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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 053 251, fax: +420 286 585 789,
e-mail:{tebbens,tuma,}@cs.cas.cz,



Institute of Computer Science
Academy of Sciences of the Czech Republic

Preconditioner Updates for Solving
Sequences of Large and Sparse
Nonsymmetric Linear Systems

Jurjen Duintjer Tebbens, Miroslav Tůma
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PRECONDITIONER UPDATES FOR SOLVING SEQUENCES OF
LARGE AND SPARSE NONSYMMETRIC LINEAR SYSTEMS

JURJEN DUINTJER TEBBENS AND MIROSLAV TŮMA∗

Abstract. Preconditioner updates for solving sequences of linear algebraic systems are consid-
ered. New and theoretically motivated strategies for approximating updates of factorized nonsym-
metric preconditioners are presented. It is shown experimentally that some of them can be very
beneficial. In particular, they are successful in significantly decreasing the number of iterations of a
preconditioned iterative method for solving subsequent systems of a sequence when compared with
the strategy of freezing the preconditioner computed in the first step of the sequence. In some cases,
the updated preconditioners offer a rate of convergence close to the rate obtained when precondi-
tioning with recomputed preconditioners. In addition, their application may be cheaper than that of
recomputed factors. Since the updates are typically cheap and straightforward, we believe that their
use is of practical interest and that they can replace recomputing preconditioners, which is often
expensive, especially in parallel and matrix-free environments.

Key words. preconditioned iterative methods, sparse matrices, sequences of linear algebraic
systems, incomplete factorizations, factorization updates, Gauss-Jordan transformations, minimum
spanning tree

1. Introduction. We consider the solution of sequences of linear systems

Aix = bi, i = 1, . . . ,(1.1)

where Ai ∈ IRn×n are general nonsingular sparse matrices and bi ∈ IRn are corre-
sponding right-hand sides. Such sequences arise in many applications like compu-
tational fluid dynamics, structural mechanics, numerical optimization as well as in
solving non-PDE problems. For example, a system of nonlinear equations F (x) = 0
for F : IRn → IRn solved by a Newton or Broyden-type method leads to a sequence
of problems

J(xi)(xi+1 − xi) = −F (xi), i = 1, . . . ,(1.2)

where J(xi) is the Jacobian evaluated in the current iteration xi or its approximation
[19], [20].

The solution of such sequences of linear systems is the main bottleneck in many
applications mentioned above. Iterative Krylov subspace solvers are often methods of
choice when the systems are large. In many cases, these solvers must be preconditioned
in order to be efficient. Computing preconditioners M1,M2, . . . for individual systems
separately, may be very expensive. There is a strong need for reduction of costs by
sharing some of the computational effort among the subsequent linear systems.

A way to reduce the overall costs for solving systems of the type (1.2) is to modify
Newton’s method by skipping some Jacobian evaluations as in the Shamanskii com-
bination of Newton’s method and the Newton-chord method [7], [35]. In this way we
get a sequence of systems with identical matrices, and techniques for solving systems
with more right-hand sides may be applied, see, e.g., [27], [31], [38], [40], provided the
right-hand sides are available. However, combination of a modified Newton method
with a Krylov subspace solver, called modified Newton-Krylov method (MNK), has
much weaker nonlinear convergence properties than the standard Newton’s method.

∗Institute of Computer Science, Czech Academy of Sciences, Pod Vod. věž́ı 2, 18207 Praha 8,
Czech Republic. This work is supported by the National Program of Research “Information Society”
under project 1ET400300415.
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2 J. DUINTJER TEBBENS AND M. TUMA

