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Technical report No. 956

December 2005

Abstract:

In this paper, we propose an interior-point method for large sparse inequality constrained
optimization. After a short introduction, the complete algorithm is introduced and some
implementation details are given. We prove that this algorithm is globally convergent under
standard mild assumptions. Thus nonconvex problems can be solved successfully. The
results of computational experiments given in this paper confirm efficiency and robustness
of the proposed method.

Keywords:
Constrained optimization, large-scale optimization, nonlinear programming, inequality
constraints, interior-point methods, modified Newton methods, computational
experiments.

1This work was supported by the Grant Agency of the Czech Academy of Sciences, project code
IAA1030405, and the institutional research plan No. AV0Z10300504. L.Lukšan is also from the
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1 Introduction

Consider the nonlinear programming problem:

Minimize f(x) subject to ci(x) ≤ 0, 1 ≤ i ≤ m, (1)

where f : Rn → R is a smooth function with a sparse Hessian matrix and ci : Rn → R,
0 ≤ i ≤ m, are smooth functions depending on a small number of variables (ni, say).
We will use the following assumptions.

Assumption 1. Function f(x) is bounded from below on Rn, i.e., there is F ∈ R such
that f(x) ≥ F for all x ∈ Rn.

Assumption 2. Functions f(x) and ci(x), 1 ≤ i ≤ m, are twice continuously differ-
entiable on a sufficiently large convex set D. Moreover, constants c, g, G exist such
that ‖∇f(x)‖ ≤ g, ‖∇2f(x)‖ ≤ G and |ci(x)| ≤ c, ‖∇ci(x)‖ ≤ g, ‖∇2ci(x)‖ ≤ G,
1 ≤ i ≤ m, for all x ∈ D.

The choice of D will be discussed later (see Assumption 3).
Using slack variables si, 1 ≤ i ≤ m, problem (1) can be transformed into the

equivalent problem:

Minimize f(x) subject to ci(x) + si = 0, si ≥ 0, 1 ≤ i ≤ m. (2)

The necessary first-order (KKT) conditions for the solution of (2) have the form

∇f(x) +
m∑

i=1

ui∇ci(x) = 0, (3)

ci(x) + si = 0, si ≥ 0, ui ≥ 0, siui = 0, 1 ≤ i ≤ m, (4)

where ui, 1 ≤ i ≤ m, are Lagrange multipliers.
In this paper, we introduce a simple primal interior-point method for (2). This

problem is replaced by a sequence of unconstrained problems

minimize B(x, s; μ) = f(x) − μ
m∑

i=1

log si +
1

2μ

m∑
i=1

(ci(x) + si)
2 (5)

with barrier parameter μ > 0, where we assume that si > 0, 1 ≤ i ≤ m, and μ → 0
monotonically. Here B(x, s; μ) : Rn+m → R is a function of n + m variables x ∈ Rn,
s ∈ Rm.

The interior-point method described in this paper is iterative, i.e., it generates
a sequence of points xk ∈ Rn, k ∈ N (N is the set of integers). For proving the
global convergence, we need the following assumption concerning functions f(x), ci(x),
1 ≤ i ≤ m, and sequence {xk}∞1 .

Assumption 3. Assumption 2 holds and {xk}∞1 ∈ D.

The interior-point method investigated in this paper is a trust-region modification
of the Newton method. Approximation of the Hessian matrix is computed by the
gradient differences which can be carried out efficiently if the Hessian matrix is sparse
(see [2]). Since the Hessian matrix need not be positive definite in the non-convex case,
the standard line-search realization cannot be used. There are two basic possibilities,
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either a trust-region approach or the line-search strategy with suitable restarts, which
eliminate this insufficiency. We have implemented and tested both these possibilities
and our tests have shown that the first possibility, used in Algorithm 1, is more efficient.

The paper is organized as follows. In Section 2, we introduce the interior-point
method for large sparse inequality constrained optimization and describe the corre-
sponding algorithm. Section 3 contains more details concerning this algorithm such
as the trust-region strategy and the barrier parameter update. In Section 4 we study
theoretical properties of the interior-point method and prove that this method is glob-
ally convergent if Assumption 1, Assumption 3 and LICQ constraint qualification hold.
Finally, in Section 5 we present results of computational experiments confirming the
efficiency of the proposed method.

