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Czech Republic
Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic,
{kudova, terka}@cs.cas.cz



Section one is a brief overview of basic notations used, section two brings theory of reproducing
kernel Hilbert spaces (RKHS). Further two sections show theory of sum and product of kernels. In
section five learning from data and connection to RKHS theory is shown. In section six concrete
minimization schemas including employment of sum and product kernels is shown. Section seven
brings learning algorithm based on the theory and section eight experiments and comparisons to
standard techniques. The part concerning product of kernels has already been presented in [5].

1 Preliminaries

A normed linear space W is any vector space over R or C with a norm ‖.‖, where for all x, y ∈ W ,
λ ∈ R (or C).

1. ‖x‖ ≥ 0 and ‖x‖ = 0 only if x = 0

2. ‖λx‖ = |λ|‖x‖, and

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Banach space (B, ‖.‖) is any normed linear space that is complete in its norm. A Hilbert space is a

Banach space in which the norm is given by an inner product 〈., .〉, that is ‖x‖ = 〈x, x〉1/2.
Let d, k be positive integers, Ω ⊆ Rd. We (C(Ω), ‖.‖C) denote the space of continuous functions on

Ω with the maximum norm. Next, Ck will denote all functions with continuous Fréchet derivative up
to order k and C∞ all infinitely differentiable functions. We say that f ∈ C∞ belongs to the Schwartz
space S(Rn) if p ·Dαf is a bounded function for any multiindex α = (α1, . . . , αn) and any polynomial

p =
∑
i cβix

βi1
1 . . . x

βin
n on Rn (where Dα(f) =

(
∂
∂x1

)α1

. . .
(

∂
∂xn

)αn
). For convenience let us define

(following [11]) the normalized Lebesgue measure md on Rd as dmd(x) = (2π)−d/2dx.
The Lebesgue space (Lp(Ω), ‖.‖p) of functions on Ω with integrable p-th power will be renormed:

‖f‖p =
{∫

Ω |f |pdmd

}1/p
. This will simplify the use of Fourier transform f̂ of the function f ∈ L1(Rd):

f̂(t) =
∫
Rd f(x)e−it·xdmd, where t ∈ Rd and t · x = t1x1 + · · ·+ tdxd.

Let B be a Banach space, Ω ⊂ B and let f : Ω × Ω → R be a symmetric function (that is
f(x, y) = f(y, x)). Then f is positive definite if for any a1, . . . , an ∈ C and t1, . . . , tn ∈ Ω

n∑

i,j=1

aiajf(ti, tj) ≥ 0,

where a is complex adjoint of a. We call the function strictly positive definite if it is positive definite
and

∑n
i,j=1 aiajf(ti, tj) = 0, implies ai = aj = 0 ∀i, j ∈ {1, . . . , n}.

Let V and W be vector spaces over the same field. Then L : W → V is a linear mapping if and
only if L(λx + µy) = λLx + µLy for all x, y ∈ W and λ, µ ∈ F (where F = R or C). If V = W , we
call L an operator, if V = F we call it a linear form or a functional on W .

For a functional F : X → (−∞,+∞] we write domF = {f ∈ X : F(f) < +∞} and call this
set the domain of F . Continuity of F in f ∈ domF is defined as usual. A functional is sequentially
lower semicontinuous if and only if the convergence of {fn} to f implies F(f) ≤ lim infn→∞ F(fn).
Functional F is weakly sequentially lower semicontinuous if and only if fn ⇀ f implies F(f) ≤
lim infn→∞ F(fn).

A functional F is convex on a convex set E ⊆ domF if for all f, g ∈ E and all λ ∈ [0, 1],
F(λf+(1−λ)g) ≤ λF(f)+(1−λ)F(g). Functional F is (strongly) quasi-convex if for all f, g ∈ E, f 6= g
it holds: F

(
1
2f + 1

2g
)

(<) ≤ max{F(f),F(g)}.

2 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Space (shortly RKHS) was defined by Aronszajn, 1950 ([1]) as Hilbert
space H of functions (real or complex) defined over Ω ⊂ Rd with the property, that for each x ∈ Ω the
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evaluation functional on H given by Fx : f 7→ f(x) is bounded. This implies existence of a positive
definite symmetric function k : Ω × Ω → R (so called reproducing kernel) corresponding to H such
that

1. for any f ∈ H and y ∈ Ω the following reproducing property holds f(y) = 〈f(x), k(x, y)〉 , where
〈., .〉 is scalar product in H and

2. for every y ∈ Ω, the function ky(x) = k(x, y) is an element of H.

Note that the reproducing kernel for H is unique. On the other hand, every positive definite sym-
metric function is a reproducing kernel for exactly one Hilbert space, that can be described as
comp{∑n

i=1 aikxi ;xi ∈ Ω, ai ∈ R}, where comp means completion of the set. ‖∑n
i=1 aikxi‖2 =∑n

i=1

∑n
j=1 k(xi, xj)aiaj .

2.1 Proofs

All the proofs presented here have been sketched in [1].

Lemma 2.1 Let L(Ω) be a real valued RKHS with k as kernel. Then LC := {f1 + if2; f1, f2 ∈ L}
with ‖f1 + if2‖2 = ‖f1‖2 + ‖fx‖2 is a complex RKHS with the same k as kernel.

Proof: LC is clearly a Hilbert space. Evaluation functionals remain linear and bounded, i.e. LC is
RKHS. And for any f ∈ L it holds: if(y) = 〈if(x), k(x, y)〉. 2

We see that it is sufficient to consider only complex RKHS.

Lemma 2.2 Let L(Ω) be a Hilbert space with a reproducing kernel k. Then k is unique.

Proof: Suppose we have two reproducing kernels k, k′ and k 6= k′. Then for some x, y we have
0 < ‖k(x, y)− k′(x, y)‖2 = 〈k− k′(x, y), k− k′(x, y)〉 = 〈k− k′(x, y), k(x, y)〉− 〈k− k′(x, y), k′(x, y)〉 =
(k − k′)(y, y)− (k − k′)(y, y) = 0, which is a contradiction. 2

Lemma 2.3 Let L(Ω) be a Hilbert space with the property that all evaluation functionals Fx are
linear and bounded. Then there exists a reproducing kernel satisfying properties (i) and (ii) that is
also positive definite. On the other hand from (i) and (ii) we obtain linear bounded (continuous)
evaluation functionals.

Proof: Fy is a linear bounded (i.e. continuous) functional on Hilbert space L(Ω). Thus by Fréchet-
Riesz Theorem [7, p. 19] we have ay ∈ L such that Fy(f) = 〈f(x), ay(x)〉. We put ay(x) = k(x, y)
obtaining the reproducing kernel.

