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1 Normalized Width-d 1-Branching Programs

A branching program P, on the set of input Boolean variables X, = {z1,...,2,} is a directed
acyclic multi-graph G = (V, E) that has one source s € V of zero in-degree and, except for sinks
of zero out-degree, all the inner (non-sink) nodes have out-degree 2. In addition, the inner nodes
get labels from X,, and the sinks get labels from {0,1}. For each inner node, one of the outgoing
edges gets the label 0 and the other one gets the label 1. The branching program P, computes
Boolean function P, : {0,1}" — {0,1} as follows. The computational path of P, for an input
a=(a,...,an) € {0,1}" starts at source s. At any inner node labeled by z; € X,,, input variable
z; is tested and this path continues with the outgoing edge labeled by a; to the next node, which
is repeated until the path reaches the sink whose label gives the output value P,(a). Denote by
P.1(a) = {a € {0,1}"| P,(a) = a} the set of inputs for which P, gives a € {0,1}. For inputs of
arbitrary lengths, infinite families {P,} of branching programs, each P, for one input length n > 1,
are used.

A branching program P, is called read-once (or shortly 1-branching program) if every input variable
from X, is tested at most once along each computational path. Here we consider leveled branching
programs in which each node belongs to a level and edges lead from level k > 0 only to the next level
k + 1. We assume that the source of P, creates level 0 whereas the last level is composed of sinks.
The number of levels decreased by 1 equals the depth of P, which is the length of its longest path,
and the maximum number of nodes on one level is called the width of P,.

For a 1-branching program P,, of width d define a dxd transition matriz Ty, onlevel £ > 1 such that
tgf) € {0, 1,1} is the half of the number of edges leading from node U](.kfl) (1<j<d)onlevel k—1 of
(5 e (k1)
2 RS Y] J

(k—1)

to vzgk). Clearly, Zle tgf) = 1 since this sum equals the half of the out-degree of inner node v, ,

P, tonode v;”’ (1 <i < d)onlevel k. For example = 1 implies there is a double edge from v

and 2- 2?21 tg-“) is the in-degree of node vgk). Denote by a column vector p®) = (p{¥) .., pgk))T the

(k)

distribution of inputs among d nodes on level k of P,, that is p; ’ is the probability that a random

input is tested at node vgk) which equals the ratio of inputs from M (vgk)) C {0,1}™ that are tested
at ng) to all 2™ possible inputs. It follows U;.i:l M(vz(k)) = {0,1}" and E?:l pgk) = 1 for every level
k>o0.

Given the distribution p*~1 on level & — 1, the distribution on the subsequent level k can be
computed using transition matrix T}, as follows:

p® =T, . pt—1 (1.1)

It is because the ratio of inputs coming to node vgk) from previous-level nodes equals pgk) = E?:l tg-“) pgkfl)

since each of the two edges outgoing from node v](-kfl) distributes exactly the half of the inputs tested

(k—1)
at v; .

We say that a 1-branching program P,, of width d is normalized if P,, does not contain the identity
transition, that is Ty # I, and satisfies

1> p{ > pf? > >pf >0 (1.2)
for every k > log, d.

Lemma 1 Any width-d 1-branching program can be normalized.

Proof: We can assume without loss of generality there are exactly d nodes on every level k > log, d
of a width-d branching program since a node with in-degree at least 2 that belongs to level k > log, d
with fewer than d nodes can possibly be split into two nodes with the same outgoing edges while the
incoming edges being arbitrarily divided between these two new nodes.

The normalization proceeds by induction on level k starting with the initial distribution p(® =
(1,0,...,0)T. Assume that the branching program has been normalized up to level k — 1. Let
m:{1,...,d} — {1,...,d} be the permutation that meets the decreasing order of distribution on

level k so that psrk()l) > psrké) > e > pgrk()d). Now it suffices to sort the nodes on level k according



to permutation m which gives rise to new transition matrices T}, and T}, by permuting the rows
of Ty and the columns of Ty41, respectively, that is t' (k) — tsrk()l). and ¢/ gﬁl) = tgfr?;) Such node
permutations do not change the function that is computed by the program. The same holds after we

delete the identity transitions. O

In the sequel, we confine ourselves to the families of normalized 1-branching programs {P,} of
width 3. Any such program P, satisfies p( )+ pgk) + pgk) =1land 1> pgk) > pgk) > pgk) > 0 which
implies

p" > % < % ) < é (1.3)
for every level 2 < k < d,, where d,, < n is the depth of P,. In addition, denote by m,, < d,, the last
level of P, such that pgm") > % Then the following trivial observations follows:

Lemma 2 For every level k =my, +1,...,d, it holds
(@) ) =0,

(ii) p(k V> 5 tmplies th) =

(iif) p(k) & implies tg’i) =1,

(iv) p(k b > and p(k) = zmplzes t(k) <i.