2 Description of the method

Differentiating B(x, s; μ) given by (5), we obtain necessary conditions for minimum in
the form

∇f(x) +
m∑

i=1

ci(x) + si

μ
∇ci(x)

Δ
= ∇f(x) +

m∑
i=1

ui(x, si; μ)∇ci(x) = 0 (6)

and

− μ

si

+
1

μ
(ci(x) + si) = 0, 1 ≤ i ≤ m. (7)

Denoting ai(x) = ∇ci(x), 1 ≤ i ≤ m, A(x) = [a1(x), . . . , am(x)],

c(x) =

⎡
⎢⎣ c1(x)

. . .
cm(x)

⎤
⎥⎦ , s =

⎡
⎢⎣ s1

. . .
sm

⎤
⎥⎦ , e =

⎡
⎢⎣ 1

. . .
1

⎤
⎥⎦ , u(x, s; μ) =

⎡
⎢⎣ u1(x, s1; μ)

. . .
um(x, sm; μ)

⎤
⎥⎦ (8)

and S = diag(s1, . . . , sm), we can write (6)–(7) in the form

∇f(x) + A(x)u(x, s; μ) = 0, u(x, s; μ) = μS−1e. (9)

The system of n+m nonlinear equations (9) can be solved by the Newton method,
which uses second-order derivatives. In every step of the Newton method, we solve a
set of n + m linear equations to obtain increments Δx and Δs of x and s, respectively.
These increments can be used for obtaining new quantities

x+ = x + αΔx, s+ = s + αΔs,

where α > 0 is a suitable step-size. This is a standard way for solving general nonlinear
programming problems. Using a special problem (2), the structure of B(x, s; μ) allows
us to obtain minimizer s(x; μ) ∈ R of function B(x, s; μ) for a given x ∈ Rn.

Lemma 1. Function B(x, s; μ) (with x fixed) has the unique stationary point, which is
its global minimizer. This stationary point is characterized by equations

μ

si(x; μ)
=

1

μ
(ci(x) + si(x; μ)) or si(x; μ)(ci(x) + si(x; μ)) = μ2, 1 ≤ i ≤ m, (10)
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which have solutions

si(x; μ) =

√
c2
i (x) + 4μ2 − ci(x)

2
if ci(x) ≤ 0, (11)

si(x; μ) =
2μ2√

c2
i (x) + 4μ2 + ci(x)

if ci(x) > 0. (12)

Proof. Function B(x, s; μ) (with x fixed) is convex for si > 0, 1 ≤ i ≤ m, since it
is a sum of convex functions. Thus if a stationary point of B(x, s; μ) exists, it is its
unique global minimizer. Differentiating B(x, s; μ) by s (see (7)), we obtain quadratic
equation (10), which define its unique stationary point. Roots of equation (10) are given
by formulas (11) or (12) (we use the formula, which is less sensitive to the round-off
errors). �

Assuming s = s(x; μ), we denote

B(x; μ) = f(x) − μ
m∑

i=1

log si(x; μ) +
1

2μ

m∑
i=1

(ci(x) + si(x; μ))2 (13)

and u(x; μ) = u(x, s(x; μ); μ). In this case, barrier function B(x; μ) depends only on x.
In order to obtain minimizer (x, s) ∈ Rn+m of B(x, s; μ), it suffices to minimize B(x; μ)
over Rn.

Lemma 2. Consider barrier function (13). Then

∇B(x; μ) = g(x; μ) (14)

and
∇2B(x; μ) = G(x; μ) + A(x)V (x; μ)AT (x), (15)

where

g(x; μ) = ∇f(x) +
m∑

i=1

ui(x; μ)∇ci(x), (16)

G(x; μ) = ∇2f(x) +
m∑

i=1

ui(x; μ)∇2ci(x) (17)

with

ui(x; μ) =
1

μ
(ci(x) + si(x; μ)) =

μ

si(x; μ)
, 1 ≤ i ≤ m, (18)

and V (x; μ) = diag(v1(x; μ), . . . , vm(x; μ)) with

vi(x; μ) =
1

μ

ci(x) + si(x; μ)

ci(x) + 2si(x; μ)
, 1 ≤ i ≤ m. (19)

Proof. Differentiating (13), we obtain

∇B(x; μ) = ∇f(x) −
m∑

i=1

μ

si(x; μ)
∇si(x; μ)

+
m∑

i=1

1

μ
(ci(x) + si(x; μ))(∇ci(x) + ∇si(x; μ))
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= ∇f(x) +
m∑

i=1

(
− μ

si(x; μ)
+

ci(x) + si(x; μ)