To check the desired properties (symmetry and positive definiteness) we use the reproducing
property:

∑n
i,j=1 aiajk(xi, xj) = 〈∑n

j=1 ajk(y, xj),
∑n

i=1 aik(y, xi)〉 = ‖∑n
j=1 ajk(y, xj)‖2 ≥ 0 and

k(x, y) = 〈k(z, y), k(z, x)〉 = 〈k(z, x), k(z, y)〉 = k(y, x).
To prove the last statement it is sufficient to observe, that: |f(y)| = |〈f(x), k(x, y)〉| ≤ ‖f‖〈k(x, y), k(x, y)〉1/2 =

‖f‖k(y, y)1/2. 2

Lemma 2.4 To every k(x, y) satisfying the properties (i) and (ii) there corresponds one and only one
Hilbert space H admitting k as a reproducing kernel.

Proof: Let us take the class of all functions of the form
∑
αsk(x, ys) with the norm ‖∑n

s=1 αsk(x, ys)‖2 =∑n
i=1

∑n
j=1 αiαjk(xi, xj). To complete the space we add limits of all Cauchy sequences (relative to

the above norm which gives point-wise convergence). 2

Theorem 2.5 Let F be a linear class of functions with scalar product defined on Ω satisfying all the
properties of a Hilbert space with the exception of completeness (an incomplete Hilbert space). The
class can be completed if and only if

1. for every fixed y ∈ Ω the linear functional Fy(f) is bounded in F

2. for a Cauchy sequence {fm} ⊂ F the condition fm(y)→ 0 for every y implies ‖fm‖ → 0.

If the completion is possible, it is unique.

Proof: See [1, p. 347]. 2
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3 Sum of reproducing kernels

Sum of reproducing kernels was proposed and basic properties proved in [1]. We will consider sum
of Reproducing Kernel Hilbert Spaces. For i = 1, 2 let Fi be an RKHS of functions on Ω, let
Ki be the corresponding kernels and ‖.‖i the corresponding norms. Consider the following space
of all couples {f1, f2} on Ω. H = {{f1, f2} | f1 ∈ F1, f2 ∈ F2} . The metric will be given by
‖{f1, f2}‖2 = ‖f1‖21 + ‖f2‖22.

Now we have to deal with duplicacies. Consider the class F0 of all functions f belonging to F1∩F2.
We define H0 := {{f,−f}; f ∈ F0}. It is a closed subspace of H and thus we can write H = H0⊕H ′,
where H ′ is complementary subspace to H0. Now to every element {f ′, f ′′} of H there corresponds a
function f(x) = f ′(x) + f ′′(x). This is a linear correspondence transforming H into a linear class of
functions F . Elements of H0 are transformed into zero functions and thus the correspondence between
H ′ and F is one-to-one and has an inverse (for every f ∈ F we obtain one {g′(f), g′′(f)}). We define
metric on F by

‖f‖2 = ‖{g′(f), g′′(f)}‖2 = ‖g′(f)‖21 + ‖g′′(f)‖22.
Now we will show that to the class F with the above defined norm there corresponds a reproducing

kernel K = K1 +K2.

Theorem 3.1 ([1]) Let Fi be RKHS and Ki and ‖.‖i the corresponding kernels and norms. Let F be
defined as above with norm ‖f‖2 = ‖{g′(f), g′′(f)}‖2 = ‖g′(f)‖21 + ‖g′′(f)‖22. Then

K(x, y) = K1(x, y) +K2(x, y)

is kernel corresponding to F .
The claim holds also for F defined as class of all functions f = f1 + f2 with fi ∈ Fi and norm

‖f‖2 = min‖f1‖21 + ‖f2‖22 minimum taken for all decompositions f = f1 + f2 with fi in Fi.

3.1 Proofs

Lemma 3.2 Let F1, F2 be RKHS. Define a space F ′ := {{f1, f2} | f1 ∈ F1, f2 ∈ F2} and norm on it
given by ‖{f1, f2}‖2 = ‖f1‖21 + ‖f2‖22. Then this norm is defined by scalar product.

Proof: It is enough to prove that rectangular law is valid, i.e. we want to have ‖x+y‖2 +‖x−y‖2 =
2(‖x‖2 + ‖y‖2) for all x, y ∈ F ′. Let x = {f1, f2}, y = {g1, g2}, f1, g1 ∈ F1, f2, g2 ∈ F2. Now we just
rewrite the rectangular law: ‖{f1, f2}+ {g1, g2}‖2 + ‖{f1, f2} − {g1, g2}‖2 =
‖{f1 + g1, f2 + g2}‖2 + ‖{f1− g1, f2− g2}‖2. Since F1 and F2 are Hilbert spaces and thus rectangular
law is valid, we can continue using definition of the norm: ‖{f1+g1, f2+g2}‖2+‖{f1−g1, f2−g2}‖2 =
‖f1 +g1‖21 +‖f2 +g2‖22 +‖f1−g1‖21 +‖f2−g2‖22 = 2(‖f1‖21 +‖g1‖21)+2(‖f2‖22 +‖g2‖22) = 2(|{f1, f2}‖2 +
‖{g1, g2}‖2). 2

Proof of theorem 3.1: First we see that K(x, y) = K1(x, y) +K2(x, y) as a function of x for fixed
y belongs to F , since it corresponds to element {K1(x, y),K2(x, y)} ∈ H .

Denote for fixed y K ′(x, y) = g′(K(x, y)) and K ′′(x, y) = g′′(K(x, y)). Thus we have K ′(x, y) +
K ′′(x, y) = K(x, y) = K1(x, y)+K2(x, y). Hence we haveK ′(x, y)−K1(x, y) = −(K ′′(x, y)−K2(x, y)).
So we see that {K ′(x, y)−K1(x, y),
K ′′(x, y)−K2(x, y)} belongs toH0. Now for any f ∈ F we have f(y) = f ′(y)+f ′′(y) = 〈f ′(x),K1(x, y)〉1+
〈f ′′(x),K2(x, y)〉2 = 〈{f ′, f ′′},{K1(x, y),K2(x, y)}〉 = 〈{f ′, f ′′},
{K ′(x, y),K ′′(x, y)}〉+ 〈{f ′, f ′′}, {K1(x, y)−K ′(x, y),K2(x, y)−K ′′(x, y)}〉.

The last scalar product equals zero, since {f ′, f ′′} ∈ H ′ and {K1(x, y) −K ′(x, y),
K2(x, y)−K ′′(x, y)} ∈ H0. And the first part of the last expression equals to
〈{f(x),K(x, y)〉 which proves reproducing property of kernel K(x, y).