Another approach, which is usually more efficient, is based on freezing the pre-
conditioner (using the same preconditioner for a sequence of linear systems), but
recomputing (approximate) Jacobians Ai [32], [22], [23]. This approach is very natu-
ral in the context of a matrix-free environment, where the system matrices Ai may be
available only in the form of matrix-vector products (matvecs), see also the overview
of matrix-free Newton-Krylov methods in [21]. Even when a matrix is not available
explicitly, it can be often estimated from results of matvecs with a suitably chosen set
of test vectors. The problem of minimizing the number of test vectors, described in
the pioneering paper [10], was formalized in [37] in terms of graph coloring problems
of a related graph. Since then a bunch of heuristic algorithms, software and appli-
cations for estimation of sparse matrices has been developed, see, e.g., the overview
[16]. In matrix-free environment, a preconditioner with a special structure based on
the diagonally compensated reduction [1] can be sometimes obtained from an exactly
estimated auxiliary matrix using a small number of matvecs since the graph color-
ing algorithms for matrix estimation with a reduced number of constraints allow this
[9]. An important assumption for applicability of matrix estimation techniques is the
knowledge of the matrix sparsity pattern. Fortunately, in many cases the pattern is
known, e.g., from the discretization grid.

As we will demonstrate later, freezing the preconditioner need not be enough
for fast convergence of preconditioned iterative methods in many practical cases. In
order to decrease the overall computational effort for solving a sequence of subsequent
systems we may reuse some additional information from the linear system A1x = b1.
One example of such an algebraic approach in the Newton-Krylov framework is to
recycle Krylov subspaces among systems of a sequence, see, e.g., [24], [29].

Our contribution is targeted to improvement of algebraic preconditioners which
may be considered as a complementary approach. We propose here approximate up-
dates of a preconditioner M1 which is factorized as LDU ≈ A or ZDW ≈ A−1. Note
that many interesting algorithms were proposed for exact updates of decompositions.
Recent sparse updates [11], [12], [36] replace in some cases classical dense updates
from, e.g., [30]. There is some recent work in approximate updates as well. For ex-
ample, approximate diagonal updates of approximate inverse preconditioners which
are useful for solving parabolic PDEs were proposed in [2], see also [6]. A straight-
forward approximate rank one update of a preconditioner can be obtained in case of
a sequence of linear systems from a quasi-Newton method, as shown in the SPD case
in [26], [5].

To summarize our contribution, we present new approaches to approximate up-
dates of factorized, and general nonsymmetric preconditioners which may be useful
in solving subsequent linear systems. The paper is organized as follows. In Section
2 we present an introduction into preconditioner updates, and briefly motivate and
discuss possible strategies. In Section 3 we introduce new approaches with a necessary
theoretical motivation. The results of numerical experiments with the new algorithms
are presented and discussed in Section 4. Directions for current and future research
are given in Conclusions. Throughout the paper, ‖ · ‖ denotes an arbitrary matrix
norm.

2. Approximate updates of preconditioners. Some of the strategies to up-
date preconditioners that we mentioned in the introduction are linked with specific
classes of linear solvers (e.g. recycling Krylov subspaces) or their effectiveness de-
pends on special properties of the involved system matrices (e.g. while exploiting
symmetry). In this paper we wish to consider sequences of general, nonsymmetric
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systems that are solved by preconditioned iterative methods. We address the follow-
ing problems: First, how can we update, in theory, a preconditioner in such a way
that the updated preconditioner is likely to be as powerful as the original one? And
second, how can we approximate, in practice, such an update in order to obtain a
preconditioner that is inexpensive to apply and yet useful?

In order to simplify the notation, we consider two linear systems of dimension n
denoted by Ax = b and A+x+ = b+. Denote the difference matrix A−A+ by B and
let M be a preconditioner approximating A. The quality of the preconditioner M can
be expressed by a norm of the matrix

A−M(2.1)

or by some norm of one of the matrices

I −M−1A or I −AM−1(2.2)

if we consider preconditioning from the left or right, respectively (see, e.g. [2]). If
preconditioners are in factorized form, both (2.1) and (2.2) should be considered in
practice since the preconditioners can suffer from two types of deteriorations. While
the norm of the matrix (2.1) expresses accuracy of the preconditioner, the norms of
the matrices (2.2) relate to its stability [8], see also [3]. In the context of derivation of
preconditioner updates we will prefer to address the norm of the matrix (2.1). Poten-
tial instabilities of the updated preconditioner can be reduced by update modifications
as we will show later. We have

