
On the Power of Broadcasting in Mobile Computing

Wiedermann, Jiřı́
2005

Dostupný z http://www.nusl.cz/ntk/nusl-34206

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 23.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-34206
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

On the Power of Broadcasting in
Mobile Computing

Jǐŕı Wiedermann and Dana Pardubská

Technical report No. 944

October 2005

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: (+4202) 6605 3520, fax: (+4202) 86 585 789,
e-mail:jiri.wiedermann@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

On the Power of Broadcasting in
Mobile Computing1

Jǐŕı Wiedermann2 and Dana Pardubská3

Technical report No. 944

October 2005

Abstract:

A computational model reflecting fundamental computational aspects of wirelessly communicating mobile
processors is presented. In essence, our model is a deterministic Turing machine which is able to launch new
processes among which a wireless communication via explicitly assigned channels must be programmed.
We show that computations of such machines are polynomially time– and space–equivalent to the synchro-
nized alternating Turing machines studied previously in the literature. This shows that nondeterminism
can be completely eliminated from synchronized alternation at the price of introducing a program–driven
communication among the respective processors.

Keywords:
wireless computing, Turing machines, alternation, complexity

1The research was carried out within the institutional research plan AV0Z10300504 and partially supported by grant
No. 1ET100300517 and by grant APVT-20-018902

2Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 2, 182 07 Prague
8, Czech Republic

3Department of Computer Science, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia, email: par-
dubska@fmph.uniba.sk

1 Introduction

The recent progress in wireless and mobile information technologies has caused an increased interest in
algorithmic aspects of the underlying computing and communicating mechanisms. It seems that so far
the respective research has mainly concentrated on the concrete algorithmic issues neglecting almost
completely the computational complexity aspects in that kind of computing. This might be due to
the lack of formal computational models underlying the wireless mobile computing. If one tries to
identify the basic computational and communication properties of the respective mode of computing,
after a considerable simplification one arrives at a notion of dynamically reconfigurable nets of mobile
processors which can communicate one with each other via a “radio”. On a sufficiently high level
of abstraction this can be modelled as though the processes communicated over a set of channels,
with messages broadcasted over different channels being “heard” by any other processes tuned to the
respective channels.

What can be said about the computational power and efficiency of the “computational model”
we have just sketched? Does wireless mobile computing as captured by the simplified model bring
new quality into computing when compared to the classical ways of computing? Answers to these
questions will present the main motivation for this paper. In order to get such answers we will devise
a formal model capturing the main features of mobile wireless computing and we will investigate its
computational efficiency. Our model is a parallel deterministic Turing machine that is able to spawn
parallel processes which can create communicating groups. The main design idea of our model has been
its transparency as far as the communication mechanism among the processes is concerned. That is, in
our model establishing a connection within different subsets of processors requires explicit allocation
of different communication channels to the respective processes. Moreover, the same mechanism of
inter–processor communication is also used for detecting termination condition. The above mentioned
transparency makes visible (and thus, chargeable) the activities which e.g. in the case of alternating
Turing machines occur “behind the scene” and bring free benefits.

In our investigations we have been primarily inspired by the concept of alternation (cf. [1]). In
the complexity theory this concept is seen as a theoretically neatest framework for studying parallel
computations. It might look as quite far–fetched to try to see the alternating processes as wirelessly
communicating mobile processes, but it is not entirely so. In a classical alternating Turing machine, the
“wireless” communication among its running processes is used in order to determine the termination
of the whole computation. The mobility of processes is captured by their dynamic emergence and
extinction and by the fact that they are not associated with any concrete location.

The second source of inspiration for our work has been offered by so–called synchronized alternation
which is a more general concept than the classical alternation. Synchronized alternating Turing
machines have been investigated since the end of nineteen nineties ([5], [3]). The motivation behind
these studies was similar to ours: what is the benefit of an additional communication among processes
of a running alternating machine. In our terms, in the original works on synchronized alternation
(cf. [5] and [3]) but a single channel communication was considered. It appeared that the respective
machines had the same time efficiency as the classical alternating Turing machines, but they were
more space–efficient than the latter machines: their logarithmic space had the same power as their
polynomial time. This is the property not known to hold for the classical alternating Turing machines.

In our modelling we have disposed both of nondeterminism and of the acceptance mechanism
which both are crucial ingredients of alternation (either classical or synchronized one). Instead, we
introduced a versatile deterministic inter–processor message exchange mechanism. Surprisingly, our
main result states that these changes compensate for the loss of the respective abilities. In fact,
our entirely deterministic parallel machines are equivalent to the synchronized alternating Turing
machines.

We are far from claiming that our model represents an ideal model of mobile wireless computing.
Nevertheless, we believe that the benefit of having such a model is threefold. First, our model charac-
terizes the computational power of a certain type of wireless mobile computing. Second and perhaps
more importantly, the model shows that nondeterminism and the acceptance mechanism of classical
alternating machines are not necessary in order to get a full computational power of synchronized
Turing machines. Last but not least, the new model leads to an alternative “machine dependent”

1

characterization of PSPACE and EXPSPACE, or APTIME and AEXPTIME, respectively. Namely, it
shows that synchronized alternation is equivalent to deterministic parallelism enhanced by an explicit
communication mechanism.

