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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: (+420) 266 052 083, (+420) 286 585 789,
e-mail: ics@cs.cas.cz, www home page: http://www.cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

On Probabilistic Transformations of
Belief Functions 1

Milan Daniel2

Technical report No. 934

May 2005
Revised September 2005

Abstract:

Alternative approaches to the widely known pignistic transformation of belief functions are presented
and analyzed. A series of various probabilistic transformations is examined namely from the point of view
of their consistency with rules for belief function combination and their consistency with probabilistic upper
and lower bounds. A new definition of general probabilistic transformation is introduced and a discussion
of their applicability is included.

Keywords:
Belief function, Combination of belief functions, Dempster-Shafer theory, Probabilistic transformation,
Pignistic transformation, Pignistic probability, Combination consistency, ulb-consistency.

1Partial support by the COST action 274 TARSKI acknowledged.
The work was partly supported by the Institutional Research Plan AV0Z10300504 ”Computer Science for the Information
Society: Models, Algorithms, Applications”.

2milan.daniel@cs.cas.cz



1 Introduction

Belief functions are formalisms widely used for uncertainty representation and processing.
For combination of beliefs the Dempster’s rule of combinations is used in DST. Under strict

probabilistic assumptions its results are correct and probabilistically interpretable for any couple of
belief functions. Nevertheless these assumptions are rarely fulfilled in real applications. There are not
rare examples where the assumptions are not fulfilled and where results of the Dempster’s rule are
counter intuitive, e.g. see [4, 5], thus a rule with more intuitive results is required in such situations.

Hence series of modifications of the Dempster’s rule were suggested and alternative approaches
were created. The classical ones are the Dubois-Prade’s rule [21] and the Yager’s belief combination
rule [40]. Among the others a wide class of weighted operators [29], Transferable Belief Model (TBM)
using so called non-normalized Dempster’s rule [32, 33], disjunctive (or dual Demspter’s) rule of
combination [9, 20], combination ’per elements’ [6] with its special case — minC combination, see
[8], subjective logic with Consensus Operator [28], and other combination rules. It is also necessary
to mention the method for application of the Dempster’s rule in the case of partially reliable input
beliefs [23].

Subsequently, numerous practical applications were suggested and implemented in a wide range of
domains.

What is common for their applications? It is an aim to transform the resulting evidence represen-
tation by a general belief function to representation by probability for the purpose of easier decision
making, resulting beliefs comparison and ordering. Such a probability should be consistent with the
original belief function. In fact, we can consider it as a belief function of a special type, so called
Bayesian belief function. We call such a transformation as a probabilistic transformation.

Frequently only a special case of probabilistic transformation – Pignistic transformation — is
used. In the last years several papers on alternative probabilistic transformations have been published
[2, 3, 12, 13, 36, 37], and a new justification of pignistic transformation has appeared [34, 35].

This report summarizes and completes the study of probabilistic transformations presented in
[12, 13, 15]. Besides the new original results, Baroni & Vicigs’s results from [2] and Cobb & Shenoy’s
results [3], the present study includes also Sudano’s transformations [36, 37] and Smets’ new results
[34, 35].

Basic notions, both general, and those from [12] and [13] are introduced in Section 2. Section 3
presents a series of probabilistic transformations from various sources and it shows that some of them
are equivalent to other one(s). Section 4 brings a summary of consistencies of the transformations. A
new definition of the general probabilistic transformation based on their analysis and a justification of
two main alternatives to pignistic transformation is presented in Section 5. A discussion about which
transformation should be applied in applications concludes the study.

2 Preliminaries

2.1 Basic notions

Let us first recall some basic notions from the theory of belief functions. Let us consider an n-
element frame of discernment3 Ω = {ω1, ω2, ...ωn}. A basic belief assignment (bba) is a mapping
m : P(Ω) −→ [0, 1] such that

∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses

(bbm). If m(∅) = 0, we speak about normalized bba. A belief function (BF) is a mapping bel :
P(Ω) −→ [0, 1], bel(A) =

∑
∅6=X⊆A m(X). P(Ω) is often denoted by 2Ω. Let us further recall a

plausibility function Pl(A) =
∑
∅6=A∩X m(X), a commonality function Q(A) =

∑
A⊆X⊆Ω m(X), and

doubt function Dou(A) = Bel(A).
A focal element is a subset X of the frame of discernment, such that m(X) > 0. If all the focal

elements are singletons (i.e. one-element subsets of Ω), then we speak about a Bayesian belief function,
it is a probability distribution on Ω in fact. If all the focal elements are either singletons or whole Ω

3We use the classical Shaferian terminology. Besides, it is also possible to use the new more user-friendly simplification
of the terminology suggested by Dempster, see e.g. [16], using a notion state space instead of a frame of discernment,
and similarly.
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(i.e. |X| = 1 or |X| = |Ω|), then we speak about a quasi-Bayesian belief function, it is something like
’non-normalized probability distribution’.

To underline the cardinality of a frame of discernment, we use the left lower indices, e.g. nDbel(X),
3Dm(X), etc., and we speak about nD BF bel, 3D bba m, etc. Let 2D0 = (0, 0) and nD0 = (0, ..., 0)
denote special BFs bel0 such that m0(Ω) = 1, 2D0′ = ( 1

2 , 1
2 ) and nD0′ = ( 1

n , ..., 1
n , 0, ..., 0) denote

special BFs bel0′ such that m0′(X) = 1
n for |X| = 1.