To prove equivalence of both the definitions of norms we have to remember that f(x) corresponds
to {f1, f2} ∈ H and also to {g′(f), g′′(f)} ∈ H ′. So we have f = f1 + f2 = g′(f) + g′′(f). It follows
that g′(f)− f1 = −(g′′(f)− f2) and {f1 − g′(x), f2 − g′′(x)} ∈ H0. Thus

‖f1‖21 + ‖f2‖22 = ‖{f1, f2}‖2 = ‖{f1 − g′(f), f2 − g′′(f)}‖2 + ‖{g′(f), g′′(f)}‖2.
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This expression attains minimal value for f1 = g′(f) and f2 = g′′(f) and its value is then ‖{g′(f), g′′(f)}‖2
which is ‖f‖2 and proves equivalence of the two definitions. 2

It is easy to extend this theorem to K(x, y) =
∑n

i=1Ki(x, y).

4 Product of reproducing kernels

Next we will consider product of Reproducing Kernel Hilbert Spaces. For i = 1, 2 let Fi be an RKHS
of functions on Ωi, let Ki be the corresponding kernel. Consider the following set of functions on
Ω = Ω1×Ω2 F

′ = {∑n
i=1 f1,i(x1)f2,i(x2) | n ∈ N, f1 ∈ F1, f2 ∈ F2} . Clearly, F ′ is a vector space, it is

not complete though. For its completion, we first define a scalar product on F ′. Let f , g be elements
of F ′ expressed as f(x1, x2) =

∑n
i=1 f1,i(x1)f2,i(x2), g(x1, x2) =

∑m
j=1 g1,j(x1)g2,j(x2). We define

〈f, g〉 =
∑n
i=1

∑m
j=1〈f1,i, g1,j〉1〈f2,i, g2,j〉2 , where 〈·, ·〉i denotes the scalar product in Fi. It is a routine

to check that this definition does not depend on the particular form in which f and g are expressed
and that the properties of scalar product are satisfied. We define norm on F ′ by ‖f‖ =

√
〈f, f〉.

Finally, let F be the completion of F ′. It can be shown ([1]) that the completion exists not only as
an abstract Hilbert space but that F is in fact a space of functions on Ω. We call F the product of
F1 and F2 and write F = F1 ⊗ F2.

Theorem 4.1 ([1]) For i = 1, 2 let Fi be an RKHS on Ωi with kernel Ki. Then the product F =
F1 ⊗ F2 on Ω1 × Ω2 is an RKHS with kernel given by

K((x1, x2), (y1, y2)) = K1(x1, y1)K2(x2, y2) , (4.1)

where x1, y1 ∈ Ω1, x2, y2 ∈ Ω2.

5 Learning from data as minimization of functionals

The task to find an optimal solution to the problem of approximating a data set z = {(ui, vi)}Ni=1 ⊆
Rd×R by a function from a general function space X (minimizing error) is ill-posed. Thus we impose
additional (regularization) conditions on the solution ([3]). These are typically things like a-priori
knowledge, or some smoothness constraints. The solution f0 has to minimize a functional F : Ω→ R
that is composed of the error part and the “smoothness” part: F(f) = Ez(f) + γΦ(f), where Ez is
the error functional depending on the data z = {(ui, vi)}Ni=1 ⊆ Rd × R and penalizing distance from
the data, Φ is the regularization part — the so called stabilizer — penalizing ”remoteness from the
global property” and γ is the regularization parameter giving the trade-off between the two terms of
the functional to be minimized.

To prove existence and uniqueness of solution to such a problem we will use some results from
mathematical analysis. Error part of our functional doesn’t have sufficiently nice properties, so the
regularization part has to do the job. We employ RKHS in such a way that we nicely and easily
obtain existence, uniqueness and even form of the solution.

Let H be an RKHS over Ω ⊆ Rd with kernel k and norm ‖.‖k. We construct the minimization
functional composing of error part Ez(f) based on data z = {(ui, vi); i = 1, . . . , N} ⊆ Rd × R and let
the regularization part be Φ(f) = ‖f‖2k forming

F(f) = Ez(f) + γ‖f‖2k, (5.1)

where γ ∈ R+. (See Section 6 for a more detailed construction.)
Now uniqueness of solution to such a problem comes clearly from strong quasi-convexity of the

functional F composing of convex error part and strongly quasi-convex kernel part. To show existence
of solution we need weak sequential lower semi-continuity of the functional which can be shown by
computing second derivatives of the functional, for precise derivation see [13].

Derivation of the shape of the solution to the regularized minimization problem has been shown
already in [3] but without taking advantage of RKHS, in [2], [9] and others known as Representer
theorem, for the kernel case see [13]. All the proofs are based on the idea that minimum of a function
can exist in an interior point only if first derivative equals zero.
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Employing this theorem we obtain solution to the kernel-based minimization problem in the form
of

f0(x) =

N∑

i=1

cik(x, ui), (5.2)

where ui are the data points and k(·, ·) the corresponding kernel.

6 Concrete minimization functionals and RKHS

An error functional is usually of the form Ez(f) =
∑N
i=1 V (f(ui), vi). A typical example of the empirical

error functional is the classical mean square error: Ez(f) = 1
N

∑N
i=1(f(ui)− vi)2.

In [3] a special stabilizer based on the Fourier Transform was proposed: ΦK(f) =
∫
Rd
|f̂(s)|2
K̂(s)

dmd(s),

where K̂ : Rd → R+ is symmetric (K̂(s) = K̂(−s)) function tending to zero as ‖s‖ → ∞ (the last
holds for any K ∈ L1). That means 1/K̂ is a low-pass filter.

Thus the functional FK to be minimized is of the form: FK(f) = Ez(f)+ΦK(f) = 1
N

∑N
i=1(f(ui)−

vi)
2 + γ

∫
Rd
|f̂(s)|2
K̂(s)

dmd(s), where γ ∈ R+. Now we show how to build an RKHS corresponding to the

regularization part of our functional:
Let us define k(x, y) = K(x − y) =

∫
Rd K̂(t)eit.xe−it.ydmd(t). For k ∈ S(R2d) symmetric positive

definite we obtain an RKHS H (using the classical construction, see [2], [12],[14]). We put 〈f, g〉H =∫
Rd

f̂(s)ĝ∗(s)
K̂(s)

dmn(s) and obtain the norm ‖f‖2H =
∫
Rd
|f̂(s)|2
K̂(s)

dmn(s), for H = comp span{k(x, .), x ∈
Rd}, where comp denotes completion of the set and a∗ means complex conjugate of a. It is easy to
check the reproducing property of K on H, that is 〈f(x),K(x− y)〉H = f(y).

Special types of reproducing kernels and following RKHS are the well known Gaussian kernel

K1(x, y) = e−‖x−y‖
2

with Fourier transform K̂1(s) = e−
‖s‖2

2 or in one dimension kernel K2(x, y) =
e−|x−y| with Fourier transform K̂2(s) = (1 + s2)−1. The norm for this RKHS is of the form ‖f‖K =∫ |f̂ |2

(1+s2)−1 = ‖f‖2L2
+ ‖f ′‖2L2

. So we see we obtain a Sobolev space W 1
2 .