‖A−M‖ = ‖A+ − (M −B)‖,
hence M+ ≡ M −B is an updated preconditioner for A+ of the same “level” of accu-
racy as M is for A. This “ideal” updated preconditioner cannot be used, in general, in
practice since multiplication of vectors with (M −B)−1 may be too expensive. There
are ways, however, to approximate matvecs with (M − B)−1. Note that there may
very well exist different preconditioners that are ideal with respect to a norm of (2.1):
Just consider M+ = M − C for some matrix C 6= B with

‖A−M‖ = ‖A+ −M+‖ = ‖A+ −M + C‖.
We will concentrate here, however, on approximation of M+ = M − B and we will
assume it is nonsingular. Then we can write down its inverse with the help of the
Sherman-Morrison formula.

Consider a decomposition B = UV T of the difference matrix B, where U and V
are n× k matrices for some k ≤ n. Then

(M+)−1 = M−1 + M−1U
(
Ik − V T M−1U

)−1
V T M−1.(2.3)

If there exists a decomposition B = UV T such that k ¿ n, then application of
(M+)−1 is computationally feasible. This is the case, for example, in quasi-Newton
methods where the difference matrix has rank one or two [26], [5].

In general, however, we cannot assume the difference matrix has low rank and
it will be necessary to approximate the ideal update to be able to compute matvecs
with its inverse inexpensively. With respect to (2.3), the most logical way of doing so
is finding a low rank approximation of B. This leads to the minimization problem

min
U,V, rank(UV T )=k

‖B − UV T ‖,(2.4)
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for some k ¿ n and in some norm. In the Euclidean norm, the minimization problem
is solved by considering the k largest singular values and corresponding singular vec-
tors. Unfortunately, it is too expensive to compute the singular value decomposition
of the large system matrices we are interested in. An option is computation of only
a small number of dominant singular values and vectors (e.g. through a shift-and-
inverted Lanczos process applied to BT B) or some form of incomplete singular value
decomposition (e.g. with Jacobi’s method). There may be cases where the difference
matrix B can be approximated inexpensively in this way, but in general computational
costs may become at least as high as for the computation of a new preconditioner for
A+.

An inexpensive procedure that approximates B in the Frobenius norm results from
simply choosing the k rows bi∗ of largest 2-norm and approximating by

∑k
i=1 eibi∗, or,

analogously, finding the k largest columns b∗i and approximating B with
∑k

i=1 b∗ieT
i .

In this way, we also approximate in the ‖ · ‖∞ or ‖ · ‖1 norm. Clearly, these approx-
imations need not be the best rank k approximations. In fact, in many applications
the difference matrix has elements of similar magnitude along its diagonals, hence a
small number of rows or columns cannot very well replace the matrix.

These considerations seem to imply that computation of a low rank approximation
UV T of B, followed by application of (2.3), does not seem to be promising. This
motivated us to search for different, and often simpler, approximation strategies. In
the following section we describe some options.

3. Updates of approximate decompositions. This section presents new pre-
conditioners for a matrix A+ = A − B obtained as cheap updates from a precondi-
tioner M ≈ A. Assume that M is given in the form of a triangular decomposition as
M = LDU ≈ A, where L and U have unit main diagonal. The derivation of some
of our updates is based on the assumption that the entries of L and U decay when
moving away from the main diagonal, see the discussion on the decay of the entries of
inverse factors in [4], cf. also [2]. In addition, note that sufficient diagonal dominance
may often be imposed if A contains a strong transversal [28], [13], [14] such that its
entries can be permuted to the main diagonal. Consider the “ideal” update M − B
from the previous section. If it is invertible, we can approximate, for example, as

(M −B)−1 = U−1(D − L−1BU−1)−1L−1 ≈ U−1(D −B)−1L−1,(3.1)

provided D − B is nonsingular. Now assume D −B is a nonsingular approximation
of D − B that can be inverted inexpensively. Then define a preconditioner M+ via
the last expression in (3.1) as

M+ = L(D −B)U.(3.2)

The accuracy of this preconditioner can be significantly higher than the accuracy of
the frozen preconditioner M = LDU for A+. In the following lemma we express the
relation of these preconditioners quantitatively.