The Dempster’s (conjunctive) rule of combination is given as (m1⊕m2)(A) =
∑

X∩Y =A Km1(X)m2(Y )
for A 6= ∅, A,X, Y ⊆ Ω, where K = 1/(1 − ∑

X∩Y =∅m1(X)m2(Y )) = 1
1−κ , and m(∅) = 0, see

[30]; putting K = 1 and m(∅) = κ =
∑

X∩Y =∅m1(X)m2(Y ) we obtain the non-normalized con-
junctive rule of combination ∩©, see e.g. [33]. The disjunctive rule of combination is given by the
formula (m1 ∪©m2)(A) =

∑
X∪Y =A m1(X)m2(Y ), see [22]. Specially for (m1(1),m1(0)) = (a, b),

(m2(1),m2(0)) = (c, d) on Ω = {0, 1}, we have (a, b) ⊕ (c, d) = (1 − (1−a)(1−c)
1−(ad+bc) , 1 − (1−b)(1−d)

1−(ad+bc) )
and (a, b) ∪©(c, d) = (ac, bd).

Bayes’ rule of probability combination is defined as a normalized point-wise multiplication of prob-
abilities of singletons. (P1 ⊗ P2)(x) = P1(x)P2(x)P

y∈Ω P1(y)P2(y) .
The Yager’s rule of combination Y©, see [40], is defined as

(m1 Y©m2)(A) =
∑

X,Y⊆Ω, X∩Y =A m1(X)m2(Y ) for ∅ 6= A ⊂ Ω, (m1 Y©m2)(Ω) = m1(Ω)m2(Ω) +∑
X,Y⊆Ω, X∩Y =∅m1(X)m2(Y ), and (m1 Y©m2)(∅) = 0.
The Dubois-Prade’s rule of combination DP© is defined for normalized BFs by the formula

(m1DP©m2)(A) =
∑

X,Y⊆Ω, X∩Y =A m1(X)m2(Y ) +
∑

X,Y⊆Ω, X∩Y =∅,X∪Y =A for ∅ 6= A ⊆ Ω, and
(m1DP©m2)(∅) = 0, see [21].

A consensus operator c© is defined as (b1, d1) c© (b2, d2) = ( b1u2+b2u1
u1+u2−u1u2

, d1u2+d2u1
u1+u2−u1u2

), where 0 ≤
ui = 1− bi − di ≤ 1 for u1 + u2 6= 0, (b1, d1) c© (b2, d2) = ( b1+b2

2 , d1+d2
2 ).

If we group some elements of Ω0 to disjoint groups not further distinguishing their members
we speak about coarsening of Ω0 to Ω. We have m({X}) = bel0(X) for X ∈ Ω and m({X}) =
bel0(X) −∑

∅6=Y⊂X m(Y ) for X ⊆ Ω. On the other hand, when dividing some element(s) of Ω into
several disjoint ones, we speak about refinement of the frame of discernment, e.g. the above Ω0 is a
refinement of Ω. We have m0({X}) = m(X)−∑

Y⊂X m0(Y ) for X ⊆ Ω.

2.2 Notions related to algebraic analysis

Let us recall the following terminology and denotation from algebraic analyses of belief functions and
belief combination on 2-element frame of discernment, see e.g. [9, 10, 25, 26]. Let us assume Ω =
{ω1, ω2}. It holds that 2Dm(ω1)+2Dm(ω2)+2Dm(Ω) = 1, thus 2Dm(Ω) = 1 − (2Dm(ω1)+2Dm(ω2)),
hence every 2D BF bel uniquely corresponds to the pair (m(ω1),m(ω2)). Such a pair is called a
Dempster’s pair or briefly d-pair. Extremal d-pairs are the pairs corresponding to BFs for which either
m(ω1) = 1 or m(ω2) = 1. The set of all non-extremal d-pairs is denoted as D0, the set of all non-
extremal Bayesian d-pairs (i.e. d-pairs corresponding to 2D Bayesian BFs, where m(ω1)+m(ω2) = 1)
is denoted as G, the set of d-pairs such that m(ω1) = m(ω2) is denoted as S, and the set where
m(ω2) = 0 as S1, analogically m(ω1) = 0 in S2. For the special belief functions 0 and 0′ it holds
that m(ω1) = m(ω2) = 0, resp. 1

2 , i.e. 2D0 = (0, 0) and 2D0′ = ( 1
2 , 1

2 ). Analogically we can define
nD0 = (0, 0, ..., 0) and nD0′ as ( 1

n , 1
n , ..., 1

n , 0, ..., 0), where we have bbm 1
n for singletons and 0 for

non-singletons.
The (standard/conjunctive) Dempster’s semigroup D0 = (D0,⊕) is the set of all non-extremal

Dempster’s pairs, endowed with the binary operation ⊕ (i.e. with the Dempster’s rule) and two
distinguished elements 0 = (0, 0) and 0′ = ( 1

2 , 1
2 ). Let D ∪© denote D0 ∪ {(1, 0), (0, 1), (1, 1)}. The

disjunctive Dempster’s semigroup D ∪© = (D ∪©, ∪©) is the set of all Dempster’s pairs extended by
1 = (1, 1), endowed with the operation ∪© and two distinguished elements 0 = (0, 0) and 1 = (1, 1).