We say that a normalized 1-branching program P, of width 3 is simple if P,, does not contain a
transition T}, such that tgli) = t(k) 1 and t§’;) = tég) =1, below level m,, (i.e. my < k < dp).

2 Main Result

An e-hitting set for a class of families of branching programs is a set M such that for every family
{P,} in this class that satisfies |P,;*(1)|/2" > ¢ for every n, there is an n-bit input a € M for each n
such that P,(a) =1
Alon, Goldreich, Hastad, and Peralta (1992) provided a polynomial time construction of a set
An € {0,1}™ of Boolean vectors satisfying {a;, ...a;, |a € Ay} = {0,1}" for any choice 1 <41 < iz <
- < i, < nofr <log,n indices. We define M¢ = Q.(A,) and M® = J,~; M, where Q.(4) =
{a’ € {0,1}"| (3a € A) H(a,a’) < ¢} for some constant ¢ > 0, and H(a,a’) = [{1 <i < nla; # a}}|
denotes the Hamming distance between a and a’. Obviously, set M¢ can easily be constructed from
A, in polynomial time.

: 191 34y . .
Theorem 1 M3® is a Tos-hitting  set  for  the class of  simple  normalized

1-branching programs of width 3.

In fact our proof technique works for a more general class of normalized width-3 1-branching
programs than the simple ones, which is defined by the following rather complicated restriction. Let
c>0and0<d < % be an integer and real constant, respectively. We say that a family of normalized
width-3 1-branching programs {P,} is (c,d)-restricted if for every n > 1 either m,, = d,, or there is a
level m,, < m), <d, of P, such that

) >4, (2.1)
ty) =0, (2.2)
_ 1 1
cn=‘{m;<k5dn e 1’zﬁp(’<5 t(k)—i}‘SC- (2.3)

Thus, we will first prove the following theorem:

Theorem 2 M3 is a (1 - —) -hitting set for the class of (c,d)-restricted normalized 1-branching
programs of width 3.



Proof: Let {P,} be a family of (¢, §)-restricted normalized width-3 1-branching programs such that
|P71(1)]/2" > 1 — & which reads

P—l
2n 8
and on the contrary suppose that
P,(a) =0 for every a€ MSH3. (2.5)

Inequality (2.4) implies p(d") < |P71(0)]/2" < 75 due to 6 < %, and hence m,, < d,. It follows from
the definition of (¢, §)-restriction that there must be a level m,, < mi, < d, of P, satisfying (2.1)—(2.3).

3 Constructing the Double-Edge Path

In this section, we will reduce the family {P,,} to a family of normalized width-3 1-branching programs
{P/} satisfying condition (2.4) and
P!(a) =0 forevery ae€ M2, (3.1)
such that
t* =1 and ¥ %) €{0,1} forevery k=m!,... d,. (3.2)
We start with the last level m), < m' < d,, that meets

m— 1 my 1 my 1
pg 1)2—; pg )<6’ and t52)=§ (3.3)

(=]

which implies tﬁ’l) =1 and tg?l) = 1 by Lemma 2, if such m' exists; otherwise define m' = m,.
In what follows we will show how to modify P, below level m' in order to fulfill condition (3.2) for
k=m',...,d, at the cost of weakening the assumption (2.5) which will hold only for every a € M&t2.
In particular, we will obtain #' g") = 0 which breaks (3.3) (cf. (2.2)). This modification procedure
is then repeated every time for the new last m' satisfying (3.3) until m’ = m/!, inclusive, which is
performed at most ¢ + 1 times according to (2.3). After that P, is produced which satisfies (2.4),
(3.1), and (3.2).