μ

)
∇si(x; μ)

+
m∑

i=1

ci(x) + si(x; μ)

μ
∇ci(x)

= ∇f(x) +
m∑

i=1

ci(x) + si(x; μ)

μ
∇ci(x)

= ∇f(x) +
m∑

i=1

ui(x; μ)∇ci(x)

by (10) and (6). Differentiating (10), one has

∇si(x; μ)(ci(x) + si(x; μ)) + si(x; μ)(∇ci(x) + ∇si(x; μ)) = 0

for 1 ≤ i ≤ m, which gives

∇si(x; μ) = − si(x; μ)

ci(x) + 2si(x; μ)
∇ci(x) (20)

for 1 ≤ i ≤ m. Thus

∇ui(x; μ) =
1

μ
(∇ci(x) + ∇si(x; μ)) =

1

μ

(
1 − si(x; μ)

ci(x) + 2si(x; μ)

)
∇ci(x)

=
1

μ

ci(x) + si(x; μ)

ci(x) + 2si(x; μ)
∇ci(x) = vi(x; μ)∇ci(x)

by (18), (20) and (19). Differentiating (16) and using the previous expression, we
obtain

∇2B(x; μ) = ∇2f(x) +
m∑

i=1

ui(x; μ)∇2ci(x) +
m∑

i=1

∇ui(x; μ)aT
i (x)

= ∇2f(x) +
m∑

i=1

ui(x; μ)∇2ci(x) +
m∑

i=1

vi(x; μ)ai(x)aT
i (x)

(recall that ai(x) = ∇ci(x), 1 ≤ i ≤ m), which is equation (15). �

Lemma 3. Let vector d ∈ Rn solve equation

∇2B(x; μ)d = −g(x; μ), (21)

where g(x; μ) = ∇B(x; μ) �= 0. If matrix G(x; μ) is positive definite, then dT g(x; μ) < 0
(direction vector d is descent for B(x; μ)).

Proof. Equations (15) and (21) imply

dT g(x; μ) = −dT∇2B(x; μ)d = −dT G(x; μ)d − dT A(x)V (x; μ)AT (x)d ≤ −dT G(x; μ)d,

since V (x; μ) is positive definite by (10) and (19). Thus dT g(x; μ) < 0 if G(x; μ) is
positive definite. �

Expression (19) implies that vi(x; μ) can tend to infinity and, therefore, ∇2B(x; μ)
can be ill-conditioned if μ → 0 (see (15)). The following lemma gives the upper bound
for ‖∇2B(x; μ)‖.

4



Lemma 4. If Assumption 3 holds, then

‖∇2B(x; μ)‖ ≤ (m + 1)G + m(
cG + g2

μ
).

Proof. Using (11), one has

ci(x) + si(x; μ) =
ci(x) +

√
ci(x)2 + 4μ2

2
≤ ci(x) + |ci(x)| + 2μ

2
(22)

for 1 ≤ i ≤ m, which together with (18) gives

ui(x; μ) ≤ 1, if ci(x) < 0,

ui(x; μ) ≤ ci(x)

μ
+ 1, if ci(x) ≥ 0.

At the same time, (11) implies that si(x; μ) ≥ 0 for 1 ≤ i ≤ m, which together with
(10) gives ci(x) + si(x; μ) ≥ 0 for 1 ≤ i ≤ m. Thus (19) implies

vi(x; μ) =
1

μ

ci(x) + si(x; μ)

ci(x) + 2si(x; μ)
≤ 1

μ
, 1 ≤ i ≤ m.

Using (15), (17) and Assumption 3, we obtain

‖∇2B(x; μ)‖ ≤
∥∥∥G(x; μ) + A(x)V (x; μ)AT (x)

∥∥∥
≤ ‖∇2f(x)‖ +

∥∥∥∥∥
m∑

i=1

ui(x; μ)∇2ci(x)

∥∥∥∥∥+

∥∥∥∥∥
m∑

i=1

vi(x; μ)ai(x)aT
i (x)

∥∥∥∥∥
≤ G + mG max

1≤i≤m
ui(x; μ) + mg2 max

1≤i≤m
vi(x; μ)

≤ (m + 1)G + m(
c G + g2

μ
).