A homomorphism p : (X,⊗1) −→ (Y,⊗2) is a mapping which preserves structure, i.e. p(x⊗1 y) =
p(x)⊗2 p(y) for each x, y ∈ X. We will use the following homomorphisms:
h : (D0,⊕) −→ (G,⊕), h(bel) = bel ⊕ 0′, h(a, b) = (a, b) ⊕ 0′ = ( 1−b

2−a−b ,
1−a

2−a−b ), and its nD
generalization h(bel) = bel ⊕ nD0′, see [14],
u : (D0, ∪©) −→ (G, ∪© ◦ u), u(a, b) = (a, b) ∪©( 1

a+b ,
1

a+b ) = ( a
a+b ,

b
a+b ), and its nD generalization
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u(x1, ..., xn, xn+1, ..., x2n−1) = ( x1Pn
i=1 xi

, ..., xnPn
i=1 xi

, 0, ..., 0), see [14].

2.3 General definition of probabilistic transformations

Let us consider the following very general definition now 4. A probabilistic transformation (or briefly
a probabilization) is a mapping T : BelΩ −→ ProbDistrΩ, Thus the probabilistic transformation
assigns a Bayesian belief function (i.e. probability distribution) to every general one. It is a reason
why the transformations of belief functions to probability distributions are sometimes called also
Bayesian transformations, see e.g. [38]. As we suppose finite frames of discernments, we can compute
(T (bel))(X) =

∑
A∈X(T (bel))(A) for any X ⊆ Ω.

The fundamental well know example of a probabilistic transformation is the pignistic transforma-
tion BetT and its resulting pignistic probability BetP 5 introduced by Smets. We do not use the
name pignistic transformation for the other ones, and we use the general name probabilistic trans-
formation, in accordance with Philippe Smets’ wish not to mix new alternatives together with his
classical pignistic transformation. Moreover, it allows us to use a more general definition with less
assumptions.

2.4 ulb-consistency and p-consistency

Probabilistic transformation PT is ulb-consistent (upper and lower bound consistent) if its result-
ing transformed probability TP satisfies the following consistency condition: Bel(X) ≤ TP (X) ≤
Pl(X) = 1−Bel(X). Probabilistic transformation PT is p-consistent (or probabilistically consistent)
if PT (m) = m for any Bayesian bba m. In other words Bayesian BFs are fix points of p-consistent
PTs. p-consistency is in fact ulb-consistency on Bayesian BFs (i.e. weakening of ulb-consistency)
because bel(X) = Pl(X) for Bayesian BFs.

2.5 Combination consistencies

A combination consistency of a PT is based on commutation of a combination rule F© with PT, i.e. we
obtain the same results if we combine beliefs bel1 and bel2 using the combination rule F© and perform
PT after it as in the case, where we first compute probabilistic transformations of the both input
beliefs bel1 and bel2 and combine them with the combination rule F© after.

Probabilistic transformation PT is ⊕-consistent if it commutes with the Dempster’s rule (with ⊕
combination). Analogically 6 PT is ∪©-consistent if it commutes with ∪© ◦ u. Where u stands for the
nD generalization of the original 2D homomorphism u: 2Du(a, b) = (a, b) ∪©( 1

a+b ,
1

a+b ) = ( a
a+b ,

b
a+b ),

and its nD generalization u(x1, ..., xn, xn+1, ..., x2n−1) = ( x1Pn
i=1 xi

, ..., xnPn
i=1 xi

, 0, ..., 0), see [9, 14].
Probabilistic transformation PT is ⊕I-consistent if it keeps (it is closed to) ⊕-idempotents, i.e.

PT (mi) ⊕ PT (mi) = PT (mi) for all mi such that mi ⊕ mi = mi. It is easy to observe, that ⊕I -
consistency is a weaker version of ⊕-consitency. Analogically we define ∪©I-consistency weaker versions
of ∪©-consistency.

3 Probabilistic transformations

3.1 Pignistic transformation

The pignistic transformation BetT distributes m(X) equally among all elements of X. It was named
and justified by Smets in [31] for Transferable Belief Model (TBM), see [31, 33] in 1990. Nevertheless,
the transformation based on the same principle was used by Dubois & Prade [19] as ”equidistribution
of the values of bba” and by Williams [39] in 1982 already.

4For a precision of the definition see Section 5.
5We denote all transformations with suffix T and related probabilities with P .
6It is possible to define analogically other combination consistencies w.r.t. to other combination rules, see e.g. c©-

consistency [13]. Due to the limitation of applicability of the consensus operator c© [10, 28] only to quasi-Bayesian BFs
[11], we omit a presentation of c©-consistency in this text.
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The pignistic transformation BetT projects BF bel given bba m to probability BetP defined on
the frame of discernment Ω as follows:

BetP (A) =
∑

A∈X⊆Ω

1
|X|

m(X)
1−m(∅) .

It includes normalization and division of bbms assigned to focal elements by their cardinality, non-
normalized beliefs used in TBM are admissible.

The original justification of the pignistic transformation [31, 33] unfortunately refers the principle
of insufficient reason. This disputable principle, which brings some contradictions in the probability
theory, has been replaced by the so called linearity property assumption in the recent publications,
see e. g. [34, 35], i. e. with commutation of the transformation with a convex combination of beliefs:
T (αm1+(1−α)m2) = αT (m1)+(1−α)T (m2). 7 In correspondence with the definition of combination
consistencies we can call the linearity property assumption as α-consistency. No justification of the
transformation has been presented by Dubois & Prade or by Williams.

From the definition and justification of the pignistic transformation, we can immediately see that
it is ulb-consistent and α-consistent. BetT is neither ⊕-consistent, ⊕I -consistent, nor ∪©-consistent.
BetT is ⊕I -consistent for all nD quasi-Bayesian BFs and consequently for all 2D BFs, further it is
∪©I -consistent on the set of all general nD BFs.

3.2 Plausibility or cautious probabilistic transformation

Let us introduce four different definitions of the main alternative to pignistic probability in this
subsection.