6.1 Minimization of Sum of Kernels

Here we will consider a more sophisticated example of kernels – sum of kernels introduced in Section
3. We will consider two cases. First suppose that a-priori knowledge or analysis of data suggests to
look for solution as a sum of two functions (for example data is generated from function influenced by
two sources differing in frequency). We will use a kernel summed of two parts (employing Theorem
3.1) corresponding to high and low frequencies, in the easiest case two Gaussians of different widths:

K(x, y) = K1(x, y) +K2(x, y) = e
−(‖x−y‖d1

)2

+ e
−(‖x−y‖d2

)2

Regularized minimization schema in this case will be of the form:

FK(f) =
1

N

N∑

i=1

(f(ui)− vi)2 + γ

∫

Rd

|f̂(s)|2
̂(K1 +K2)(s)

dmn(s). (6.1)

Since we operate in an RKHS we can employ Representer theorem (5.2) and obtain solution in the
form of

f0(x) =

N∑

i=1

ci

(
e−(

‖x−ui‖
d1

)2

+ e−(
‖x−ui‖
d2

)2
)
. (6.2)

Another conceivable task would be to approximate data with different distribution in the input
space. Here again sum of kernels might be helpful if we define one kernel for let’s say positive axis
and one kernel for negative one. If our data isn’t distributed so nicely it is always possible to do some
pre- and post-processing to achieve this.

First, consider the following lemma from [1].
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Lemma 6.1 Let F be an RKHS of real-valued functions on Ω with K as kernel. Then function KA

defined by

KA(x, y) =

{
K(x, y) if x, y ∈ A,

0 otherwise;

is a kernel for a space FA = {fA, f ∈ F}, where fA(x) = f(x) if x ∈ A and fA(x) = 0 otherwise.

We may use this lemma for different sets A. Then we can apply Theorem 3.1 for kernels gained in
this way. Consequently, our kernels may look as follows:

Choose constants d1, . . . , ds > 0 and partition R to sets A1, . . . , As. Then define

K(x, y) =

{
e
−(‖x−y‖di

)2

x, y ∈ Ai
0 otherwise

(6.3)

Again, we may use Representer theorem to obtain a form in which we will expect the solution.

6.2 Minimization of Product Kernels

Now we will consider the product of kernels introduced in Section 4. Suppose that a-priori knowledge
of our data suggests to look for the solution as a member of product of two function spaces. In
one dimension the data may be clustered faraway thus being suitable for approximation via narrow
Gaussian kernels. In the other dimension the data is smooth, hence we will use broader Gaussian
kernel. Employing theorem 4.1 we obtain a kernel for the product space of the form:

K((x1, x2), (y1, y2)) = k1(x1, y1)·k2(x2, y2) = e−(
‖x1−y1‖

d1
)2

·e−(
‖x2−y2‖

d2
)2

, where x1, y1 ∈ Ω1, x2, y2 ∈
Ω2.

Regularized minimization schema in this case is of the form:

FK(f) =
1

N

N∑

i=1

(f(ui)− vi)2 + γ

∫

Rd

|f̂(s)|2

k̂1k2(s)
dmn(s). (6.4)

Taking advantage of this being an RKHS we have the form of the solution to such a type of
minimization:

f0(x1, x2) =

N∑

i=1

cie
−(
‖x1−ui,1‖

d1
)2

· e−(
‖x2−ui,2‖

d2
)2

. (6.5)

Generally, it is possible to combine different types of kernels, for example for heterogeneous data,
where individual attributes are of different types and different kernels are suitable for them.

Approximation schemas of this type exhibit so far nicer approximation properties since it can be
better fitted to special types of data.

7 Learning algorithm

Now we present a learning algorithms based on the theoretical results from the previous sections, first
for approximation with sum kernels and then for approximation with product kernels.

For the case of sum kernels, we assume that we have a data set {ui, vi}Ni=1, where ui ∈ Rn, vi ∈ R
and N is a number of data samples. If we fit this data set using the regularization schema 6.1, then
the solution can be represented by a feed-forward neural network with one hidden layer of N sum
units and a linear output layer (see fig. 7.1a).

By a sum unit (see fig 7.1b) we mean a unit with n real inputs and one real output. It consists
of two positive definite kernel functions K1(c, ·), K2(c, ·), both evaluating the same input vector. The
output of the sum unit is computed as the sum K1(c, x) +K2(c, x).
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Figure 7.1: a) Regularization Network, b) Sum Unit, c) Product Unit.

Input: Data set {ui, vi}Ni=1 ⊆ Rn × R
Output: Sum Kernel Regularization Network.

1. Set the centers of kernels:

∀i ∈ {1, . . . , N} : ci ← ui

2. Compute the values of weights w1, . . . , wN:

(NγI +K)w = v, (7.1)

where I is the identity matrix,

Ki,j = K1(ci, uj) +K(ci, uj),
and v = (v1, . . . , vN ), γ > 0.

Figure 7.2: Learning algorithm for Sum Kernel Regularization Network.

The network then evaluates the function

f(x) =

N∑

i=1

wi(K1(ci, x) +K2(ci, x)),

and we refer to it as Sum Kernel Regularization Network (SKRN).
Let us call the parameters ci centers and the coefficients of the linear combination wi weights.
The learning algorithm of Sum Kernel Regularization network is sketched at Fig. 7.2. It is derived

from Tikhonov regularization and for the case of Regularization Network it was described in [9]. For
the discussion of learning algorithms of Regularization Networks see also [4].

The algorithm is quite simple, setting the centers of kernels to the data points given by the training
set and evaluating the values of output weights by solving linear system of equations. Its drawback is
the presence of parameter γ, that must be estimated in advance (cross-validation is usually used).

For the case of Product Kernels, we assume that we have a data set {ui1, ui2, vi}Ni=1, where ui1 ∈ Rn,
ui2 ∈ Rm, vi ∈ R and N is a number of data samples. We will fit these data set using the regularization
scheme 6.4.

Again, the solution is represented by a feed-forward neural network with one hidden layer, now
consisting of N product units, and a linear output layer.

By a product unit (see fig 7.1c) we mean an unit with (n+m) real inputs and one real output. It
consists of two positive definite kernel functions K1(c1, ·), K2(c2, ·), one evaluating the first n inputs
and one evaluating the other m inputs. The output of the product unit is computed as the product
K1(c1, x1) ·K2(c2, x2).

The network then evaluates the function

f(x1, x2) =
N∑

i=1

wiK1(ci1, x1) ·K2(ci2, x2),

7



Input: Data set {ui1, ui2, vi}Ni=1 ⊆ Rn × Rm × R
Output: Product Kernel Regularization Network.