Lemma 3.1. Let ||A − LDU || = ε||A|| < ||B||. Then the preconditioner from
(3.2) satisfies

|| A+ −M+|| ≤ ||A+ − LDU || ||L(D −D −B)U −B||+ ε||A||
||B|| − ε||A|| ≤

≤ ||A+ − LDU || ‖L‖ ‖D −B −D −B‖ ‖U‖+ ||L− I|| ‖BU‖+ ‖B‖ ||U − I||+ ε||A||
||B|| − ε||A|| .
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Proof: We get directly

|| A+ −M+|| = ||A−B − L(D −B)U || = ||(A− LDU)− L(D −B −D)U −B||
≤ (

ε||A||+ ||L(D −D −B)U −B||) ||B|| − ε||A||
||B|| − ε||A||

≤ (
ε||A||+ ||L(D −D −B)U −B||) ||(A− LDU)−B||

||B|| − ε||A||

≤ ||A+ − LDU || ||L(D −D −B)U −B||+ ε||A||
||B|| − ε||A||

≤ ||A+ − LDU || ||L(D −B −D −B)U + LBU −B||+ ε||A||
||B|| − ε||A||

≤ ||A+ − LDU || ‖L‖ ‖D −B −D −B‖ ‖U‖+ ||L− I|| ‖BU‖+ ‖B‖ ||U − I||+ ε||A||
||B|| − ε||A|| .

¤
Clearly, the bound for the norm ||A+−M+|| is small if D −B is close to D−B, and
if A is strongly diagonally dominant since then ||L−I|| and ||U −I|| tend to be small.
This is best seen in the rightmost bound, but the other bound is sharper.

In the symmetric case, the preconditioner M+ changes to M+ = L(D −B)LT ,
hence symmetry is preserved. However, we are here primarily interested in the non-
symmetric case, and in this case it may be advantageous to assume that only one of
the two factors L,U is close to the identity matrix, instead of both. Without loss of
generality, we choose L and thus we can approximate it as

(M −B)−1 = (DU − L−1B)−1L−1 ≈ (DU −B)−1L−1,(3.3)

if DU − B is nonsingular. If DU −B denotes a nonsingular and easily invertible
approximation of DU −B, then we define M+ by

M+ = L(DU −B).(3.4)

For the choice of M+ from (3.4), Lemma 3.1 translates to
Lemma 3.2. Let ||A − LDU || = ε||A|| < ||B||. Then the preconditioner from

(3.4) satisfies

||A+ −M+|| ≤ ||A+ − LDU || ||L(DU −DU −B)−B||+ ε||A||
||B|| − ε||A||

≤ ||A+ − LDU || ‖L‖ ‖DU −B −DU −B‖+ ||L− I|| ‖B‖+ ε||A||
||B|| − ε||A|| .

Again, a good approximation DU −B, combined with a nearly diagonal factor L,
may yield a powerful preconditioner.

In the following subsection we propose approximations of DU − B that can be
efficiently computed and that lead to preconditioners that are inexpensive to apply.
We will always assume that the approximation DU −B is nonsingular. In the section
thereafter we address possible instability of the proposed preconditioners and mention
a way to overcome it. Of course, all techniques we treat can be analogously formulated
for updates of the form (LD −B)U .
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3.1. Proposed preconditioner updates. We now propose basic choices for
the approximation DU −B in (3.4). We will see that the introduced algorithms can
be used to approximate the matrix D −B for the preconditioner (3.2) as well.