Widely known it the following one. The (normalized) plausibility probabilistic transformation Pl T,
see e.g. [2] or [3], is defined as a normalized plausibility of singletons 8. Hence we have

Pl P (A) =
Pl(A)∑

B∈Ω Pl(B)
=

∑
A∈X⊆Ω m(X)∑

B∈Ω

∑
B∈X⊆Ω m(X)

.

This transformation is called ’the pignistic probability proportional to normalized plausibility’ (PrNPl)
by Sudano in [37]. 9

As commonality Q(A) of a singleton A is equal to its plausibility Pl(A), i.e. Q(A) = Pl(A) for all
A ∈ Ω, we can define Pl T also by a new formula

Pl P (A) = Q P (A) =
Q(A)∑

B∈Ω Q(B)
,

and call it the (normalized) commonality probabilistic transformation Q T .
The cautious probabilistic transformation [12, 15] is defined as the Dempster’s combination of a

belief bel with 0′: CautT (bel) = bel⊕0′. It is a generalization of homomorphism h, which corresponds
to Hájek & Valdés results on 2D belief functions [25, 26]: 2DCautP (A) = 1−m(B)

2−m(A)−m(B) .
10 In the nD

case we have:

CautP (A) =
∑

A∈X m(X)
n−∑

B∈Ω,X⊆Ω,B /∈X m(X)
.

Voorbraak’s Bayesian transformation (VBT)11 published in 1989, see [2] and [38], is given by

V BP (A) =
∑

A∈X m(X)∑
Y⊆Ω(m(Y ) · |Y |) .

7The special case of a convex combination of bbas for α = 1
2

was mentioned as averaging of bbas in [13].
8Despite of the fact that, Cobb and Shenoy introduce it as a new method [3] in 2003, and Sudano also introduces it

as PrNPl in 2003, it was known already in 1991 [1].
9This name does not correspond to Smets’ wish of using the name of the pignistic transformation, besides it does

not satisfy all assumptions required from Smets’ pignistic transformation, either the original [31, 33] or the recent ones
[34, 35]. For this reason we eliminate the word ’pignistic’ from the name of the transformation and add a letter T (or
P ) to abbreviation of the transformation (or resulting probability) to obtain PrNPlT (or PrNPlP ) to be consistent
with the other names. The same holds also for the other Sudano’s transformations, see [36, 37].

10This 2D transformation was used already in the Expert System Shell EQUANT-PC in late 80’s, see [24].
11Voorbraak proposed VBT not for decision making, but for approximation of BFs.
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Theorem 1 The cautious, plausibility and commonality probabilistic transformations and Voorbraak’s
Bayesian transformation are the same transformations of belief functions to probabilistic distributions,
i.e. it holds that CautP (A) = Pl P (A) = Q P (A) = V BP (A).

Proof: For equality CautT ≡ Pl T see [15], for equality Pl T ≡ V BT see [2], and equality Q T ≡
Pl T follows the equality Q({ωi}) = Pl({ωi}) for singletons.

The notion (normalized) commonality probabilistic transformation is the best name for this trans-
formation, because it corresponds with the nature of the PT better than the others. It follows also
the discussion after presentation of this topic in ECSQARU’05, Barcelona, July 7. On the other hand
(normalized) plausibility (probabilistic) is the most frequent in literature till now. To be consistent
with the text published in proceedings of ECSQARU’05 we keep the name (normalized) plausibility
probabilistic transformation Pl T for this transformation, further in this text.

Pl T is ⊕-consistent. It is neither ∪©-consistent nor α-consistent. Pl T is neither ulb-consistent
in general. It is ulb-consistent for quasi-Bayesian BFs only; it implies p-consistency in general on nD
and ulb-consistency on 2D BFs.

3.3 Belief or disjunctive probabilistic transformation

In [12], the disjunctive probabilistic transformation DisjT has been presented which has been defined
on 2D frames so that it commutes with ∪©◦u, DisjP ({A}) = m({A})

m({A})+m(Ω−{A}) . Its nD generalization
is given by the following formula, see [15],

DisjP ({A}) =
m(A)∑

X∈Ω m(X)
.

A (normalized) belief probabilistic transformation Bel T [13] is defined as a normalization of beliefs
of singletons (bbms of singletons), i.e. by the formula:

Bel P (A) =
m(A)∑

X∈Ω m(X)
.

Because the formulas are the same, it is evident that Bel T ≡ DisjT . We have to note that Bel T
is not defined if

∑
X∈Ω m(X) = 0; we can complete its definition analogically to the proportional

transformation, see later, but such a definition breaks the ∪©-consistency which was a motivation for
definition of DisjT . Further, we have to note that Bel T is significantly sensitive to the bbms of
singletons because it ignores completely the bbms of non-singleton focal elements.

Bel T is ∪©-consistent, it is not ⊕-consistent, but it is ⊕I -consistent whenever it is defined. It is
neither α-consistent nor ulb-consistent in general. Similarly to Pl T , Bel T is also ulb-consistent only
for quasi-Bayesian BFs; it implies p-consistency in general on nD and ulb-consistency on 2D BFs.