For every level k =m/,...,d, denote
k) (k) < 1
vy, if > =
Vl(k { L} } } y Z(k) ¢ and V(k) = {’U(k) ék),vgk)} \ Vl(k) . (3.4)
1 <%

In addition, define formally V3ml_l) = {v2m1_1), vgml_l)}.

Lemma 3 For every k=m' +1,...,d,, there is no edge leading from Vl(kfl) to V3(k).

Proof: Let m' < k < d,,. We will first observe that no edge leads from V(k Y to v(k . It follows

from Lemma 2.i that there is no edge from fuf Y to vék). If v2k 2 Vl(’c 1) then p(’c 1) > 1 ¢ which

means no edge from node vék_l) to vék) according to Lemma 2.ii. Further assume v(k) € V(k) nd

we will show that no edge leads from V(k_l) to vgk). Thus pgk) < % which guarantees no edge from

node v(k D to v(k) by Lemma 2.iii. If v(k b Vl(k_l), that is pgk_l) > %, then there is no edge from
ék Y to vék) by Lemma 2.iv and by the fact that m/' is the last level satisfying (3.3). O

Clearly, all sinks from Vl(d") have label 1 according to (2.4) and (3.4). Hence, it follows from
Lemma 3 and (2.5) that

M3 C U M(v) forevery k=m',...,d,. (3.5)
vEVs(k)



Suppose that on some level m' < k < d,,, there is only a single edge leading from a node u € V3(k_1)

to node v € Vl(k). Let z; € X, be the input variable tested at node u. Suppose that a’ € M (u) for
some input a' € MS™2, and consider the input a € Q4 ({a’}) C M&™3 that differs from a’ in the ith bit
only. One of the computational paths for a and a’ that coincide from source s up to node u due to P,

is read-once, then follows the edge from u to v and ends in a sink from V(d ") labeled by 1 according

to Lemma 3, which contradicts P,(a) = P,(a’) = 0. It follows that Mc+2 C M(u') for the other

node u’ € Vg(

edges outgoing from u' lead to V3(k) Branching program P), is created from P, by redirecting both

edges outgoing from u to node vi ) whenever a single edge from u € V3(k Diowve V( ) occurs, for

all m' < k <d,. Moreover, P/ is normalized by using Lemma 1 where non-zero in- degrees of nodes

vék) Ué ) are guaranteed by two edges outgoing from u’. After this modification, t§2), tg € {0,1} for

every k =m',...,d, (cf. (3.2)), and P! (a’) = 0 for every a’ € M&F? (cf. (2.5)) while inequality (2.4)
is preserved for P! due to |P.71(0)| < |P, 1(0)].
In addition, we will further modify P}, so that the function computed by P; is not changed while

< ¢ for every k = m/,...,d, which implies tg’i) = 1 by Lemma 2.iii, and thus ensures (3.2) for

k=1) \ {u} which means that, in this case, V(lc V= {u,u'} contains two nodes and both

)

every k =m/, ... d,. First recall from (3.3) that p(m ) 1 for m' > m),. Suppose there is a sequence
of levels k = kl,.. , ko with pg ) 2 = where m' < k; < kz < d, such that p”cl b < % if k1 > m!,
and p(kZH) < % if k2 < d,. This means V3Ucl b= {v ékl 2 ékl 2 } and V3(k) = {vék)} for every
k=ki,..., ky. Hence, Mct2 C M(w$") for all ky < k < ks by (3.5), which implies ¢\t = 1 for every
k=k+1,... k. According to Lemma 3, transitions Ty, for k; < k < ky can be deleted whereas
levels k = k; = ko > m' are identified. Moreover, we know for k < d,, that t(kH) = t(kH) =1 and
tggﬂ) = tggﬂ) = 1 since there is no edge from Vl( ) = {vgk), 2k)} to V3(k+1) = {vgkﬂ),vgk“)} by
Lemma 3.

Recall that if there is an edge from V3(lc Y to V(’c then this must be a double edge leading to v(k)
by the construction of P;,. For the case when there is no edge leading from V(k = ={v 5’“ 1), ék 1)}

to v§ ) which implies tﬁ) = é’i) =1 and tgg) = g? = 1, transition T} is deleted so that node v{k_l)

is replaced by v( ) and two copies of vgk) are substituted for vék_l), vék_l). For k < d,,, this means
t' §’{’ =1andt gg) =t g’;) =t é’;) =t g? = 1, and for k = d,, the new sink v§d"71) gets label 1 whereas
véd B ) (d U are labeled by 0.