3.1.1. Triangular updates. Here we describe choices which are directly ob-
tained from sparsification of DU − B. A very simple choice of DU −B for M+ in
(3.4) is

DU −B ≡ triu(DU −B),(3.5)

where triu denotes the upper triangle (including the main diagonal). From Lemma
3.2 we get that M+ is accurate, assuming L ≈ I, if the upper triangle of B contains
an important part of the whole difference matrix B. This seems to be the case if the
difference matrix is rather nonsymmetric as in upwind/downwind perturbations in
nonlinear convection-diffusion problems. We show in section 4 that this preconditioner
can be very powerful in such applications. Even in cases when this M+ can be
readily applied, we might consider ways to improve efficiency of the backward solve
by sparsification if the factor U is rather dense. This sparsification is well justified if
the update brings new important information represented by its large entries. In our
experiments with a nonlinear convection-diffusion problem, we tried to enhance the
effectiveness of M+ only by structured sparsifications, considering the most important
subdiagonals. Denoting by the subindices [i1, . . . , il] the l upper subdiagonals that
start in columns i1, . . . , il (and the main diagonal by the subindex 0) we considered
also choices of the form

DU −B ≡ (DU −B)[i1,...,il].(3.6)

In particular, if the entries of B dominate those of DU (in magnitude) we may
choose only indices corresponding to upper subdiagonals of B (the difference matrix
is sparse). Further simplification eventually leads to

DU −B ≡ diag(DU −B),(3.7)

which still yields a useful update in some applications and which is a straightforward
generalization of the approach from [2] for solving a more general problem.

Similarly, we can consider triangular approximations D −B of D − B in the
preconditioner (3.2), but this is theoretically and, as we will see, also experimentally
inferior with respect to the above mentioned choices.

The costs to compute M+ in (3.4) for all the choices (3.5), (3.6) and (3.7) are
negligible. The additional cost for applying the preconditioner from (3.5) is one
triangular sweep with the triangle of B, if we store B and U separately and do not
merge them. Applying other strategies is even cheaper.

The presented strategies are strongly based on confining the update to the upper
(or, equivalently, lower) triangle. Whereas numerical experiments seem to indicate
this makes sense, there may be applications where it is necessary to take into account
both triangles of the difference matrix. The next subsection is devoted exactly to this
case.

3.1.2. General updates. Here we introduce a strategy to approximate DU −
B by a generally non-triangular but easily invertible matrix. Denote the matrix
diag(DU −B) by D̃, and D̃−1(D̃−DU −B) denote by B̃. Then B̃ has zero diagonal
and we can write

DU −B = D̃(I − B̃).(3.8)
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To motivate the scaling transformation in (3.8) consider the case when B̃ = βeie
T
j ,

for some 1 ≤ i, j ≤ n, i 6= j, and recall we assume DU −B is nonsingular, hence so is
I − B̃. Then we get

(I − B̃)−1 = I + βeie
T
j /(1− βeT

j ei) = I + βeie
T
j .(3.9)

The matrix (3.9) is equal to a unit matrix modified by an offdiagonal entry β at the
position (i, j). That is, (I − B̃) is a special Gauss-Jordan transformation [17], and it
has a fill-in free inverse.

Based on this observation, in the following we will try to find approximations
DU −B such that DU −B ≈ DU − B and that the scaled matrix I − B̃ can be
written as a product of Gauss-Jordan transformations

(I − ei1 b̃i1∗)(I − ei2 b̃i2∗) . . . (I − eiK
b̃iK∗),(3.10)

where B̃ = (b̃)ij . Denote the sparsity structure of a row i of B̃ (with zero diagonal)
by row(i), that is, row(i) = {k|i 6= k ∧ b̃ik 6= 0}. The multiplication (I − B̃)v for a
given vector v is very cheap, as stated in Observation 3.1.

Observation 3.1. The number of operations for multiplying a vector by a matrix
of the form (3.10) or its inverse is at most 2

∑K
j=1 |row(ij)|.