3.4 A simple map example

We can simply graphically represent 2D BFs in the triangle (0, 0)(1, 0)(0, 1), thus we can also represent
probabilistic transformations on 2D BFs in such a way. Let us consider the old Dempster’s example,
see e.g. [25]. Because of the higher illustrativity of the figures bellow, the values are slightly modified
in the example. Let us imagine a (digitalized) map showing areas of land and water, with 0.75 of the
area of the map being visible and the visible area divided with proportions 0.8 to 0.2 of the water
area to the land area. Thus we have Ω = {W (ater), L(and)}, and m({W (ater)}) = 0.8 · 0.75 =
0.60 = w, m({L(and)}) = 0.2 · 0.75 = 0.15 = l, m({W,L}) = 0.25. Pignistic, Plausibility and Belief
probabilistic transformations of bbm m from the above example are presented in Figure 3.1, we have
to recall that Pl T ≡ CautT , and BelT ≡ PropT . For a graphical demonstration of the equivalence
of Plausibility and Cautious probabilistic transformations for 2D BFs see Figure 3.2.

Figure 3.3 illustrate a comparison of probabilistic transformations of two beliefs from the map
example, which are given by bbas m1 and m2, such that m1(W ) = 0.6,m1(L) = 0.15 as in the
example from the previous section and m2(W ) = 0.7 and m2(L) = 0.25. We can easily observe that
BetT (bel1) = BetT (bel2) = (0.725, 0, 275), and that there is no difference between decisions according
to bel1 and bel2 if our decision is based on BetPis, see the Figure.
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If we use cautious probabilization CautT and its resulting cautious probabilities CautPi, probabil-
ities CautP2 are closer to BetT (beli), the difference between CautP2 and BetT (beli) is less and hence
the results are less expressive for bel2. CautT (0.6, 0.15) = ( 85

125 , 40
125 ) = (0.68, 0.32) < (0.714, 0.286) =

( 75
105

30
130 ) = CautT (0.7, 0.25). (The resulting probabilities are compared according to their first coor-

dinates, i.e. according to CautPi(W ) in our map example, where CautP1(W ) < CautP2(W )).
An analogical but quite different situation arises if we use the proportional probabilistic transfor-

mation. In this case we have PropT (0.6, 0.15) = ( 60
75 , 15

75 ) = (0.8, 0.2) > (0.737, 0.263) = ( 70
95 , 25

75 ) =
PropT (0.7, 0.25). The difference is also less for bel2, but, on the other hand, not only the sizes of
the probabilities are different but also their ordering is different — reverse in our simple example —
PropP1(W ) > PropP2(W ), in the case that a different probabilistic transformation is used.

Figure 3.1: Comparison of probabilistic transformations BetT, P l T ≡ CautT and BelT ≡
PropT on the Map example.

3.5 Proportional probabilistic transformations

Proportional transformations take bbm m(A) of a singleton A and add to it proportional parts of m(X)
for all its supersets A ⊂ X. From this assumption it is obvious that these proportional probabilistic
transformations are ulb-consistent.

If the proportionalization is computed with respect to the beliefs of singletons, we speak about the
proportional belief probabilistic transformation PropBelT , see [13, 15]:

PropBelP (A) =
∑

A∈X⊆Ω

m(A)∑
B∈X m(B)

·m(X).

If
∑

B∈X m(B) = 0, then |X| is used instead of it and thus m(X) is relocated per the same portions
among all elements of X in such a case.

The equivalent proportional belief transformation PrBlT , see [36, 37], is based on the same idea
as PropBelT , also the formula for computing of PrBlP corresponds to that for computing PropBelP .

6



Figure 3.2: A comparison of Plausibility and Cautious (probabilistic) transformations.

Hence PrBlT ≡ PropBelT .
In order to correct a statement from [13], we have to note that the equivalence Bel T ≡ PropBelT

holds only on 2D and nD quasi-Bayesian BFs only.
PropBelP (A) is defined for all BFs, but similarly to Bel T it is also significantly sensitive to

the bbms of singletons. To improve it, the stepwise proportional belief probabilistic transforma-
tion StPropBelT or simply stepwise belief transformation StBel T has been defined in [13]. Bbms
m(i−1)(X) for |X| = (n + 1 − i) are proportionally relocated in the i-th step among m(i)(Y ) for
Y ⊂ X, |Y | = (n − i). After (n − 1) steps all the bbms are finally relocated among singletons.
m(0) = m, StBel P (A) = m(n−1)(A).

m(i)(Z) = m(i−1)(Z) +
∑

Z⊂X
|X|=|Z|+1

m(i−1)(Z)∑
Y⊂X,|Y |=|Z|m(i−1)(Y )

·m(i−1)(X) for |Z| = n− i,

m(i)(Z) = m(i−1)(Z) = m(Z) for |Z| < n− i, and m(i)(Z) = 0 for |Z| > n− i.
If

∑
Y⊂X,|Y |=|X|m(Y ) = 0 then |X| is used instead of it, thus m(X) is relocated per the same portions

among all Y in such a case.
If the proportionalization is computed with respect to the plausibilities of singletons, we speak

about the proportional plausibility probabilistic transformation PropPlT , see [13], which is defined by

PropPlP (A) =
∑

A∈X⊆Ω

Pl(A)∑
B∈X Pl(B)

·m(X).

The equivalent proportional plausibility transformation PrP lT [36, 37] is based on the same idea
as PropPlT , also the formula for computing of PrP l corresponds to that for computing PropPlP .
Hence PrP lT ≡ PropPlT .

If the proportionalization is computed with respect to commonalities of singletons we speak about
the proportional commonality probabilistic transformation PropQT
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Figure 3.3: Comparison of probabilistic transformations of two beliefs from the Map ex-
ample.

PropQP (A) =
∑

A∈X⊆Ω

Q(A)∑
B∈X Q(B)

·m(X).

It holds that PropQT ≡ PropPlT because of equality of plausibilities and commonalities of singletons.
Two other probabilistic proportional transformations are defined by Sudano in [36], see also [37].