Further assume a double edge from v](k Ve V (k=1) — = {vy (k= 1) (k 1)} to v(k) exists and thus
MEF2 C M (v, (k= 1)) for the other node ’U(k Ve V3('C 2 \{UJ(-k 1)} Wthh implies there is also a double

edge from v§ o v( ) since V(k) = {v(k) k)} For k < d,,, nodes v£k) and ’U(k) are merged into

v{(k), that is t'§1) = t'g];) =1 and t’(k+1) = 1, whereas node ’U( ) is split into two nodes v} k), é(k)
each having one incoming edge from vgk_l) and the same outgoing edges, that is ¢’ (k) =t'3 (k) =3 L and

t %H) = t’ggﬂ) =t g’;“) =t %H) = 5. For k = d,,, transition Ty, is deleted and the new sinks in

1
=1
vgd"_l),v(-d"_l) have the same label 1 whereas vﬁd”_l)

: gets label 0. This completes the construction
of P! satisfying (2.4), (3.1), and (3.2).

Lemma 4 For every level k =m/, ... d, it holds
() 55,488 < L,
(i) 4% =

ceey (K
(iii) tgz) > %
Proof:

(k)

(i) On the contrary suppose there is a double edge to v3~’ on some level m! < k < d,, which must

lead from V (k1) = {v, (k= 1),v3k 1)} according to Lemma 2.i. Moreover, there is no edge from



V3(k_1) to v(k) since this would have to be a double edge by (3.2) inducing zero in-degree of

vé ) which contradicts the fact that P! is normalized. Similarly, a double edge leading to v( )

would give rise to the identity transition possibly after exchanging vz(, ) and vé ) Hence, there is

() implying p{) < 1 P~ while the remaining three edges
from V3(k b (including the double edge) lead to v( ) 1mp1y1ng p(k) : pgk b , which contradicts

pék) > pgk)-

only a single edge from V(k D to Uy

(ii) On the contrary suppose t§2) > 0 on some level m!, < k < d,,. We know k > m], by assumption

(2.2), and hence, ¥ = £*=Y = 1 and #{¥) = 1 from (3.2). It follows that M2 C M(v{F")u
M(vékﬁ)) according to (3.1) (cf. (3.5)). Thus let u € V(k72) = {vékﬁ),vgk 2) } be a node
such that a € M (u) for some a € A,. Suppose there is an edge leading from u to v(k Vo

to vék_l) which are both connected via a double edge to v( ). Then there is an input vector
a' € O;({a}) C M2 whose computational path coincides from source s up to node u with that
(k—1) =1 ¢ U(k), and ends in sink v(d"), which contradicts

P! (a’') = 0. Hence, there must be a double edge from u to vé ~Y Which is a contradiction to (i).

for a, then continues via (% Oor U,y

(iii) We know tg;) <1and tgg) =0 from (i) and (ii), respectively, which implies téQ) > 1

O

4 Asymptotic Analysis
Lemma 5 The sink véd”) has label 0.

Proof: Let u € V3(d" = {vy (dn 71) 1)} be a node labeled by x; € X, such that a,a’ € M(u)
for some a € A, where a' € Ql({a}) g .M2 differs from a in the ith bit. Both edges outgoing from

u must lead to a sink labeled by 0 due to P,(a) = P,(a’) = 0. Since a double edge to vgd") breaks

Lemma 4.i there must be an edge leading from node u to the sink Uéd"), and hence, vé ") has label 0.

O
For any level m!, < r < dy, such that t( = 1 denote by h, > 0 the maximum number of levels
above r satisfying té2 M =1and ;™ = t(r M= i forevery h=1,...,h,.

Lemma 6 There exists level m!, + h, +2 < r < d, such that tﬁ? =1 and h, <log,n.