The paper is structured as follows. In Section 2 we present our model of the so–called wireless
parallel Turing machine and introduce the respective complexity measures. Next, in Section 3 we
state the main complexity characterizations of computations by such a machine. Finally, in Section 4
we review the achievements of the paper.

2 Wireless Parallel Turing Machine

In order to arrive at a computational model in which processes communicate via broadcasting, we use
the multiplicative ability of processes of an alternating Turing machine in universal states and enhance
the latter machine by a special mechanism which enables “wireless” information transfer among the
processes which have “tuned in” the same channel. We will also dispose of the acceptance mechanism
of alternating machines whose activity will be substituted by a versatile communication mechanism.

Definition 2.1 A k–tape wireless parallel Turing machine (WPTM) with a separate read–only input
tape and a separate channel tape is an eleven–tuple M = (k, Q,R, Σ,Γ,∆, q0, r0, ε, qaccept, qreject)
where

• k is the number of work tapes;

• Q×R is the finite set of states;

– Q is the set of working states with initial state q0 ∈ Q;

– R is the set of communication states also containing four distinguished states: initial com-
munication state r0, empty communication state ε and states qaccept, qreject which are
accepting and rejecting states, respectively;

• Σ is a finite input alphabet ($ 6∈ Σ is an endmarker);

• Γ is a finite work tape alphabet (] ∈ Γ is the blank symbol,] 6∈ Σ);

• ∆ ⊆ Q×R× (Σ ∪ {$})× Γk+1 ×Q×R× (Γ− {]})k+1 × {−1, 1}k+2 is the next move relation.

The elements of ∆ are called transitions. The machine has a read–only input tape with endmarkers,
k work tapes and one channel tape. The work tapes and the channel tape, jointly be referred to as
tapes, are initially blank. The tapes are unbounded to the right, with their cells numbered from 0.

Let δ = 〈q, r, x, a1, . . . , ak+1, q
′, r′, a′1, . . . , a

′
k+1, d1, . . . , dk+2〉 ∈ ∆ be a transition of M. According

to this transition in a single step M finding itself in working state q, in communication state r, reading
symbol x from the input tape and ai from the i-th tape, for i = 1, 2, . . . , k + 1, enters a new working
state q′, new communication state r′, writes symbol a′i on the i-th tape and moves each of the k + 2
heads in direction dj (left or right) one tape cell, for j = 1, 2, . . . , k + 2.

A configuration of a WPTM M is an element of Q×R×Σ∗× ((Γ−{]})∗)k+1×Nk+2, representing
the working and communication state of the finite control, the input, the non–blank contents of k + 1
tapes, and k + 2 head positions.

A head configuration of M is an element of Q × R × (Σ ∪ {$}) × Γk+1 representing the working
and communication state of the finite control and the contents of cells scanned by each head.

We say that a transition with the new communication state r′ 6= ε broadcasts state r′ ∈ R.
Such a transition is called a broadcasting transition. There is one syntactic restriction holding for
broadcasting transitions called “unanimous broadcast rule”: the broadcasting transitions pertinent to
the same head configuration must all broadcast the same communication state. They can differ in the
remaining parts, i.e., they can prescribe entering different working states and different rewritings and
movements. We say that a configuration is tuned to channel c if it has string c written to the left from
the current channel tape head position. If c is a non–empty string, then it is also called a channel
number. A configuration tuned to c to which a transition with the new communication state r′ 6= ε

2

applies is said to broadcast r′ on channel c. A configuration broadcasting ε is effectively considered as
no–broadcasting (or silent) configuration (cf. the definition of a transition modified by a broadcasting
below). The silent transitions are useful in situations when a process “does not want” to broadcast
any information, e.g., when re–tuning its channel.

A configuration β is a δ–successor of a configuration α with respect to transition δ ∈ ∆ (written as
α `δ β) if β follows from α in one step, according to transition δ. The move α `δ β is called a simple
step of M.

A configuration without successors is called a terminal configuration. Note that a configuration
can have several different δ–successors.