1. Set the centers of kernels:

∀i ∈ {1, . . . , N} : ci1 ← ui1

ci2 ← ui2

2. Compute the values of weights w1, . . . , wN:

(NγI +K)w = v,

where I is the identity matrix,

Ki,j = K1(ci1, u
j
1) ·K2(ci2, u

j
2),

and v = (v1, . . . , vN ), γ > 0.

Figure 7.3: Learning algorithm for Product Kernel Regularization Network.

and we refer to such network as Product Kernel Regularization Network (PKRN).
The learning algorithm of PKRN is similar to the learning algorithm of SKRN, and is sketched at

Fig. 7.3.
In general, both the sum unit and the product unit can consist of arbitrary number (more than two)

of kernel functions. The application of given theory and algorithms on these cases is strait-forward.

8 Experiments

The goal of our experiments was to demonstrate the performance of proposed Product Kernel Regu-
larization Network and Sum Kernel Regularization Network, and compare them with classical Regu-
larization Network with Gaussian kernels.

8.1 Methodology

For the comparison we have chosen the Proben1 data repository (see [10]) containing both approx-
imation and classification tasks. The short description of Proben1 tasks is listed in table 8.1. Each
task is present in three variants, three different partitioning into training and testing data. We refer
to this variants with suffix 1,2, or 3 (e.g. cancer1, cancer2, cancer3).

In addition we applied the Product Kernel Regularization Network on the real-life task, the pre-
diction of the flow rate on the Czech river Ploučnice.

Gaussian kernels were used in all experiments. For each experiment, we first estimated the explicit
parameters of the learning algorithms, namely the regularization parameter γ and the width(s) of
Gaussians. Parameters with the lowest cross-validation error on the training set are chosen and used
to learn the network on the whole training set. Than the error on the testing set is evaluated, as a
measure of a real performance of the resulting network.

We always evaluated the normalized error:

E = 100
1

N

N∑

i=1

||vi − f(ui)||2,

where N is number of examples and f is the network output.
For the parameter search we used k-fold cross-validation. It means that we divided the training set

TrS to k-folds T1, . . . , Tk of an approximately same size, such as
⋃k
i=1 Ti = TrS and Ti

⋂
Tj = 0, i 6= j,

and for each i run the learning algorithm 7.2 (resp. 7.3) on the data set TrSi =
⋃
j 6=i Tj . To the network

obtained by learning on data TrSi we refer as f i. Then the cross-validation error can be computed as

8



Task name n m Ntrain Ntest Type
cancer 9 2 525 174 class
card 51 2 518 172 class
diabetes 8 2 576 192 class
flare 24 3 800 266 approx
glass 9 6 161 53 class
heartac 35 1 228 75 approx
hearta 35 1 690 230 approx
heartc 35 2 228 75 class
heart 35 2 690 230 class
horse 58 3 273 91 class
soybean 82 19 513 170 class

Table 8.1: Overview of Proben1 tasks. Number of inputs (n), number of outputs (m), number of
samples in training and testing sets (Ntrain,Ntest). Type of task: approximation or classification.

Ecross =
1

k

k∑

i=1

Ei ,where Ei =
1

|Ti|
∑

(uj ,vj)∈Ti
||vj − f i(uj)||2.

Grid search is used to find the parameters with the lowest cross-validation error. We start with a
coarse grid of parameters [γ, w1, w2]j (sometimes more than two widths are needed, in case of classical
RN only one width is needed). We evaluate the cross-validation error for each tuple and create a
finer grid around the point with the lowest cross-validation error. This process is repeated until the
cross-validation error stops decreasing.

The standard numerical library LAPACK [6] was used for linear system solving.

8.2 Regularization Networks

First of all, we applied the classical Regularization Network with Gaussian kernels.
Table 8.2 summarizes the results obtained on data tasks from Proben1. For each task errors on

the training and testing set are listed, together with the parameters’ values found by the grid search
and number of evaluations (runs of the basic algorithm) needed to find these values.

8.3 Sum Kernel Regularization Networks

Another experiments were performed to demonstrate the behavior of SKRN. We have tried both two
types of Sum Kernels, the former is a sum of two Gaussians (see 6.2), the letter is a sum of Gaussians
with non-zero output only on particular subsets of an input space (see 6.3). We refer to them SKRNA

and SKRNB , respectively.
In the case of SKRNB , the data sets were divided into two or three disjunct subsets, on each of

them was active one kernel. This enables us to replace large linear systems by two (resp. three) small
ones (for individual subsets) that can be solved separately, possibly in parallel. This Divide et Impera
strategy may help in cases, where the solution of the whole linear system is too expensive due to the
large size of data set.

The table 8.3 shows the results obtained on Proben1 with SKRNA, again errors on training and
testing sets, winning values for parameters and number of evaluations are listed.

This experiment showed an interesting behavior on several data sets. The error on the training
set is almost a zero (rounded to zero) and still the generalization ability of the network is good, i.e.
the error on testing set is not high. This is caused by the fact, that the chosen kernel consists of two
Gaussians, one being very narrow (see fig. 8.1). The diagonal in matrix K from 7.1 is dominant and
so regularization member is not needed, precisely γ is near to zero.
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Task Etrain Etest γ b evaluations
cancer1 2.28 1.75 0.30×10−3 1.57 96
cancer2 1.86 3.01 0.20×10−3 1.60 76
cancer3 2.11 2.79 0.55×10−3 1.53 97
card1 8.75 10.01 2.03×10−3 4.02 126
card2 7.55 12.53 1.29×10−3 4.18 101
card3 6.52 12.35 0.33×10−3 4.28 113
diabetes1 13.97 16.02 1.32×10−3 1.04 117
diabetes2 14.00 16.77 2.16×10−3 1.01 101
diabetes3 13.69 16.01 0.23×10−3 1.47 112
flare1 0.36 0.55 11.52×10−3 3.37 76
flare2 0.42 0.28 3.96×10−3 3.24 60
flare3 0.38 0.35 3.16×10−3 2.65 36
glass1 3.37 6.99 2.54×10−3 0.31 165
glass2 4.32 7.93 2.20×10−3 0.52 137
glass3 3.96 7.25 2.75×10−3 0.38 72
heart1 9.61 13.66 1.97×10−3 2.70 57
heart2 9.33 13.83 1.97×10−3 2.70 57
heart3 9.23 15.99 1.06×10−3 3.76 117
hearta1 3.42 4.38 0.45×10−3 4.64 134
hearta2 3.54 4.07 0.54×10−3 4.64 134
hearta3 3.44 4.43 0.58×10−3 4.57 122
heartac1 4.22 2.76 0.98×10−3 8.20 496
heartac2 3.50 3.86 0.66×10−3 6.71 342
heartac3 3.36 5.01 0.84×10−3 7.35 405
heartc1 9.99 16.07 0.56×10−3 11.81 900
heartc2 12.70 6.13 0.31×10−3 11.81 917
heartc3 8.79 12.68 2.10×10−3 3.24 121
horse1 7.35 11.90 3.58×10−3 3.40 121
horse2 7.97 15.14 4.09×10−3 3.81 117
horse3 4.26 13.61 2.16×10−3 2.85 85
soybean1 0.12 0.66 0.08×10−3 3.24 57
soybean2 0.24 0.50 0.18×10−3 3.51 85
soybean3 0.23 0.58 0.15×10−3 3.67 89

