ,s ∈
Gµ,s have density in a location and scale form

gµ,s(y) =
1

s
g

(
y − µ

s

)
.

By (8) the densities of transformed distribution Ft,s on (0,∞) are

ft,s(x) =
1

s
g

(
ln x− ln t

s

)
1

x
=

β

x

(x

t

)β

e−(x/t)β

(15)

where we denoted β = 1/s. The transformed family (15) is the Weibull family
with Johnson parameter t = eµ. By (4), the J-score of Ft,s is

St,s(x) = t−1((x/t)β − 1), (16)

which equals to the likelihood score for t. The J-point of Ft,s is x∗ = t,

ISG
= 1 and σ2

S = t2/β2. We add that other members of Π
(0,∞)
t,s are for

instance the lognormal, Rayleigh, Maxwell, log-logistic, Fréchet, log-Cauchy
and the generalized inverse Gaussian distributions (cf. Johnson, Kotz and
Ballakrishnan, 1994, 1995).

Example 2.
An example of a prototype distribution without location and scale pa-

rameters is a distribution supported by R with density

fRp,q(x) =
1

B(p, q)

epx

(ex + 1)p+q
(17)

with shape parameters p > 0, q > 0. Let us call it a prototype beta. The
densities of the transformed distributions on (0,∞) and (0, 1) are

f(0,∞)(x) =
1

B(p, q)

xp−1

(x + 1)p+q

f(0,1)(x) =
1

B(p, q)
xp−1(1− x)q−1,
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which are densities of the beta-prime and beta distribution, respectively.
The mean τ =

∫ b

a
xf(a,b)(x) dx and variance σ =

∫ b

a
(x − τ)2f(a,b)(x) dx of

all three beta distributions are given in Table 1a, ψ denotes the logarithmic
derivative of gamma function. Both the mean and variance of the beta-prime
distribution exist only in the limited range of parameter q.

Table 1 Mean and variance of beta distributions.

distribution density τ σ2

prototype beta fR ψ(p)− ψ(q) ψ′(p) + ψ′(q)
beta-prime f(0,∞)

p
q−1

, q > 1 p(p+q+1)
(q−1)2(q−2)

, q > 2

beta f(0,1)
p

p+q
pq

(p+q)2(p+q+1)

The score function of prototype beta is

SR(x) = −f ′R(x)

fR(x)
=

qex − p

ex + 1
. (18)

From (2) or from (11) one obtains

T(0,∞)(x) =
qx− p

x + 1
T(0,1)(x) = (p + q)x− p.

The J-points are thus x∗(0,∞) = p/q and x∗(0,1) = p/(p + q). Making use of (4)

and (12) we obtained the J-variances in Table 2.

Table 2 J-point and J-variance of beta distributions.

distribution density x∗ σ2
S

prototype beta fR ln p
q

p+q+1
pq

beta-prime f(0,∞)
p
q

p(p+q+1)
q3

beta f(0,1)
p

p+q
p(p+q+1)
q(p+q)2

σ2
S of the beta-prime distribution looks like variance with ’corrected’ de-

nominator. The J-point of the beta distribution equals to the mean (as a
consequence of a linear J-score), σS and σ are different. If p = q and p → 0,
it holds that σ → 1/2 whereas σS of U-shaped beta distributions grows to
infinity. By the same procedure one obtains J-points and J-variances of any
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distribution which is not a member of Π
(0,∞)
t,s , such as the general gamma

distribution (Klugmann et al. 1998), gamma, Fisher-Snedecor, Pareto, Lo-
max, Burr III, Burr XII, Wald, inverse Gaussian, Student and Gompertz
distributions (Johnson, Kotz and Ballakrishnan, 1994, 1995).

Example 3.
Remind that for distributions G with support R the J-score is SG(x) =

−g′(x)/g(x) and ISG
is the Fisher information of the distribution (Cover and

Thomas, 1993, p. 494). For normal distribution N (µ, s),

SG(x) =
x− µ

s
(19)

and its σS = s. In case of the Cauchy distribution σS = s
√

2, for logistic
distribution σS = s

√
3 .

Let us find a symmetric prototype beta distribution (17) with σS = 1.
The solution of equation 1 = p(p + q + 1)/q3 for p = q gives value p =
1 +

√
2 = 2.414. In Fig.1, a surprising coincidence of fR1+

√
2,1+

√
2

with density
of the standard normal is apparent.

Let S1 and S2 be J-scores of distributions F1, F2. A distance between
F1, F2 was introduced by Fabián and Vajda (2003) as (in terminology of the
present paper) the mean square difference of corresponding J-scores,

CD(F1, F2) = (IS1)
−1Ef1(S1 − S2)

2. (20)

Distance (20) between the prototype beta FRp,p and the standard normal
distribution is, by (19) and (18),

CD(Φ, FRp,p) =
1

2
√

π

∫ ∞

−∞

(
x− p

ex − 1

ex + 1

)2

e−x2/2 dx. (21)

Minimizing (21), one obtains p = 2.382, which is in a good agreement with
the value obtained above.

Example 4.
Figure 2 shows comparison of σ and σS as functions of 1/β of the Fréchet

distribution (16) (Fig. 2a) and of 1/q of the beta-prime distribution (17) with
p = q (Fig 2b). σ is typically growing exponentially to the limit of the range
of its existence, whereas σS is increasing linearly or nearly linearly. By dotted
lines, average values of the median absolute deviation MAD = median(|xi −
median(xj)|) are plotted. They were estimated in a simulation experiment
with samples of size 50. Standard deviation of heavy-tailed distributions is
of no use even if it exists, whereas σS is comparable with MAD in both cases.
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5 Characteristics of data samples

Let us denote the J-score of Fθ(x), θ ∈ Θ by Sθ(x). We propose to character-
ize a sample X taken from Fθ, θ unknown, by the estimate of the J-point of
Fθ(x), that is, by the solution of equation Sθ̂(x̂

∗) = 0 and by the estimate of

the J-variance of Fθ(x) by σ̂2
S = IS(θ̂)−1, where θ̂ is the maximum likelihood

estimate of θ.
It is well known that if θ̂ is asymptotically normal (AN(θ, n−1Σ)), and

if h is continuously differentiable at θ, then h(θ̂) is an estimate of h(θ),
consistent and AN(h(θ), n−1DΣD′) where D = (∂h(θ)/∂θ1, ..., ∂h(θ)/∂θm)
(e.g. Corollary to Theorem A, Serfling 1980, pp.122). Since S−1

θ and 1/IS(θ)
are by assumptions continuous and IS(θ) > 0, we conclude that having the
maximum likelihood estimates of parameters of the distribution, one can
obtain, without any further efforts, the numbers characterizing the ’center’
and dispersion of the data sample together with their statistical properties.
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Figure 1. Densities of prototype beta (p = q = 1 +
√

2, full line)
and standard normal (dotted line) with σS = 1.
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Figure 2. Deviances of the Fréchet (a) and beta-prime
(b) distributions 1 - σ, 2 - σJ , 3 - MAD.
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