In order to define a computation of M we need a couple of further preliminary definitions.
Function Tuned : Q×R×Σ∗× ((Γ−{]})∗)k+1×Nk+2 → (Γ−{]})∗ assigns to each configuration

its channel number.
In a similar vein we define function Broadcast : Q×R×Σ∗×((Γ−{]})∗)k+1×Nk+2 → R returning

to each configuration the unique state broadcasted by the transition applicable to that configuration
(remember the “unanimous broadcast rule”). With a slight abuse of notation this function will
naturally be extended to a set L 6= ∅ of configurations as follows:

Broadcast(L) =

b iff for all α, β ∈ L, Tuned(α) = Tuned(β)
and Broadcast(α) = b

⊥ otherwise

(symbol ⊥ denotes an undefined value).
Finally, we define projection Comm : Q×R×Σ∗× ((Γ−{]})∗)k+1×Nk+2 → R assigning to each

configuration its communication state.
For any communication states u, v ∈ R and any configuration α in communication state u the

notation α|u:=v denotes configuration α in which state u is changed to v.
Let L be a set of configurations, Lc ⊆ L a subset of configurations tuned to c and α `δ β a simple

step. Then configuration γ is a so–called δL–successor of α w.r.t. transition δ modified by broadcasting
from L (denoted as α `δL γ) if γ is defined as follows:

γ :=

β|Comm(β):=b iff LTuned(β) 6= ∅ and Broadcast(LTuned(β)) = b
⊥ iff LTuned(β) 6= ∅ and Broadcast(LTuned(β)) = ⊥
β iff LTuned(β) = ∅ or Broadcast(LTuned(β)) = ε

Note that the previous three items correspond to the following situations, respectively: in each
item we consider broadcasting by configurations in L on a channel to which β is tuned. Case 1
corresponds to the situation when all configurations broadcast unanimously state b. Case 2 deals with
the situation when there is a broadcasting conflict on that channel, and case 3 covers the situation
when there is no broadcast on that channel.

For any configuration % the computational graph T (%) w.r.t. the transition relation ∆ of M is a
rooted, directed, possibly infinite acyclic multigraph whose nodes are configurations of M and edges
correspond to transition and communication links. This graph is defined recursively:

1. % is the root of T (%) at depth d = 0;

2. Let Cd be the set of configurations at depth d ≥ 0. Then for all non–terminal configurations
α ∈ Cd, set Cd+1 contains all δCd

–successors of α; i.e., set Cd+1 = { γ | ∃ non–terminal α ∈
Cd : α `δCd γ}. If some of the δCd

–successors of α is undefined, then the whole graph T (%) is
undefined.

3. In T (%) there are two kinds of edges:

• so–called transition edges leading from each α ∈ Cd to each of its δCd
–successors γ ∈ Cd+1;

• so–called broadcasting edges leading from each broadcasting configuration α ∈ Cd to each
configuration β ∈ Cd+1, with Tuned(α) = Tuned(β).

3

Note that the first (“completeness”) condition in item 3 as above ensures that T (%) contains, for
any configuration α in T (%), the set of all its successors with their communications states possibly
modified by broadcasting.

¿From the previous description it is seen that the computational graph is built in a completely
deterministic manner: in this graph, all transition and broadcasting edges are defined uniquely. For-
mally, it is a multigraph since there can be one transition and one broadcasting edge between some
nodes of this graph.

A computational path starting in configuration % is a (possibly infinite) sequence of configurations
of M which are encountered during a traversal down any path in T (%). Any computational path
represents a computation of M along that path, or a process corresponding to that path.

The nodes of T (%) without successors are called leaves of T (%).
A computational graph T (%) of M is a computational graph accepting input w if it satisfies the

following conditions:

1. Finiteness: T (%) is a finite graph;

2. Initial condition: % = (q0, r0, w, ν, . . . , ν︸ ︷︷ ︸
k+1

, 0, . . . , 0︸ ︷︷ ︸
k+2

) is the initial configuration where ν is the null

string.

3. Acceptance agreement: all leaves of T (%) are terminal configurations at the same depth, in
communication state qaccept and tuned to the same channel.

In a similar way, the notion of a computational graph rejecting the input string is defined.
¿From practical point of view the acceptance agreement means that all processes share the informa-

tion that all of them have accepted the input. If the termination time is unknown then the acceptance
in the same depth can be achieved e.g. via barrier synchronization. The idea is to check periodically
and synchronously in all processes, their “readiness” to terminate the computation (cf. [4]).

We say that M accepts w if M ’s computational graph accepts w; we define L(M) to be the set of
strings accepted by M.

The working space (channel space) complexity of a configuration is the sum of length of the non–
blank contents of corresponding work tapes (the length of the channel tape). The working space of a
computational graph T is the maximum work space of any configuration in T ; the channel space of T
is defined similarly. The time of T is the maximum length of any path in T.

A WPTM M operates in work space S(n) (channel space C(n)) if for every string w ∈ L(M) of
length n there is a computational graph of M of working space at most S(n) (channel space C(n))
that accepts w. Similarly, M operates in time T (n) if for every string w ∈ L(M) of length n there is
a computational graph of M of time at most T (n) that accepts w.

The introduction of a separate space measure based on the size of the channel tape is motivated
by the wireless mobil computing. The channel space measure hints to the size of the respective
communication mechanism.

The resulting model can also be characterized as a co–nondeterministic machine enhanced by a
certain processor inter–communication mechanism and without the acceptance mechanism of alter-
nating Turing machines: the acceptance criterion must be programmed in the machine’s instructions.
The deterministic nature of a WPTM contributes to the “realness” of this model as far as the wireless
mobil computations are concerned.