Table 8.2: Results obtained by Regularization Network with Gaussian kernels on data tasks from
Proben1 repository. Winning values for parameters γ and b and number of evaluations needed for
their estimation are listed.
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Task Etrain Etest γ b1 b2 evaluations
cancer1 0.00 1.77 0.00×10−3 2.116 0.248 664
cancer2 0.00 2.96 0.00×10−3 2.063 0.220 624
cancer3 0.00 2.73 0.00×10−3 1.953 0.152 292
card1 8.81 10.03 4.19×10−3 4.079 4.061 472
card2 0.00 12.54 0.00×10−3 3.542 0.038 376
card3 6.55 12.32 1.32×10−3 4.178 3.145 387
diabetes1 14.01 16.00 2.74×10−3 3.237 0.881 239
diabetes2 13.78 16.80 3.67×10−3 3.419 0.801 520
diabetes3 13.69 15.95 0.39×10−3 3.096 1.306 399
flare1 0.35 0.54 13.59×10−3 2.833 2.833 200
flare2 0.44 0.26 31.62×10−3 2.650 2.650 164
flare3 0.42 0.33 31.62×10−3 2.650 2.650 164
glass1 2.35 6.15 3.00×10−3 0.206 0.985 439
glass2 1.09 6.97 2.37×10−3 0.140 0.764 699
glass3 3.04 6.29 4.29×10−3 0.229 1.013 724
heart1 0.00 13.91 0.02×10−3 3.143 0.091 600
heart2 0.00 13.82 0.00×10−3 2.968 0.000 260
heart3 0.00 15.94 0.00×10−3 3.102 0.000 324
hearta1 0.00 4.37 0.00×10−3 3.412 0.044 532
hearta2 3.51 4.06 1.05×10−3 4.572 4.572 478
hearta3 0.00 4.49 0.00×10−3 3.470 0.038 372
heartac1 0.00 3.26 0.00×10−3 4.572 0.232 483
heartac2 0.00 3.85 0.00×10−3 3.748 0.085 500
heartac3 3.36 5.01 1.68×10−3 7.349 7.349 1588
heartc1 0.00 15.69 0.00×10−3 4.644 0.115 470
heartc2 0.00 6.33 0.00×10−3 4.334 0.096 680
heartc3 0.00 12.38 0.00×10−3 2.923 0.067 760
horse1 0.20 11.90 0.26×10−3 3.873 0.000 408
horse2 2.84 15.11 3.12×10−3 5.281 1.715 768
horse3 0.18 14.13 0.00×10−3 3.774 1.050 328
soybean1 0.11 0.66 0.15×10−3 4.043 2.725 367
soybean2 0.25 0.53 0.80×10−3 2.833 2.833 175
soybean3 0.22 0.57 0.28×10−3 4.043 3.469 367

Table 8.3: Results obtained by Regularization Network with sum kernels (2 Gaussians) on data tasks
from Proben1 repository. Winning values for parameters γ and b1, b2 and number of evaluations
needed for their estimation are listed.
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Figure 8.1: Kernels found by parameter search for cancer1 data set.

The condition numbers of matrices K and K+NγI (see Fig.7.2,7.3) are displayed on Fig. 8.2. On
some tasks the condition number is really lower for the case of Sum Kernels, but we can not see any
significant trend.
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Figure 8.2: Condition numbers of matrix K+NγI (left) and K (right) for Gaussian Kernels and Sum
Kernels.

The results obtain by SKRNB are listed in table 8.4. The Divide et Impera strategy significantly
decreases the time requirements. See Fig. 8.3 for the comparison of time needed by classical RN and
SKRNB .

8.4 Product Kernel Regularization Network

The PKRN should be used in situations, where we have some knowledge about a character of data,
especially when different attributes are of different types or different properties.

This is not the case of Proben1 tasks, so the application of PKRN on these tasks is in this
sense blind and the partitioning of inputs to several groups was chosen randomly. The table 8.5
summarizes the results obtained by PKRN on Proben1 tasks, including training and testing errors,
winning parameters and number of evaluations.
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Task Etrain Etest γ1 γ2 γ3 b1 b2 b3
cancer1 2.11 1.93 0.00×10−3 0.76×10−3 0.87×10−3 1.05 1.60 2.83
cancer2 1.68 3.37 0.00×10−3 0.55×10−3 0.69×10−3 0.86 1.65 3.01
cancer3 1.68 2.95 0.00×10−3 0.55×10−3 0.02×10−3 1.18 1.44 6.26
card1 8.55 10.58 0.56×10−3 4.78×10−3 - 10.76 2.87 -
card2 7.22 13.03 0.91×10−3 3.15×10−3 - 8.20 2.93 -
card3 6.22 12.86 3.29×10−3 1.80×10−3 - 3.80 2.43 -
diabetes1 12.92 16.66 3.00×10−3 2.42×10−3 9.48×10−3 0.68 0.87 0.85
diabetes2 13.64 17.33 4.23×10−3 4.66×10−3 5.99×10−3 1.18 1.23 0.74
diabetes3 12.85 16.34 1.91×10−3 2.33×10−3 1.51×10−3 0.89 1.42 1.01
flare1 0.35 0.59 316.23×10−3 73.56×10−3 8.26×10−3 1.30 2.83 4.04
flare2 0.41 0.28 1.32×10−3 25.25×10−3 7.32×10−3 4.18 2.70 3.24
flare3 0.38 0.34 2.02×10−3 25.25×10−3 3.96×10−3 4.57 3.24 3.24
glass1 2.56 6.78 3.57×10−3 2.85×10−3 - 0.28 0.47 -
glass2 3.27 7.29 5.39×10−3 3.41×10−3 - 0.35 0.67 -
glass3 3.48 6.44 4.31×10−3 7.02×10−3 - 0.33 0.53 -
heart1 9.51 13.79 2.39×10−3 1.92×10−3 - 2.89 4.20 -
heart2 8.52 14.31 1.80×10−3 1.69×10−3 - 2.46 4.08 -
heart3 8.30 16.75 1.72×10−3 2.30×10−3 - 2.60 4.18 -
hearta1 3.20 4.45 0.73×10−3 0.18×10−3 - 3.77 8.20 -
hearta2 3.17 4.34 2.05×10−3 0.98×10−3 - 2.87 4.64 -
hearta3 3.37 4.40 4.32×10−3 0.47×10−3 - 2.83 6.39 -
heartac1 3.68 3.37 6.82×10−3 2.05×10−3 - 2.91 8.20 -
heartac2 2.99 3.97 1.11×10−3 1.10×10−3 - 3.77 8.20 -
heartac3 3.14 5.13 1.69×10−3 4.21×10−3 - 4.57 6.55 -
heartc1 6.50 16.07 0.00×10−3 0.47×10−3 - 1.74 14.61 -
heartc2 11.06 6.69 4.16×10−3 0.41×10−3 - 3.39 14.61 -
heartc3 9.91 11.74 3.41×10−3 3.27×10−3 - 3.25 8.20 -
horse1 7.66 12.62 11.75×10−3 5.21×10−3 - 3.74 2.70 -
horse2 6.84 15.70 7.09×10−3 4.78×10−3 - 3.88 3.92 -
horse3 8.56 15.24 12.28×10−3 4.33×10−3 - 4.57 3.95 -
soybean1 0.12 0.64 0.09×10−3 0.36×10−3 0.25×10−3 4.18 4.18 4.18
soybean2 0.19 0.54 0.47×10−3 0.25×10−3 0.37×10−3 3.68 4.64 4.57
soybean3 0.15 0.72 0.00×10−3 0.20×10−3 0.30×10−3 3.10 5.92 3.77