�

Vector d ∈ Rn obtained by solving (21) is descent for B(x; μ) if matrix G(x; μ)
is positive definite. Unfortunately, positive definiteness of this matrix is not assured,
which causes that standard line-search methods cannot be used. For this reason, trust-
region methods were developed. These methods use the direction vector obtained as
an approximate minimizer of the quadratic subproblem

minimize Q(d) =
1

2
dT∇2B(x; μ)d + gT (x; μ)d subject to ‖d‖ ≤ Δ, (23)

where Δ is the trust region radius (more details are given in Section 3). Direction
vector d serves for obtaining new point x+ ∈ Rn. Denoting

ρ(d) =
B(x + d; μ) − B(x; μ)

Q(d)
, (24)

we set
x+ = x if ρ(d) ≤ 0, or x+ = x + d if ρ(d) > 0. (25)
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Finally, we update the trust region radius in such a way that

Δ+ = βΔ if ρ(d) < ρ,

Δ+ = Δ if ρ ≤ ρ(d) ≤ ρ, (26)

Δ+ = βΔ if ρ < ρ(d),

where 0 < ρ < ρ < 1 and 0 < β < 1 < β.
Now we are in a position to describe the basic algorithm.

Algorithm 1.

Data: Termination parameter ε > 0, minimum value of the barrier parameter
μ > 0, rate of the barrier parameter decrease 0 < τ < 1, trust-region

parameters 0 < ρ < ρ < 1, trust-region coefficients 0 < β < 1 < β, step

bound Δ > 0.

Input: Sparsity pattern of matrices ∇2f(x) and A. Initial estimation of vector x.

Step 1: Initiation. Choose initial barrier parameter μ > 0 and initial trust-region
radius 0 < Δ ≤ Δ. Determine the sparsity pattern of matrix ∇2B from
the sparsity pattern of matrices ∇2f(x) and A. Carry out symbolic decom-
position of ∇2B. Compute values f(x) and ci(x), 1 ≤ i ≤ m. Set k := 0
(iteration count).

Step 2: Termination. Determine vector s(x; μ) by (11) or (12) and vector u(x; μ) by
(18). Compute vectors ∇f(x) and ∇ci(x), 1 ≤ i ≤ m, and set g(x; μ) :=
∇f(x) + A(x)u(x; μ). If μ ≤ μ and ‖g(x; μ)‖ ≤ ε, then terminate the
computation. Otherwise set k := k + 1.

Step 3: Approximation of the Hessian matrix. Compute approximation of matrix
G(x; μ) by using differences ∇f(x + δv) + A(x + δv)u(x; μ) − g(x; μ) for a
suitable set of vectors v (see [2]). Determine Hessian matrix ∇2B(x; μ) by
(15).

Step 4: Direction determination. Determine vector d as an approximate solution of
trust-region subproblem (23).

Step 5: Step-length selection. If ρ(d) > 0 (where ρ(d) is given by (24)), set x := x+d
and compute values f(x) and ci(x), 1 ≤ i ≤ m.

Step 6: Trust-region update. Determine new trust-region radius Δ by (26) and set
Δ := min(Δ, Δ).

Step 7: Barrier parameter update. If ρ(d) ≥ ρ, determine a new value of barrier pa-
rameter μ ≥ μ (not greater than the current one) by the procedure described
in Section 3. Go to Step 2.

The use of the maximum step-length Δ has no theoretical significance, but is very
useful for practical computations. First, the problem functions can sometimes be evalu-
ated only in a relatively small region (if they contain exponentials) so that the maximum
step-length is necessary. Secondly, the problem can be very ill-conditioned far from the
solution point, thus large steps are unsuitable. Finally, if the problem has more local
solutions, a suitably chosen maximum step-length can cause a local solution with a
lower value of f to be reached. Therefore, maximum step-length Δ is a parameter,
which is most frequently tuned.
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The important part of Algorithm 1 is the update of barrier parameter μ. There
are several influences that should be taken into account, which make the updating
procedure rather complicated.

3 Implementation details

In Section 2, we have pointed out that direction vector d ∈ Rn should be a solution
of the quadratic subproblem (23). Usually, an inexact approximate solution suffices.
There are several ways for computing a suitable approximate solutions (see, e.g., [19],
[4], [22], [23], [18], [21], [13]). We have used the dog-leg method based on direct decom-
positions of matrix ∇2B (we omit arguments x and μ in the subsequent considerations).