When the transition relation becomes a function it is easily seen that a WPTM turns into the
classical deterministic Turing machine. Similarly, it is an easy exercise to realize that a WPTM can
simulate in linear time a nondeterministic or a co-nondeterministic Turing machine. Although for
both machines the acceptance criteria are different, the WPTM can easily accommodate any of them.
In fact, we will show that the WPTMs and alternating Turing machines are polynomially time related.

3 The power of the wireless communication

We start by comparing the WPTMs to the classical ATMs.

4

Theorem 3.1 Let T (n) be a time constructible function with T (n) ≥ n. Let A be an alternating
Turing machine of time complexity T (n). Then there is a WPTM M simulating A in time O(T (n))
and in working and channel space O(T (n)).

Sketch of the proof: W.l.o.g. assume that in the computation tree TA of A all branchings are
of order at most 2. Design M as follows: starting from the initial configuration of A, M applies
to it all applicable transitions of A irrespectively whether the configuration was an existential or a
universal one, and in this manner proceeds as though descending the levels in TA. However, in their
working memory the processes in M also remember the so–called routing information representing
the computational path in TA from its root to a configuration c at depth d describing the respective
process at time d. The computational path to c is represented as a binary number of form (b1, . . . , bd)2,
with bi ∈ {0, 1}. This number is also called the path number of c.

A part of routing information is the information on the type of TA’s nodes (existential or universal)
on that path and a variable qual in which the so–called quality of each node along the path is stored.
The quality of a node in TA is an element from the set {⊥, Y, N} denoting undefined, accepting and
rejecting value. For a node v, the quality of v refers to the computational subtree Tv of TA rooted
at v. If Tv is an accepting (rejecting) tree, then the quality of v is defined as Y (N); otherwise, the
quality gets undefined, denoted as ⊥ (cf. [1]). Thus, the routing information for a configuration
c stored at v is of form 〈(b1, 21, qual1), . . . , (bd,2d, quald)〉, with bi ∈ {0, 1}, 2i ∈ {∃,∀, |, } and
quali ∈ {⊥, Y,N}. The quantifier ∃ denotes the existential branching at v, ∀ the universal branching
(with two successors) and | denotes “no branching” — a deterministic configuration having but one
successor. Routing information description is of length O(T (n)) at most.

After simulating the T (n) steps (remember that T (n) has been a time constructible function) of A,
the processes of M start to verify the acceptance condition for A. Essentially, this condition states how
the “answers” from the individual terminated processes must be combined while “climbing” towards
the root of TA (cf. [1]). The “climbing” is based on the routing information. In order to proceed from
a given level d to the next upper level d − 1, we must first have “filled in” the values of quald in all
processes in M.

In the sequel we will use the following notation: S〈b1,...,bd〉 denotes the set of the processes of M
whose path numbers share the prefix (b1, . . . , bd)2. Note that in the routing information of processes
in S〈b1,...,bd〉, the values of 2i for i = 1, . . . , d, coincide.

The values of quald are computed in rounds. In a so–called d-round, for d = T (n), T (n)− 1, . . . , 1,
the value of quald is computed for each process in M . We show that at the end of d-round the following
invariant holds: for each process in S〈b1,...,bd〉, the values of quali, for i = T (n), T (n) − 1, . . . , d have
already been determined and, moreover, in all processes in S〈b1,...,bd〉 the value of quald is the same.

The algorithm starts with d = T (n) by assigning values Y, N, or ⊥ to qualT (n) in each process of
M which has accepted, rejected, or has not finished its task, respectively. Since for all path numbers
S〈b1,...,bT (n)〉 are the singleton sets, the invariant is restored at the end of the T (n)-round.

Assume now that the invariant holds at the end of a d-round, T (n) ≥ d > 1. We show the
algorithm restoring the invariant at the end of a (d− 1)-round.

Each process in S〈b1,...,bd〉 inspects the value of 2d in its routing information.
If it was “|,” then the process sets quald := quald+1.
If it was“∀” or ”∃,” then there exist two “brother” sets of processes S〈b1,...,bd,0〉 = S1 and S〈b1,...,bd,1〉 =

S2 within S〈b1,...,bd〉 = S. Clearly, S1 and S2 are disjoint, S1 ∪ S2 = S and for all processes in S1,
quald+1 has the same value, and the same holds for S2. In order to compute quald in S from know-
ing quald+1 both in S1 and S2, respectively; both sets must broadcast the values of their respective
quald+1 to all processes in S. The broadcasting is performed over channel no. (b1 . . . bd)2: first, the
processes from S1 broadcast their value of quald+1 to processes of S and the same is then done by
processes of S2. Due to the fact that the values of quald+1 are the same within each S1 and S2,
respectively, no broadcasting conflict can happen (as required by condition 2(a) in the definition of
the complete computational tree of M in Section 2). As a result, in accordance with the rules for
quality assignment in alternation trees (cf. [1]) each process in S can compute its quality at depth d.
Obviously, all processes in S will get the same value for quald. Note that for all sets S〈b1,...,bd〉 all the
necessary communication is carried out over the disjoint channels. The round is finished by setting
d := d− 1.