Table 8.4: Results obtained by Regularization Network with sum kernels (Gaussians active on different
subsets of input space) on data tasks from Proben1 repository. Winning values for parameters γ and
width for each Gaussian and number of evaluations needed for their estimation are listed. Because
learning algorithm was run separately on different subset of input space, also different values of γ were
used.
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Task inputs Etrain Etest γ b1 b2 b3 evals
cancer1 (3-3-3) 3.39 2.94 0.29×10−3 2.01 0.98 0.98 1732
cancer1 (3-6) 2.68 1.81 0.35×10−3 0.77 4.18 – 396
cancer1 (6-3) 2.68 1.81 0.35×10−3 4.18 0.77 – 396
cancer2 (3-3-3) 2.68 4.92 0.29×10−3 1.83 0.77 0.93 1664
cancer2 (3-6) 2.07 3.61 0.57×10−3 0.58 3.77 – 412
cancer2 (6-3) 2.07 3.61 0.57×10−3 3.77 0.58 – 412
cancer3 (3-3-3) 3.39 3.65 0.40×10−3 1.61 1.02 1.89 1285
cancer3 (3-6) 2.28 2.81 0.29×10−3 0.89 2.60 – 415
cancer3 (6-3) 2.28 2.81 0.29×10−3 2.60 0.89 – 415
card1 (5-1-45) 9.22 9.99 1.49×10−3 8.20 8.20 4.46 6618
card2 (5-1-45) 7.96 12.90 1.70×10−3 8.20 8.20 3.83 6925
card3 (5-1-45) 6.94 12.23 1.38×10−3 8.20 8.20 2.61 6930
diabetes1 (3-2-3) 16.44 16.75 0.15×10−3 2.72 2.47 2.47 944
diabetes2 (3-2-3) 15.87 18.14 0.23×10−3 2.83 1.05 2.33 773
diabetes3 (3-2-3) 16.31 16.62 0.36×10−3 2.11 1.80 1.70 1200
flare1 (18-2-4) 0.36 0.54 13.66×10−3 2.97 1.05 3.24 1008
flare2 (18-2-4) 0.42 0.28 3.16×10−3 2.65 1.28 2.65 756
flare3 (18-2-4) 0.40 0.34 3.96×10−3 3.24 0.00 3.24 1092
glass1 (3-3-3) 2.33 8.52 0.54×10−3 0.19 0.20 0.15 1568
glass1 (3-6) 2.64 7.31 1.50×10−3 0.20 0.30 – 567
glass2 (3-3-3) 4.53 8.64 2.86×10−3 0.44 0.22 0.28 2048
glass2 (3-6) 2.55 7.46 1.58×10−3 0.20 0.33 – 667
glass3 (3-3-3) 4.98 8.26 4.00×10−3 0.26 0.37 0.22 2540
glass3 (3-6) 3.31 7.26 3.15×10−3 0.58 0.21 – 424
heart1 (1-34) 9.56 13.67 1.32×10−3 1.46 3.08 – 472
heart2 (1-34) 9.43 13.86 1.56×10−3 2.64 2.95 – 503
heart3 (1-34) 9.15 16.06 0.58×10−3 1.08 4.57 – 487
hearta1 (1-17-17) 4.63 5.96 1.03×10−3 1.68 4.57 4.57 1948
hearta1 (1-34) 3.47 4.39 0.19×10−3 2.18 6.39 – 1175
hearta2 (1-17-17) 4.58 5.24 1.11×10−3 0.68 3.77 3.67 1440
hearta2 (1-34) 3.28 4.29 0.48×10−3 0.78 4.57 – 476
hearta3 (1-17-17) 4.60 5.57 1.32×10−3 1.23 3.91 3.91 1621
hearta3 (1-34) 3.40 4.44 0.45×10−3 4.64 4.64 – 514
heartac1 (1-17-17) 4.84 5.85 1.80×10−3 4.18 2.56 2.23 1425
heartac1 (1-34) 4.22 2.76 0.99×10−3 8.20 8.20 – 1944
heartac2 (1-17-17) 5.43 6.66 2.01×10−3 2.05 6.55 6.55 4768
heartac2 (1-34) 3.49 3.87 0.63×10−3 6.71 6.71 – 1346
heartac3 (1-17-17) 5.11 6.52 1.30×10−3 4.19 4.09 4.28 2369
heartac3 (1-34) 3.26 5.18 7.36×10−3 2.83 2.83 – 200
heartc1 (1-34) 10.00 16.08 0.57×10−3 11.15 11.70 – 3528
heartc2 (1-34) 12.37 6.29 0.28×10−3 1.87 11.11 – 3375
heartc3 (1-34) 8.71 12.65 2.39×10−3 4.57 3.07 – 496
horse1 (16-16-16) 14.83 13.44 8.21×10−3 4.64 4.64 4.64 2020
horse1 (29-29) 14.25 12.45 6.92×10−3 7.51 7.20 – 1644
horse2 (16-16-16) 13.09 17.33 8.33×10−3 4.13 3.57 3.56 2140
horse2 (29-29) 12.24 15.97 3.88×10−3 6.71 6.71 – 1332
horse3 (16-16-16) 7.96 18.31 1.94×10−3 2.65 2.17 2.02 2236
horse3 (29-29) 9.63 15.88 3.58×10−3 3.77 3.51 – 479
soybean1 (41-41) 0.13 0.86 0.11×10−3 3.67 3.47 – 351
soybean2 (41-41) 0.23 0.71 0.18×10−3 3.90 3.48 – 463
soybean3 (41-41) 0.21 0.78 0.15×10−3 3.77 4.04 – 367

Table 8.5: Results obtained by PKRN on data tasks from Proben1 repository. Winning values for
parameters γ and widths, and number of evaluations needed for their estimation are listed. The
numbers (x1 −x2−x3) describe the partitioning of inputs (in some cases we tried more possibilities).
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Figure 8.3: Time (in clock cycles [8]) needed for on run of learning algorithm for RN and SKRNB .