Probability deficiency transformation PraP lT and iterative proportional self-consistent probabilistic
transformation PrScT .

PraP l(A) = m(A) +
1−∑

B∈Ω m(B)∑
B∈Ω Pl(B)

· Pl(A).

P raP lT is equal to PrP lT and PropPlT on 2D and on nD qBBFs, but it does not satisfy our intro-
ductive assumption of proportional probabilistic transformations. Moreover, it is not ulb-consistent in
general, even if its ulb-consistency is assumed and claimed in [36] 12. Nevertheless, PraP lT satisfies
the weaker p-consistency.

PrScP (A) =
∑

A∈X

PrScP (A)∑
B∈X PrScP (B)

·m(X).

P rScT transformation satisfies our assumption, thus it is really ulb-consistent.
Sudano’s hybrid pignistic probability transformation PrHybT [37] is also ulb-consistent.

PrHybP (A) =
∑

A∈X

PraP lP (A)∑
B∈X PraP lP (B)

·m(X).

12A counter-example: m({a}) = m({b}) = m({c}) = 0.1, m({a, b}) = 0.7, we obtain PrP l({a}) = PrP l({b}) =
0.4294 and PrP l({c}) = 0.1412 > 0.1 = Pl({c}).
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Analogically to starting a proportional transformation from the bbms or the beliefs of singletons
m(a) = bel(A) and adding some proportions of m(X) to it for A ∈ X, we can start from Pl(A)
and remove some proportions of m(X) from it, see [13]. In this way transformations Prop−PlT and
Prop−BelT were defined in [13]. Unfortunately their definitions in [13] are not correct in general, thus
we omit them in the present text. The transformations work for 2D belief functions, but from nD
quasi-Bayesian BFs problems start.

4 Summary of consistencies of probabilistic transformations

The reason of defining the new transformations in [13] was an endeavour to find a probabilistic
transformation which is both ⊕-consistent and ulb-consistent or ∪©-consistent and ulb-consistent. This
endeavour was unsuccessful, on contrary it is possible to prove the following theorem.

Theorem 2 (i) Pl T is the only ⊕-consistent probabilistic transformation which is also p-consistent.
(ii) Bel T is the only ∪©-consistent PT which is also p-consistent.
(iii) BetT is the only α-consistent PT which is also p-consistent and satisfies Smets’ assumptions of
Anonymity and of Impossible event, see Section 5 and [35].

Proof: (i) Let us show that for any ⊕-consistent PT T and any belief function X it holds that
T (X) = Pl T (X): T (X) = T (X)⊕ 0′ = T (X)⊕ T (0′) = T (X ⊕ 0′) = T (Pl T (X)) = Pl T (X). We
use that T (X) is Bayesian BF, that 0′ is neutral for Bayesian BFs, that T (0′) = 0′, ⊕-consitency of
T , and p-consitency of T .
(ii) In an analogous way, we show that for any ∪©-consistent and p-consistent PT T and any belief
function X it holds that T (X) = Bel T (X): T (X) = T (X) ∪©0′ = T (X) ∪©T (0′) = u(T (X) ∪©T (0′)) =
T (X)( ∪© ◦ u)T (0′) = T (X( ∪© ◦ u)0′) = T (u(X ∪©0′)) = u(X ∪©0′) = Bel T (X ∪©0′) = u(Bel T (X ∪©0′)) =
Bel T (X( ∪© ◦ u)0′) = Bel T (X). Here we use in addtition that ∪© ◦ u coincides with ⊕ (and Bayes’
rule of probability combination, see [14]) on Bayesian BFs.
(iii) follows Smets’ necessity of pignistic transformation [35].

From Theorem 2 the following corollary immediately follows.

Corollary 3 (i) There does not exist any probabilistic transformation which is both ⊕-consistent and
ulb-consistent in full generality. The only exception is normalized plausibility transformation Pl T on
the domain of quasi-Bayesian belief functions.
(ii) There does not exist any probabilistic transformation which is both ∪©-consistent and ulb-consistent
in full generality. The only exception is normalized belief transformation Bel T on the domain of
quasi-Bayesian belief functions.
(iii) There does not exist any ⊕- or ∪©-consistent probabilistic transformation which satisfies Smets’
assumptions of pignistic transformation.
(iv) The pignistic transformation is neither compatible with the Dempster’s rule ⊕ nor with the dis-
junctive rule of combination ∪©. (We mean compatibility in the sense of combination of pignistic
transformations).

Hence there is no need to look for another new probabilistic transformation.

We can summarize consistencies of probabilistic transformations in Table 4.1.
We have to recall the following equivalencies: Pl T ≡ CautT ≡ Q T ≡ V BT ≡ PrNPlT ,

Bel T ≡ DisjT , PropBelT ≡ PrBlT , and PropPlT ≡ PropQT ≡ PrP lT . On 2D BFs and on
nD quasi-Bayesian BFs (qBBFs) it holds further Bel T ≡ PropBelT ≡ StBel T , and PropPlT ≡
PrP lT ≡ PraP lT . The equivalency ⊕ ≡ ∪© ◦ u ≡ ⊗ holds on general nD Bayesian BFs, see [14].

5 Justification of probabilistic transformations

The recent justification of pignistic transformation is presented in [34, 35]. Let us make a general
justification of the probabilistic transformations, which have been studied in this text.
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Table 4.1: Consistencies of probabilistic tranformations.
⊕-consistency ⊕I -consistency ∪©-consistency ∪©I -consistency α-consistency ulb-consistency p-consistency

Pl T ⊕-consistent ⊕I -consist. no ∪©I -consist. no 2D BFs Yes
nD qBBFs

Bel T ∗ no ⊕I -consist.
∗∗ ∪©I -consistent ∪©I -consist.