5

In a similar way we proceed level by level, until we get d = 1 and in all processes, qual1 gets its
final value. Based on this, a broadcasting transition on channel 0 into the accepting communication
state qaccept or qreject can be realized in all processes and the simulation can terminate.

We conclude that in O(T (n)) steps the acceptance condition for A can be verified by M, indeed.
2

Theorem 3.2 Let T (n) be a time constructible function with T (n) ≥ n. Let M be a WPTM of time
complexity T (n). Then M can be simulated by an alternating Turing machine A of time complexity
O(T 2(n)) and space complexity O(T (n)).

Sketch of the proof: Let TM be the computational graph of M on input w. TM is a superposition of
two graphs: w.l.o.g. we can assume that the first is the binary tree — called the spawning tree hereafter
— underlying TM and capturing the processes spawning history. The second graph is the broadcasting
graph capturing the broadcasting of communication states from the broadcasting configurations to the
respective target configurations. If TM is an accepting computational graph, then, w.l.o.g., the leaf
configurations are tuned to channel 0.

The idea of the simulation algorithm is to guess accepting configurations and to check that these
configurations are leaves of an accepting computational graph TM for input word w. Note that the
leaf configurations are uniquely determined by M and w thanks to the fact that any WPTM is a fully
deterministic device.

To verify the before mentioned property we will first guess the accepting configurations cv in the
leaves of TM by creating pairs (path number pv, accepting configuration cv). Then, we will reconstruct
TM in a bottom-up manner by checking in parallel for each leaf v in TM that the computational path
with path number pv ends up in configuration cv. In fact, we will traverse the computational path
in a bottom-up manner, from the leaf to the root and verify that the path ends up in the initial
configuration. Within this process we will have to repeatedly guess and verify the subgraphs of TM

consisting of all paths leading from a given node towards the root. Due to the deterministic nature
of M ’s computation, such paths are unique and therefore their repeated traversal will be possible.

To better understand how the bottom–up traversal is done let us focus on one computational step
of M first. Let v be a vertex of TM at depth d, let pv, cv be the corresponding path number and
configuration, respectively. Note that d = |pv|, with |pv| denoting the length of the (binary) represen-
tation of pv. With the exception of the communication state, configuration cv is uniquely determined
by the configuration in the predecessor v1 of v in the spawning tree. The communication state of v
is determined by the set S(|pv|−1,Tuned(cv)) of v’s predecessor vertices in the broadcasting graph (see
Fig. 1). For a correct realization of a computational step the condition of unanimous broadcasting
must be satisfied, i.e., all vertices from S(|pv|−1,Tuned(cv)) must broadcast the same communication
state Comm(cv).

So, in order to proceed from v to v1 we have to (i) guess a configuration cv1 , (ii) guess a vertex
v2 ∈ S(|pv|−1,Tuned(cv)) and (iii) verify that all vertices from S(|pv|−1,Tuned(cv)) broadcast the same
communicating state Comm(cv).

The simulation algorithms stars in a so-called preparatory phase in which A starts its work by first
setting cons ← 0 for the acceptance agreement and then, in universal mode, A creates 2T (n) processes
at depth T (n). It is here where we need the constructibility of T (n). For each process A computes its
path number and guesses the respective terminal leaf configuration in TM with the channel number
cons and communication state qaccept. Thanks to the fact that all the configurations are accepting
ones no broadcasting conflict can occur at depth T (n). Then, in every process just created procedure
Reachability(pv, cv) is issued.

Procedure Reachability(pv, cv) is quite a complex recursive procedure which in turn calls three
other procedures. Its goal is to verify recursively whether a configuration cv is reachable from the root
via a specified computational path pv assuming that no broadcasting conflicts occur in TM whenever
necessary.

Reachability(pv, cv) works as follows.
If |pv| = 0 then there cannot be any broadcasting from configurations at a higher level and hence

Reachability(λ, cv), with λ denoting the empty string of length 0, straightforwardly verifies whether
cv equals the initial configuration or not and returns the corresponding answer.

6

Figure 3.1: The schema of broadcasting in TM

If |pv| > 0, from pv the process computes pv1 = pv ÷ 2, guesses cv1 and then existentially splits
into two branches.

The first branch corresponds to the case when cv1 `δ cv, i.e., when the transition δ from v1 to v
was a simple move (not using any broadcasting). Thus we have to verify the existence of δ ∈ ∆ such
that cv1 `δ cv, that cv1 is reachable (via path pv1) and that there was no broadcasting on channel
Tuned(cv). The first condition is checked by trying all δ’s for cv1 `δ cv. Once a matching δ is found
we verify the remaining two conditions by splitting universally and calling Reachability(pv1 , cv1) on
one branch and procedure UndisturbedBroadcast(|pv1 |, Tuned(cv), ε) on the other branch (see the
description of procedure UndisturbedBroadcast in the sequel). If the move cv1 `δ cv could not been
verified for any δ, then the procedure rejects.