The dog-leg method described in [19], [4], seeks d as a linear combination of the
Cauchy step dC = −(gT g/gT∇2Bg)g and the Newton step dN = −(∇2B)−1g. The
Newton step can be computed by using the sparse Gill-Murray decomposition [8].
This decomposition has the form ∇2B +E = LDLT , where E is a positive semidefinite
diagonal matrix (which is equal to zero when ∇2B is positive definite), L is a lower
triangular matrix and D is a positive definite diagonal matrix. The following algorithm
is a typical implementation of the dog-leg method.

Algorithm A: Data Δ > 0.

Step 1: If gT∇2Bg ≤ 0, set s := −(Δ/‖g‖)g and terminate the computation.

Step 2: Compute the Cauchy step dC = −(gT g/gT∇2Bg)g. If ‖dC‖ ≥ Δ, set d :=
(Δ/‖dC‖)dC and terminate the computation.

Step 3: Compute the Newton step dN = −(∇2B)−1g. If (dN − dC)T dC ≥ 0 and
‖dN‖ ≤ Δ, set d := dN and terminate the computation.

Step 4: If (dN −dC)T dC ≥ 0 and ‖dN‖ > Δ, determine number θ in such a way that
dT

CdC/dT
CdN ≤ θ ≤ 1, choose α > 0 such that ‖dC + α(θdN − dC)‖ = Δ, set

d := dC + α(θdN − dC) and terminate the computation.

Step 5: If (dN − dC)T dC < 0, choose α > 0 such that ‖dC + α(dC − dN)‖ = Δ, set
d := dC + α(dC − dN) and terminate the computation.

The above algorithm generates direction vectors such that

‖d‖ ≤ δΔ,

‖d‖ < δΔ ⇒ ∇2Bd = −g,

−Q(d) ≥ σ‖g‖min

(
‖d‖, ‖g‖

‖∇2B‖
)

,

where 0 < σ < 1 is a constant depending on the particular algorithm. These inequalities
imply (see [20]), that a constant 0 < c < 1 exists such that

‖d‖ ≥ cγ/B, (27)

where γ is the minimum norm of gradients that have been computed and B is an upper
bound for ‖∇2B‖ (assuming μ ≥ μ > 0, we can set B = (m + 1)G + m(c G + g2)/μ by
Lemma 4). Thus

B(x + d; μ) − B(x; μ) ≤ ρQ(d) ≤ −ρ σ c
γ2

B
if ρ ≥ ρ (28)
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by (25) and (27).
A very important part of Algorithm 1 is the update of the barrier parameter μ.

There are two requirements, which play opposite roles. First μ → 0 should hold, since
this is the main property of every interior point method. On the other hand, the con-
vergence theory requires (28) to hold. Thus a lower bound μ for the barrier parameter
has to be used (we recommend value μ = 10−6 in double precision arithmetic).

Algorithm 1 is also sensitive on the way in which the barrier parameter decreases.
We have tested various possibilities for the barrier parameter update including simple
geometric sequences, which were proved to be unsuitable. Better results were obtained
by setting

μk+1 = μk if ‖gk‖2 > τμk or μk+1 = max(μ, ‖gk‖2) if ‖gk‖2 ≤ τμk, (29)

where 0 < τ < 1.

4 Global convergence

In the subsequent considerations, we will assume that ε = μ = 0 and all computations
are exact. We will investigate infinite sequence {xk}∞1 generated by Algorithm 1.

Lemma 5. Let Assumption 1 and Assumption 3 be satisfied. Then values {μk}∞1 ,
generated by Algorithm 1, form a non-increasing sequence such that μk → 0. Moreover

lim inf
k→∞

‖∇B(xk; μk)‖ = 0. (30)

Proof. (a) First we prove that B(x; μ) is bounded from below if μ is fixed. Using
Assumption 1, Assumption 3 and (11), one has

si(x; μ) ≤ 1

2

(
|ci(x)| +

√
c2
i (x) + 4μ2

)
≤ |ci(x)| + μ ≤ c + μ.