∗∗ no 2D BFs Yes
nD qBBFs

BetT no 2D BFs no ∪©I -consist. α-consistent ulb-consist. Yes
nD qBBFs

PropBelT no 2D BFs 2D BFs - (0, 0) ∪©I -consist. no ulb-consistent Yes
nD qBBFs nD qBBFs - nD0

StBel T no 2D BFs 2D BFs - (0, 0) ∪©I -consist. no ulb-consist. Yes
nD qBBFs nD qBBFs - nD0

PropPlT no 2D BFs no ∪©I -consist. no ulb-consistent Yes
nD qBBFs

PraP lT no 2D BFs no ∪©I -consist. no 2D BFs Yes
nD qBBFs nD qBBFs

∗ Bel T is not defined for BFs such that
∑

A∈Ω m(A) = 0.
∗∗ Only on definition domain of Bel T .
qBBFs stands for quasi-Bayesian belief functions.
All the presented transformations are p-consistent,
thus all these transformations are also ⊕-, ∪©-, and α-consistent on nD Bayesian BFs.

Let us assume that a general probabilistic transformation PT is a function from the set of all belief
functions to the Bayesian ones, i. e. to the set of probabilistic distributions on Ω. PT (m) = P , where
P (X) = PT (m)(X) = m′(X). It includes Smets’ assumption of Credal-Pignistic Link, see Proposition
3.1 in [35]. Smets’ assumption of Efficiency, see Proposition 4.1 in [35], also holds because P (Ω) =∑

A∈Ω P (A) =
∑

A∈Ω m′(A) = bel′(Ω) = 1. All the studied transformations are p-consistent, thus
we can, without lost of generality, assume this very natural assumption which requires that Bayesian
BFs are transformed back to themselves. It corresponds to the Smets’ Projectivity assumption, see
Proposition 3.2 from [35].

All our probabilistic transformations satisfy also the Smets’ assumption of Anonymity, i.e. inde-
pendence of the result of transformation on permutation of elements of Ω, see Proposition 4.2 in [35],
and the assumption of Impossible event requiring probability of an impossible event equal to zero, see
Proposition 4.3 in [35].

The Linearity assumption, see Proposition 1.1 in [35], i.e. α-consistency in our terminology, is the
only Smets’ assumption that we do not include in our general assumptions. We can summarize our
assumptions to the following definition.

Definition 4 A function PT from the set of all belief functions to the set of the Bayesian ones is
called probabilistic transformation of belief functions if it satisfies:
(i) p-consistency, i. e. PT (bel) = bel for any Bayesian BF bel,
(ii) PT (bel)(X) = 0 for any impossible event X, i.e. for X such that Pl(X) = 0,
(iii) anonymity, i.e. TP (bel∗)(R(X)) = P ∗(R(X)) = P (X) = TP (bel)(X), for any permutation R of
elements of Ω and BF bel∗ given by m∗(R(X)) = m(X).

Theorem 5 Let us assume all the assumptions from Definition 1. The following holds:
(i) If we add an assumption (iv-a) of α-consistency, we obtain a justification of the pignistic trans-
formation BetT .
(ii) If we add an assumption (iv-c) of ⊕-consistency, we obtain a justification of the normalized plau-
sibility transformation Pl T .
(iii) If we add an assumption (iv-d) of ∪©-consistency, we obtain a justification of the normalized belief
transformation Bel T .

The proofs of the statements immediately follow Definition 1, Theorem 2, and properties of the
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transformations. Note that both Cobb & Shenoy’s Invariance with respect to combination and Idem-
potency [3] follow the assumption (iv-c) of ⊕-consistency.

The addition of an assumption of the ulb-consistency does not justify any unique probabilistic
transformation. On the other hand, it excludes Pl T and Bel T , hence we do not assume any ulb-
consistency in our new definition of probabilistic transformations.

6 Applicability of probabilistic transformations

Several probabilistic transformations have been presented and compared in this text. None of them is
the best of all in general. Thus a natural question arises: Which probabilistic transformation should
be used in our applications? As the answer is not unique, we will discuss it in this section.

The answer depends on the reason why we want to compute the probabilistic transformation and
how we want to use it: Whether our goal is only to find the most prospective element of the frame
of discernment or whether we have some specific assumptions to the result, and what operations we
want to perform with the resulting probability.

Let us assume that we have all our evidence represented with BFs, i.e. that there is no other explicit
nor implicit information about bbms assigned to multi-element focal elements. If we want to use a
transformed probability for betting, we have to follow the Smets’ necessity of pignistic transformation
and compute pignistic probabilities. Nevertheless, we have to use them strictly on the pignistic level
and to keep in mind that we cannot handle pignistic probabilities like the Bayesian BFs and combine
them with the conjunctive or disjunctive rule of combination and similarly.

If we assume that the belief corresponds to lower probability and the plausibility to upper prob-
ability, we have to use some of the ulb-consistent probabilistic transformations. Similarly as before,
we have to keep in mind that we have left the credal level and that we cannot handle probabilities
as Bayesian BFs. If we, moreover, assume the α-consistency, then it is the only possibility of the
pignistic probability again.

If we assume or want to be prepared for a combination of the resulting probabilities with the
conjunctive combination, we have to use ⊕-consistent transformation, i.e. Pl T . It is just the case of
Cobb & Shenoy’s assumptions. Similarly, if we assume disjunctive or α-combination of the resulting
probabilities we have to use ∪©- or α-consistent transformation, i.e Bel T or BetT respectively.