The second branch corresponds to the case when state Broadcast(cv2) = b (say) was broadcasted to
cv on channel h = Tuned(cv). In this case Reachability guesses pv2 and cv2 such that Tuned(cv2) = h.
Then it goes deterministically through all δ ∈ ∆ in order to find δ such that v1 `δ{v2} v. If such
δ is found, the procedure splits universally into three processes performing in parallel procedure
Reachability(pv1 , cv1), procedure Reachability(pv2 , cv2), and procedure UndisturbedBroadcast(|pv2 |, h, b),
respectively. Otherwise, procedure Reachability rejects.

UndisturbedBbroadcast(d, h, b) verifies that no other state than b is broadcasted on channel h at
depth d in TM . The other way round, no configuration tuned to h and broadcasting b′ 6= b is reachable
in TM at depth d.

To check that the latter property holds assume B(d,h,b) is the set of all configurations which
could in principle occur in TM at depth d tuned to h broadcasting a communication symbol b (recall
that the configuration is said to broadcast a symbol b if a transition broadcasting b applies to that
configuration). We will in parallel check for each element c ∈ ⋃

b′ 6=b B(d,h,b′), i.e., for each path p, with
|p| = d, and each b′ 6= b that there is no way for path p starting in the initial configuration to end up
in c while broadcasting b′.

In order to do so the procedure splits universally, systematically creating a process for each path
number p between (0, . . . , 0︸ ︷︷ ︸

d

)2 and (1, . . . , 1︸ ︷︷ ︸
d

)2, each communicating state b′ ∈ R, b′ 6= b (or b′ ∈ R iff

b = ε, respectively), and configuration c of size at most d such that c broadcasts b′ on channel h. On
each such a branch Nonreachability(p, c) (described in the sequel) is called in order to verify that in
TM configuration c is not reachable via path p.

Nonreachability(p, c) checks that the statement “in TM , path p starting in initial configuration leads
to c” is false. In fact, we want Nonreachability(p, c) = ¬(Reachability(p, c)) to hold. Hence,
Nonreachability(p, c) works much like Reachability(p, c) with the substantial difference that exis-
tential states are replaced by universal ones and vice versa and instead of UndisturbedBroadcast

7

procedure Broadcast (described in the sequel) is called. Nonreachability(p, c) accepts if and only if
Reachability(p, c) called with the same parameters rejects or is not defined.

Broadcast(d, h, b) verifies that state b is broadcasted on channel h by some configuration at depth d
in TM . The other way round, in TM at depth d there exists a reachable configuration tuned to h and
broadcasting b.

To check the property for each configuration c ∈ Sd,h,b and path number p ∈ {0, 1}d a process is
existentially created. Then, Reachability(p, c) is called in each such process.

The simulation of M by A ends successfully by accepting the input if and only if all calls of checking
procedures issued in the verification phase end successfully.

All four above mentioned procedures are described in the Appendix in greater detail.

Now a few words regarding the correctness of the simulation algorithm are in order. The prepara-
tory phase obviously serves its purpose. Subsequently, procedure Reachability was used to ensure
the reachability of the nodes of TM from the root. However, this property has been checked under
the condition that there were no broadcasting conflicts in TM . Such conflicts, if any, were detected by
UndisturbedBraodcast by inspecting all configurations in TM possibly “jamming” a state broadcasted
on a given channel at the given level. In this way the correctness of guesses of Reachbility concerning
configurations in TM modified by broadcasting on the given channel has been either verified or a
“mismatch” in the broadcasted communication states has been detected, if any.

The formal proof of correctness can be done by mathematical induction showing that

• Reachability(pv, cv) returns true iff vertex v with path number pv corresponds to configuration
cv in computational tree TM (cI) with initial configuration cI in its root;

• UndisturbedBroadcast(d, h, b) returns true iff no other state than b is broadcasted on channel
h at depth d in TM (cI);

• Nonreachability(pv, cv) returns true iff the configuration in vertex v with path number pv is
different from cv, in TM (cI);

• Broadcast(d, h, b) returns true iff state b is broadcasted on channel h at depth d in TM (cI).

Finally we determine the complexity of A. Obviously, the preparatory phase is of time complexity
O(T (n)). The complexity of the next two phases is quadratic w.r.t. T (n) since by each call of the
checking procedures the depth parameter in the calls decreases by 1 until the calls terminate at depth
0. However, preparing the necessary parameters for the calls also takes time O(T (n)) which leads to
the quadratic time complexity of the verification phase.

2

In what follows, in addition to the standard deterministic complexity classes such as LOGSPACE,
PTIME, PSPACE, and EXPTIME we will also use their analogues defined for the alternating and
wireless parallel Turing machines. These classes will be denoted by prefixing the standard complexity
classes listed before by A or W, respectively.