Proof: Denote by £ > m/, +1 a level such that tgé) =3 L and 1522 =1fork=ml +1,...,£—1, which
implies p(l - p( =) Thus p(l) —|—p(l) > p(Z b - pgm n) > pgm 1)/2 > 4/2 according to Lemma 4.iii
and (2.1). It follows from (2.4), (3.2) and Lemma 4.ii that a level £ < r < d,, exists such that tg) =1
Moreover, r — h,. > £ by definition of h,. since tg? = %, which implies r > £+ h,+1 > m!, +h,.+2. Let

m), + hy, +2 <1y <ry <d, be the least and greatest levels, respectively, such that tggl) = tg?) =1

In addition, we know that

(ri=hr—=1) _

—ha — 1)
py Y P+l > 5 (4.1)
and for any level m! + h, +2 < r < d, such that tg? =1 it holds that
1 hooty Py MY
A R G A « N i >
—h.—1 —hn—1 1
(50l (1= 5 ) (42)



On the contrary suppose that h, > log, n for all levels m!, + h, +2 < r < d,, such that t%) = 1. Thus,

LAOINS P (dn) | (dn) 1 (ra) | (ra)
—_— > = = = >
2n 2 ( TP ) 2 (p2 TP ) =
dn n
1 (Tl_hr _1) (Tl_hr _1) 1 Togo n 5 1 Togo n
5 (p2 1 + Ps3 1 ) 1-— 21052 Py Z Z 1-— E (43)
according to Lemma 5, (3.2), Lemma 4.ii, (4.1), and (4.2). By introducing the inequality
1 1o = n 1 1
1>(1——) IS PRI (4.4)
n n log,n logy n
into (4.3) we obtain
[P O) 0 1
on 74 ! logy, n (4.5)

which contradicts (2.4). O

Consider level m!, + h, + 2 < r < d,, such that tg? =1 and h, < log, n, which exists according
to Lemma 6. By definition of 4, there is a vector a € A, such that if a € M (vgr_hr_l)) then the
computational path for input a traverses nodes v?E r—h-—1) érih 2 véril), UY) . Tt follows from the
definition of b, and Lemma, 4.iii that t(T he=1) - 1mp1y1ng t(r hD) = 1 by Lemma 4.ii. In addition,
t(T he=2) > 1 5 by Lemma 4.iii. Furthermore, elther tgg b2 = implying a € M2 C M(ng_h’_3)),
or o " Dk > 1 according to Lemma 4.i. which gives a € M2 C M@ "y U M@ ),
In both cases, an input a’' € Qs({a}) C M2 exists whose computational path from source s up to
level » — h, — 3 coincides with that for a, and then continues via ’U(T b2 o vg“’”*”, further
traversing nodes v{" ") ... v{"™ o{") which contradicts P,(a’) = 0. Thus assumption (2.4) leads
to a contradiction which completes the proof of Theorem 2. O

Proof:[Theorem 1] According to Theorem 2 it suffices to show that simple {P,} is (0, 5 )-restricted.
Consider first the case when there is a level m,, < m' < d, satisfying (3.3) and take the last such

m' in P,. By Lemma 2 we know that ™) = 1 and {77 = ¢{™) = 1, and hence, tgg"’) = 1 due to

P, is s1mp1e Clearly, M3 C M(vé Dy M (vg (m'~1)y " and M2 C M( (m' =1 from Lemma 3 and

(m) ) —

5, which implies t(m . It follows that tgg" 1) = 0 since otherwise an input a € M? would

exist Whose computational path leads through Ué D) o vém Y and continues via vg ) to v(m +)
contradicting P, ( ) = 0. Thus define m!, = m' + 1 which confirms {P,} is (0, 55)-restricted due to

even pg ") > L from (3.3).

For the case when (3.3) does not happen below m,, we employ the reduction from Section 3 for

m' = my + 1, which ensures (3.2) for k =m,, +1,...,dy, and M2 C M({™)) U M (v{™). Clearly,
there is at least one edge leading from anode u € V{™) = {of™) o{™)} to vf™ ) implying
(m"+1) > L due to p( mn) > p(m") > L. On the contrary suppose tgg”"“) > 0. Hence, there is no

edge from the other node u' € V3(m") \ {u} to vém"ﬂ) and A, C M(u") which excludes an edge from

(mnt1) according to (3.2). Thus, there must be a double edge from u' to U(m"+1) Similarly, the

(mn +1) (mn +1)

utov

second edge outgoing from u cannot be connected to v;
(mn+1)

while a double edge from u to v,
or an edge from u to v are also impossible due to P, is normalized, which is a contradiction.

Thus, £{7**? = 0, and m!, = m,, + 2 confirms {P,} is (0, o7 )-restricted. O