If we are interested in selection of the most plausible element we have to use normalized plausibility
transformation Pl T . For determining the most believable element we have to use normalized belief
Bel T or preferably its stepwise version StBel T . In the case where ∪© rule and Bel T are used, we
can handle probability as a Bayesian belief and combine it with ∪©. While in the case StBel T we
have to keep in mind that the credal level was left.

In the case of general looking for the most prospective element of the frame of discernment (without
any other assumption) we can select a transformation with regard to its interpretation, see [12, 15].

If we have some other information on the domain, on the belief functions which are transformed
or some special requirements to the resulting probabilities, we can use some special probabilistic
transformation.

We assume that the evidence about application domain is represented with belief functions. It is
called the credal level by Smets. By applying the pignistic transformation we leave this level and move
us to the pignistic level. In the case that we do not assume α-consistency and do not use the pignistic
transformations, we cannot speak longer about the pignistic level than about the probabilistic level or,
more generally, about the decisional level of a representation and a solution of the decisional task.

7 Conclusion

A series of probabilistic transformations of belief functions have been analyzed and compared in this
text, namely from the point of view of combination consistencies. They have different pros and cons.
It has been shown that there does not exist a probabilistic transformation which is the best in general.
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A new definition of probabilistic transformations which covers all the investigated transformations
has been presented.

A particular discussion about which transformation should be applied in applications concludes the
study. It has been shown that both the Smets’ approach of the necessity of the pignistic transformation
and the Cobb & Shenoy’s necessity of the normalized plausibility transformation are right within their
assumptions which are mutually different. Besides, the other assumptions tend to other alternative
solutions.
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national conference IPMU, Université de Savoie, Annecy, Vol. I. (2002) 587–594.

[8] Daniel, M.: Associativity in combination of belief functions; a derivation of minC combination. Soft
Computing 7 (2003) 288–296.

[9] Daniel, M.: Algebraic Structures Related to the Combination of Belief Functions. Scientiae Mathemat-
icae Japonicae 60/ 2 (2004) 245–255. Scientiae Mathematicae Japonicae Online 10 (2004) 501–511.

[10] Daniel, M.: Algebraic Structures Related to the Consensus Operator for Combining of Beliefs. In Nielsen,
T. D., Zhang, N. L., editors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU 2003); LNAI 2711, Springer-Verlag (2003) 332–344.

[11] Daniel., M.: Combination of Belief Functions on Two-element and on General n-element Frame of
Discernment In Ramı́k, J., editor, Proceedings of 6th Czech-Japan Seminar on Data Analysis and
Decision Making under Uncertainty (2003).

[12] Daniel., M.: Transformations of Belief Functions to Probabilities. In Vejnarová, J., editor, Proceedings
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[26] Hájek, P., Valdés, J. J.: Generalized algebraic foundations of uncertainty processing in rule-based expert
systems (dempsteroids). Computers and Artificial Intelligence 10 (1991) 29–42.

[27] Chateauneuf, A., Jaffray, J.-Y.: Some Characterizations of lower probabilities and other monotone
capacities through the use of Moebius Inversion. Mathematical Social Sciences 17 (1989) 263-283.

[28] Jøsang, A.: The Consensus Operator for Combining Beliefs. Artificial Intelligence Journal 141/1–2
(2002) 157–170.

[29] Lefevre, E., Colot, O., Vannoorenberghe, P.: Belief Functions Combination and Conflict Management.
Information Fusion 3/2 (2002) 149–162.

[30] Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey
(1976).

[31] Smets, Ph.: Constructing the Pignistic Probability Function in a Context of Uncertainty. In Henrion, M.,
Schachter, R. D., Kanal, L. N., Lemmer, J. F. (eds.) Uncertainty in Artificial Intelligence 5 Amsterdam,
North Holland (1990) 29–39.

[32] Smets, Ph.: The combination of evidence in the transferable belief model. IEEE-Pattern analysis and
Machine Intelligence 12 (1990) 447–458

[33] Smets, Ph., Kennes, R.: The transferable belief model. Artificial Intelligence 66 (1994) 191–234.

[34] Smets, Ph.: Decision Making in a Context where Uncertainty is Represented by Belief Functions. In
Srivastava, R. P., Mock, T. J. (eds.) Belief Functions in Business Decision Physica-Verlag, Heidelberg,
Germany, (2002) 17–61.

[35] Smets, Ph.: Decision Making in the TBM: the Necessity of the Pignistic Transformation. (International
Journal of Approximative Reasoning, In print.)

[36] Sudano, J. J.: Pignistic Probability transforms for Mixes of Low- and High-Probability Events. In Proc.
of the 4th Int. Conf. on Information Fusion (Fusion 2001), Montreal, Canada (2001) TUB3 23–27/9.

[37] Sudano, J. J.: Equivalence Between Belief Theories and Naive Bayesian Fusion for Systems with
Independent Evidential Data: Part II, the Example. In Proc. of the 6th Int. Conf. on Information
Fusion (Fusion 2003), Cairns, Australia, (2003) 1357–1364.

[38] Voorbraak, F.: A Computationally Efficient Approximation of Dempster-Shafer Theory. International
Journal of Man-Machine Studies 30 (1989) 525–536.

[39] Williams, P. M.: Discussion of Shafer G. ”Belief Functions and Parametric Models”. Journal of Royal
Statistical Society B44 (1982) 342 et seq.

[40] Yager R. R. (1987), On the Demspter-Shafer framework and new combination rules. Information
Sciences, 41 93–138.

14