The following corollary characterizing the power of WPTM’s polynomial time is the consequence
of both previous theorems and of the known properties of alternating complexity classes (cf. [1]).

Corollary 3.1 For any time constructible function T (n) with T (n) ≥ n,

⋃

k>0

WTIME(Tk(n)) =
⋃

k>0

ATIME(Tk(n))

i.e.,
WPTIME = APTIME = PSPACE

Next, we turn our attention to the relation between the deterministic and wireless mobile space.

8

Theorem 3.3 Let D be a deterministic Turing machine of space complexity S(n). Then D can be
simulated by a WPTM M of channel space complexity O(log S(n)) and of working tape complexity
O(1).

Sketch of the proof: The proof mirrors the proofs of similar theorems known in the theory of
synchronized alternation (cf. [2], [5]). I.e., the contents of the cells of a single tape of D are kept in
processes of M. A new proces is spawned each time when the head of D on its work tape enters a
blank cell. The cells are numbered by their position number and so are the processes. Thus, on their
working tape, process No. i remembers the symbol written in the i-th cell, the presence of the working
head of D at this cell (yes or no), and the state of D if the head scans the i–th cell of D. Number i
in binary is stored at the channel tape of the i–th process. M simulates D by following its moves and
by updating the information in the processes corresponding to the respective updated cells and state
changes of D. The “head movements” from the i–th process (cell) are realized by broadcasting the
respective “message” to the cell’s left or right neighbor on channel (i−1) or (i+1) whose number equals
the index of that cell. Thus, re–tuning a channel amounts to adding or subtracting 1 from the current
channel number. Clearly, the channel space complexity of the simulating machine is O(log S(n)) while
the working space complexity is O(1).

2

Theorem 3.4 Let S(n) ≥ log n. Let M be a WPTM of both working and channel space complexity
O(S(n)). Then there exists c > 0 such that M can be simulated by a deterministic Turing machine D
in space O(cS(n)).

Sketch of the proof: Consider the computational graph TM of M on input w. Each configuration in
TM is of size O(S(n)); in this estimate, the input head position is included thanks to our assumption
on the size of S(n). If w is accepted by M, then at most O(cS(n)

1) different processes can occur in M.
It follows that for a suitable c > c1 D has enough space to write down all the respective configurations
and within this space it can easily keep track of all M ’s actions. D will accept if and only if its
computation will correspond to an accepting tree of M on w.

2

¿From theorems 3 and 4 and from Corollary 1 we get further characterizations of WPTM com-
plexity classes.

Corollary 3.2 For any S(n) ≥ log n

WSPACE(S(n)) =
⋃

c>0

DSPACE(cS(n))

WLOGSPACE = PSPACE = WPTIME, WPSPACE = EXPSPACE = WEXPTIME

¿From Corollary 1 and 2 we can see that the fundamental complexity classes, viz. logarithmic
space and polynomial time, coincide both for synchronized alternating (cf. [5] and [3]) and wireless
parallel Turing machines. Thus, w.r.t. these classes both models are equivalent. Especially note that
similarly as synchronized alternating Turing machines, WPTMs use their space in an optimal manner
— e.g., “wireless” polynomial time equals “wireless” logarithmic space.

4 Conclusion

The effort of designing a computational model of wireless mobile nets has brought an unexpected
result. In addition to the original goal of characterizing the computational power of a certain kind
of such nets, our results have also thrown new light on the nature of the classical and synchronized
alternation as that of a computational resource. While the (synchronized) alternation machines with
their unrestricted use of nondeterminism and their fancy acceptance mechanism look as a quite unre-
alistic computational model we have shown that these machines are in fact equivalent to deterministic
parallel devices possessing the ability of information exchange via broadcasting on unbounded number

9

of different channels. On the one hand, these results rank the wireless mobile nets under our consid-
eration among the very powerful computational devices. On the other hand, the same results confirm
the fact that the very idea of alternation is not so far from the reality as it might appear at the first
sight.

In future it would be of interest to study the computational power of nondeterministic wireless
parallel Turing machines.

10

Bibliography

[1] Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of the ACM, Vol. 28, pp. 114–133,
1981.

[2] Geffert, V.: A Communication Hierarchy of Parallel Computations. Theor. Comput. Sci., Vol
198, No. 1-2, pp. 99–130, 1998

[3] Hromkovič, J., Karhumäki, J., Rovan, B., Slobodová, A.: On the power of synchronization in
parallel computations. Discrete Appl. Math. 32 (1991), 155-182

[4] Valiant, L. G.: A Bridging Model for Parallel Computation, Communication of the ACM, Vol.
33 No. 8, pp. 103–111, 1990

[5] Wiedermann, J.: On the Power of Synchronization. Elektronische Informationsverarbeitung und
Kybernetik (EIK), Vol. 25, No. 10, pp. 499–506, 1989

11

Appendix

This appendix gives a formal description of procedures used in the proof of Theorem 2.
The computation of an ATM A starts by calling procedure Simulation. In what follows

M is given by its transition relation ∆; we also assume that a Turing machine constructing T (n) is
available to A;

cI is a global variable denoting the initial configuration;

existentially A1 OR . . . OR Ak means an existential branching to a constant number of processes
A1, . . . , Ak; analogously, a universal branching is described by universally A1 AND . . . AND
Ak

guess(x ∈ S), guess(x such that P(x)) are the analogues to existentially A1 OR . . . OR Ak.
These abbreviations are used in situations, when we want to existentially create process for
every object x from a given set S with bounded cardinality (the set S can as well be specified
by some condition P) . As the cardinality of branchings in ATM is bounded by a constant, to
create a non–constant number of processes the subtree with desired number of leaves is created
by repeated existential branchings. We assume that the leaf–creating process “knows” the value
x.