8.5 Comparison of RN, PKRN and SKRN

The table 8.6 brings a comparison of errors achieved by RN, PKRN, SKRNA and SKRNB . We can
see that all types of Regularization Networks achieved comparable results in terms of errors on testing
set.

However the networks of type SKRNA achieved almost zero error on the training set on many
tasks, preserving the generalization ability. In the addition, they achieved the lowest error on test set
in majority of cases.

The networks of type SKRNB exhibit the worst performance in most cases. This slight increase
of the error is the cost for the important decrease of time requirements (see 8.3).

8.6 Prediction of the flow rate

The applicability of PKRN on real life problems is demonstrated on the prediction of the flow rate on
the Czech river Ploučnice. Our goal is to predict the current flow rate from the flow rate and total
rainfall from the previous date , i.e. we are approximating function f : R×R→ R. Data set contains
1000 training samples and 367 testing samples.

This task is challenging, since very low error values can be achieved using so called conservative
prediction. Conservative predictor (CP) is a predictor saying that the value will be the same as it was
yesterday. In spite of its simplicity, it is very successful on this task, and so the neural networks tend
to learn this conservative prediction.

We applied PKRN on this task, applying one Gaussian kernel on the flow rate and another Gaussian
kernel on the total rainfall. In spite of being very close to conservative prediction, it over-performs
the CP.

The table 8.7 shows the errors achieved by the CP and the PKRN. The prediction of the flow rate
on the testing set made by PKRN is displayed at Fig. 8.4.
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RN SKRNA PKRN SKRNB

Task Etrain Etest Etrain Etest Etrain Etest Etrain Etest
cancer1 2.28 1.75 0.00 1.77 2.68 1.81 2.11 1.93
cancer2 1.86 3.01 0.00 2.96 2.07 3.61 1.68 3.37
cancer3 2.11 2.79 0.00 2.73 2.28 2.81 1.68 2.95
card1 8.75 10.01 8.81 10.03 9.22 9.99 8.55 10.58
card2 7.55 12.53 0.00 12.54 7.96 12.90 7.22 13.03
card3 6.52 12.35 6.55 12.32 6.94 12.23 6.22 12.86
diabetes1 13.97 16.02 14.01 16.00 16.44 16.75 12.92 16.66
diabetes2 14.00 16.77 13.78 16.80 15.87 18.14 13.64 17.33
diabetes3 13.69 16.01 13.69 15.95 16.31 16.62 12.85 16.34
flare1 0.36 0.55 0.35 0.54 0.36 0.54 0.35 0.59
flare2 0.42 0.28 0.44 0.26 0.42 0.28 0.41 0.28
flare3 0.38 0.35 0.42 0.33 0.40 0.35 0.38 0.34
glass1 3.37 6.99 2.35 6.15 2.64 7.31 2.56 6.78
glass2 4.32 7.93 1.09 6.97 2.55 7.46 3.27 7.29
glass3 3.96 7.25 3.04 6.29 3.31 7.26 3.48 6.44
heart1 9.61 13.66 0.00 13.91 9.56 13.67 9.51 13.79
heart2 9.33 13.83 0.00 13.82 9.43 13.86 8.52 14.31
heart3 9.23 15.99 0.00 15.94 9.15 16.06 8.30 16.75
hearta1 3.42 4.38 0.00 4.37 3.47 4.39 3.20 4.45
hearta2 3.54 4.07 3.51 4.06 3.28 4.29 3.17 4.34
hearta3 3.44 4.43 0.00 4.49 3.40 4.44 3.37 4.40
heartac1 4.22 2.76 0.00 3.26 4.22 2.76 3.68 3.37
heartac2 3.50 3.86 0.00 3.85 3.49 3.87 2.99 3.97
heartac3 3.36 5.01 3.36 5.01 3.26 5.18 3.14 5.13
heartc1 9.99 16.07 0.00 15.69 10.00 16.08 6.50 16.07
heartc2 12.70 6.13 0.00 6.33 12.37 6.29 11.06 6.69
heartc3 8.79 12.68 0.00 12.38 8.71 12.65 9.91 11.74
horse1 7.35 11.90 0.20 11.90 14.25 12.45 7.66 12.62
horse2 7.97 15.14 2.84 15.11 12.24 15.97 6.84 15.70
horse3 4.26 13.61 0.18 14.13 9.63 15.88 8.56 15.24
soybean1 0.12 0.66 0.11 0.66 0.13 0.86 0.12 0.64
soybean2 0.24 0.50 0.25 0.53 0.23 0.71 0.19 0.54
soybean3 0.23 0.58 0.22 0.57 0.21 0.78 0.15 0.72

Table 8.6: Comparisons of errors on training and testing set for RN with Gaussian kernels and SKRN
and PKRN.

PKRN CP
Etrain 0.057 0.093
Etest 0.048 0.054

Table 8.7: Comparison of errors obtained by PKRN and conservative predictor
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Figure 8.4: Prediction of the flow rate on the river Ploucnice by Product Kernel Regularization
Network.

9 Conclusion

We have shown how to employ RKHS in approximation theory and stressed advantages of this ap-
proach. Inspired by the article [1] we introduced kernel-product and sum of kernels based approxima-
tion and derived the shape of Sum and Product Kernel Regularization Networks.

We compared proposed PKRN and SKRN to classical Regularization Network on benchmarks.
All methods gave comparable results, though our SKRN achieved lowest errors in most cases. We
also demonstrated how SKRN can be used to decrease the time requirements for larger data sets. In
addition, we demonstrated the performance of PKRN on prediction of a river flow rate and showed
that it performs better than CP.

We showed that our algorithms are vital alternative to classical RNs. We can benefit from them
in situations where some knowledge of the character of data is available or if we can expect that for
some groups of inputs different kernel functions are suitable.
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[8] PAPI. Performance application programming interface,
http://icl.cs.utk.edu/papi/.

[9] T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of the AMS,
50:536–544, 5 2003.

[10] L. Prechelt. PROBEN1 – a set of benchmarks and benchmarking rules for neural network training
algorithms. Technical Report 21/94, Universitaet Karlsruhe, 9 1994.

[11] W. Rudin. Functional Analysis. 2nd Edition. McGraw-Hill, NY., 1991.

[12] B. Schoelkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, Massachusetts,
2002.
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