Thus we can write

B(x; μ) = f(x) − μ
m∑

i=1

log si(x; μ) +
1

2μ

m∑
i=1

(ci(x) + si(x; μ))2

≥ F − μ
m∑

i=1

log(c + μ) = F − mμ log(c + μ). (31)

(b) Now we prove that the sequence of points in which μk is updated is infinite. If it
was finite, an index l ∈ N would exist such that μk+1 = μk = μl ∀k ≥ l. Since function
B(x; μl) is continuous, bounded from below by (a) and since (28) (with μ = μl) holds
∀k ≥ l, it can be proved (see [20]) that lim infk→∞ ‖g(xk; μl)‖ = 0. Thus an index k ≥ l
exists such that ‖g(xk; μl)‖2 ≤ τμl and, therefore, μk+1 = ‖g(xk; μl)‖2 ≤ τμl < μl by
(29), which is a contradiction. Since the sequence of points where μk+1 ≤ τμk is infinite,
we can conclude that μk → 0.

(c) Let N1 = {k ∈ N : ‖g(xk; μk)‖2 ≤ τμk}. This set is infinite by (b) and since μk → 0

one has ‖g(xk; μk)‖ N1→ 0. �
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Remark 1. Since all quantities considered are bounded by Assumption 3, we can

found a subset N2 ⊂ N1 ⊂ N such that g(xk)
N2→ g∗ and ci(xk)

N2→ c∗i , ai(xk)
N2→ a∗

i ,
1 ≤ i ≤ m. Let M1 = {i ∈ {1, . . . ,m} : c∗i ≥ 0} and M2 = {i ∈ {1, . . . , m} : c∗i < 0}.
We will assume that vectors a∗

i , i ∈ M1, are linearly independent (the LICQ constraint
qualification holds for the limiting Jacobian matrix). To simplify the notation, we
use the multiindex M1 with vectors and matrices corresponding to index set M1 and
multiindex M2 with vectors and matrices corresponding to index set M2, respectively.

Theorem 1. Let Assumption 1 and Assumption 3 be satisfied. Consider sequence
{xk}∞1 , generated by Algorithm 1. Let {xk}N2 ⊂ {xk}∞1 be a subsequence mentioned in
Remark 1. Then

‖g(xk; μk)‖ N2→ 0

and
si(xk; μk) ≥ 0, ui(xk; μk) ≥ 0, si(xk; μk)ui(xk; μk)

N2→ 0

for 1 ≤ i ≤ m. If the LICQ constraint qualification holds for the limiting Jacobian
matrix, then also

‖ci(xk; μk) + si(xk; μk)‖ N2→ 0.

Proof. (a) The first assertion follows directly from (30). Expressions (10)–(12) im-
ply that si(xk; μk) ≥ 0, ui(xk; μk) ≥ 0 and si(xk; μk)ui(xk; μk) = μk, which gives

si(xk; μk)ui(xk; μk)
N2→ 0. Since functions ci(x), 1 ≤ i ≤ m, are continuous by As-

sumption 3, there is an index k1 ∈ N2 such that cM2(xk) < 0 for all k ∈ N2, k ≥ k1.
Thus ‖cM2(xk) + sM2(xk; μk)‖ ≤ √

mμk for all k ∈ N2, k ≥ k1 by (22), which implies

‖cM2(xk) + sM2(xk; μk)‖ N2→ 0.

(b) Assume that M1 �= ∅. Let N2 be a subset mentioned in Remark 1 and AM1(xk)
N2→

A∗
M1

, where matrix A∗
M1

has linearly independent columns. Then there is an index
k2 ∈ N2, k2 ≥ k1 such that k ∈ N2, k ≥ k2 implies ‖AM1(xk)v‖ ≥ σ∗‖v‖/2 ∀v ∈ Rn,
where σ∗ > 0 is the minimum singular value of matrix A∗

M1
. Using (16) and (18) one

has

1

μk

‖AM1(xk)(cM1(xk) + sM1(xk; μk))‖

≤ ‖g(xk; μk)‖ + ‖∇f(xk)‖ +
1

μk

‖AM2(xk)(cM2(xk) + sM2(xk; μk))‖
≤ ‖g(xk; μk)‖ + ‖∇f(xk)‖ +

√
m‖AM2(xk)‖ ≤ ‖g(xk; μk)‖ + (m + 1)g

for k ∈ N2, k ≥ k2, since ‖cM2(xk) + sM2(xk; μk))‖ ≤ √
mμk by (a). Thus

σ∗

2
‖cM1(xk) + sM1(xk; μk))‖ ≤ ‖AM1(xk)(cM1(xk) + sM1(xk; μk))‖

≤ μk(‖g(xk; μk)‖ + (m + 1)g)

for k ∈ N2, k ≥ k2 and since ‖g(xk; μk)‖ N2→ 0 and μk
N2→ 0, we can conclude that