Similarly, the constructions for all(x ∈ P), for all(x such that P(x)) are the analogues to
universally A1 AND . . . AND Ak.

Note that the alternating time consumed by guess(x ∈ P), or for all(x ∈ P), respectively, is
not a constant but it depends on x and the depth of the tree. In fact, the time complexity in
this case equals the logarithm of the number of possible values of x;

Bb,d,h denotes the set of all configurations which could in principle occur in TM at depth d tuned to
h broadcasting a communication symbol b.

procedure Simulation(w: input word): boolean;
{ returns true iff WPTM M accepts input word w. }
var cons; channel number

c, cI ; configuration
p; path number

begin
cI ← initial configuration;
cons ← 0;
for all (p such that p ∈ {0, 1}T (|w|)) do

for all (c such that c is terminal configuration tuned to cons) do
return Reachability(p, c)

end for
end for
end

12

procedure Reachability(pv: path number, cv: configuration): boolean;
{ returns true iff in computational tree TM rooted in configuration cI there is vertex v with path
number pv corresponding to a configuration cv }

var pv1 ; path number
cV1 ; configuration
δ; transition

begin
if |pv| = 0 then return (cv = cI)
else if |pv| > 0 then

pv1 ← pv ÷ 2;
guess(cv1);

existentially(1) OR (2):
(1) if ∃δ ∈ ∆ : cv1 `δ cv then

universally(1a) AND (1b):
(1a) return Reachability(pv1 , cv1);
(1b) return UndisturbedBroadcast(|pv1 |, Tuned(cv), ε);

else if
return false

end if ;
(2) guess(pv2 such that |pv2 | = |pv| − 1);

guess(cv2 such that Tuned(cv) = Tuned(cv2));
if ∃δ ∈ ∆ : cv1 `δcv2 cv then

universally(2a) AND (2b) AND(2c):
(2a) return Reachability(pv1 , cv1);
(2b) return Reachability(pv2 , cv2);
(2c) return UndisturbedBroadcast(|pv2 |, Tuned(cv2), Broadcast(cv2))

else if
return false

end if
end if
end

13

procedure UndisturbedBraodcast(d: depth,h: channel number,
b: communication state) boolean;

{ returns true iff in computational tree TM rooted in configuration cI no other state than b is
broadcasted on channel h at depth d }

var p; path number
B; set of communication states
b′; communication state
c; configuration

begin
if b = ε then B := R
else if B := R \ {b}
end if ;
for all p ∈ {0, 1}d do

for all b′ ∈ B do
for all c ∈ Bd,h,b′ do:

return Nonreachability(p, c);
end for

end for
end for
end

procedure Braodcast(d: depth,h: channel number,
b: communication state) boolean;

{ returns true iff in computational tree TM rooted in cI state b is broadcasted on channel h at depth
d. }
var p; path number

c; configuration

begin
guess(p ∈ {0, 1}d);

guess(c ∈ Bd,h,b);
return Reachability(p, c);

end

14

procedure Nonreachability(pv: path number, cv: confuguration): boolean;
{ returns true iff in computational tree TM rooted in cI the configuration in vertex v with path
number pv is different from cv }
var pv1 ; path number

cv1 ; configuration
δ; transition
b; communication state

begin
if |pv| = 0 then

return (cv 6= cI)
else if |pv| > 0 then

pv1 ← pv ÷ 2;
for all cv1 do

universally(1) AND (2):
end for

(1) if ∃δ ∈ ∆ : cv1 `δ cv then
existentially(1a) OR (1b):

(1a) return Nonreachability(pv1 , cv1);
(1b) for all (b ∈ R) do:

return Broadcast(|pv1 |, Tuned(cv), b);
end for

else if
return true

end if ;
(2) for all pv2 do:

for all (cv2 such that Tuned(cv) = Tuned(cv2)) do:
if ∃δ ∈ ∆ : cv1 `δcv2 cv then

existentially(2a) OR(2b) OR (2c):
(2a) return Nonreachability(pv1 , cv1);
(2b) return Nonreachability(pv2 , cv2);
(2c) for all (b ∈ R \ {Broadcast(cv2)}) do:

return Broadcast(|pv2 |, Tuned(cv2), b)
end for

else if
return true

end if
end for

end for
end if
end

15