‖cM1(xk) + sM1(xk; μk)‖ N2→ 0. �

Corollary 1. Let assumptions of Theorem 1 hold and sequence {xk}∞1 be bounded.
Then there exists a cluster point x ∈ Rn of sequence {xk}∞1 satisfying KKT conditions
(3)-(4), where u ∈ Rm is a cluster point of sequence {u(xk; μk)}∞1 .
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5 Computational experiments

The primal interior-point method was tested and compared with the primal-dual in-
terior point method proposed in [11] by using two sets of test problems. These sets
were obtained as modifications of test problems for equality constrained optimiza-
tion given in [15] and [16], which can be downloaded (together with report [15]) from
http://www.cs.cas.cz/~luksan/test.html (always two problems of the set were ex-
cluded, since they were not successfully solved by both methods compared). In Set 1,
equalities c(x) = 0 are replaced by inequalities c(x) ≤ 0. Set 2 contains inequalities
−1 ≤ x ≤ 1 and −1 ≤ c(x) ≤ 1. All problems used have optional dimension; we have
chosen dimension with 1000 variables.

The results of computational experiments are given in two tables, where P is the
problem number, NIT is the number of iterations, NFV is the number of function
evaluations, NFG is the number of gradient evaluations and F is the function value
reached. The last row of every table contains summary results including the total
computational time.

Primal interior-point method Primal-dual interior-point method

P NIT NFV NFG F NIT NFV NFG F

2 42 65 588 24299.2 15 15 210 24299.2
3 21 22 132 6.5E-10 19 19 114 1.4E-09
4 135 193 810 399.738 30 36 180 399.732
5 19 20 200 2.8E-13 13 13 130 1.5E-11
6 30 31 434 1.3E-11 30 30 420 -2.6E-13
7 38 48 273 -385.269 40 41 280 -385.269
9 99 119 700 99.8950 37 39 259 99.8950

10 155 185 936 352.954 38 38 228 353.122
11 30 33 186 2.8E-07 23 24 138 1.4E-09
12 79 95 560 7.2E-10 18 18 126 7.2E-09
13 68 73 552 1.9E-08 28 28 224 1.8E-06
14 33 34 238 2.8E-08 49 49 343 4.9E-09
15 36 38 222 1.1E-09 33 33 198 2.6E-10
16 74 86 375 3.7E-08 27 27 135 5.9E-10
17 24 48 120 1196.18 13 13 65 1196.18
18 71 86 360 566.693 14 14 70 566.693

Σ 954 1176 6686 TIME=2.70 427 437 3120 TIME=1.55

Table 1: Set 1 of 16 problems with 1000 variables
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Primal interior-point method Primal-dual interior-point method

P NIT NFV NFG F NIT NFV NFG F

1 53 63 324 4.9E-08 32 34 192 3.99778
2 32 55 448 15678.2 18 18 252 15678.2
3 34 59 204 14.9973 19 19 114 14.9974
4 90 117 540 938.570 41 41 246 981.816
6 138 146 1946 12511.0 46 47 644 12511.0
7 68 78 483 -348.499 77 83 539 -348.499
9 101 122 714 100.125 46 62 322 100.125

10 151 183 912 4.9E-08 47 91 282 9.5E-13
11 33 35 204 3.2E-08 24 26 144 1.4E-08
12 24 26 175 1.1E-09 21 21 147 5.1E-08
13 28 30 232 3.2E-08 31 32 248 3.8E-10
14 40 41 287 6.0E-08 35 35 245 2.9E-08
15 27 28 168 6.0E-10 36 40 216 2.1E-11
16 74 85 375 4.9E-08 30 30 150 1.0E-09
17 46 58 235 346.405 19 19 95 346.405
18 68 80 345 198.721 24 24 120 198.721

Σ 1007 1206 7592 TIME=4.44 546 622 3956 TIME=3.29

Table 2: Set 2 of 16 problems with 1000 variables

The results introduced in these tables show that primal-dual interior point method
is more robust that primal interior method described in this paper. Nevertheless, some-
times a better solution can be obtained by the primal interior point method (Problem 10
in Table 1 and Problem 1 in Table 2).
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[13] L.Lukšan, C.Matonoha, J.Vlček: A shifted Steihaug-toint method for computing a trust-
region step. Technical Report V-914. Prague, ICS AS CR, 2004. Submitted to BIT
Numerical Mathematics.
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