It is well known that if B is an upper triangular matrix, then we can set DU −B =
DU −B since any unit triangular matrix I − B̃ from (3.8) can be trivially written as
a product of n− 1 elementary triangular matrices. For example, I − B̃ = Rn−1 . . . R1

with Ri = I − eib̃i∗ for i = 1, . . . , n − 1 if I − B̃ is a unit upper triangular matrix.
In some other cases, only a part of a matrix can be written as a product of Gauss-
Jordan transformations. Consider, e.g., the case of a unit lower triangular matrix
I − B̃ with k full additional subdiagonals in its upper triangular part determined by
the nonzero entries in its first row b̃1,l+1, . . . , b̃1,l+k. Then a product of Gauss-Jordan
transformations with a fill-in free inverse can cover the first l rows of the matrix, l
rows starting from the row 2l + k and so on. If n mod 2l + k − 1 = 0 then only
l/(2l + k − 1) percent of the rows can be covered by one such product.

Changes in a sequence of matrices restricted to a couple of diagonals are rather
frequent. Nevertheless, if the difference has to be reasonably well approximated by
one sweep of the form (3.10) the choice of Gauss-Jordan transformations may be more
sophisticated. The following theorem shows a necessary and sufficient condition for
the existence of a decomposition of I − B̃ of the form (3.10).

Theorem 3.1. Let I − B̃ = I −∑
jl:l=1,...,K ejl

b̃jl∗. Then

I − B̃ = (I − ei1 b̃i1∗)(I − ei2 b̃i2∗) . . . (I − eiK b̃iK∗)(3.11)

if and only if

il 6∈
l−1⋃

k=1

row(ik) for 2 ≤ l ≤ K(3.12)

for all i1, . . . , iK such that {j1, . . . , jK} = {i1, . . . , iK}.
Proof: The equivalence of (3.11) and (3.12) follows from the orthogonality of the
unit vector eil

with respect to all b̃ik∗ for k < l, 1 ≤ l ≤ K. ¤

An elegant systematic way to get an update based on Gauss-Jordan transforma-
tions can be described by a bipartite graph model G(DU−B) = (R,C, E) of DU −B
where R = {1, . . . , n}, C = {1′, . . . , n′} and E = {(i, j′)|(DU −B)ij 6= 0}.



8 J. DUINTJER TEBBENS AND M. TUMA

Theorem 3.2. Consider a spanning forest T = (VT , ET ) of G(DU−B) such that
{(i, i′)|1 ≤ i ≤ n} ⊆ ET . Then the matrix DU −B ∈ IRn×n with the entries defined

by (DU −B)ij =
{

(DU −B)ij if (i, j′) ∈ ET

0 otherwise , scaled by its diagonal entries as

in (3.8), can be expressed as a product of the form (3.10).

Proof: First consider the case when the spanning forest T is not connected.
Components of T induce a block diagonal splitting of DU −B, and matrices corre-
sponding to individual blocks can be mutually multiplied in any order without causing
any fill-in. Consequently, we can assume without loss of generality that T is connected
and that T is a spanning tree. In the following we will show how to form the sequence
of Gauss-Jordan transformations from the left to the right.

Our assumption implies that T contains at most n − 1 edges (i, j′) with i 6= j.
There exists a free row vertex i ∈ R in T which is in T incident only to the edge (i, i′)
such that there is an edge (k, i′) ∈ ET for some k. Set i1 = i. Then remove from T
the vertices i ∈ R, i′ ∈ C and all edges incident to them. Clearly, the updated tree
T contains a free row vertex again. By repeating the choice of free row vertices and
updates T in this way we get the sequence i1, . . . , in−1. If we rewrite as I − B̃ the
matrix DU −B scaled by its diagonal we have I−B̃ = (I−ei1 b̃i1∗)(I−ei2 b̃i2∗) . . . (I−
ein−1 b̃in−1∗) which proves the theorem. ¤

Theorem 3.2 implies the following algorithmic strategy to find a matrix DU −B
which would approximate DU − B and could be expressed as a product of Gauss-
Jordan transformations.

Algorithm 3.1. Algorithm to find DU −B such that (3.11) is satisfied based
on a bipartite graph of DU −B.
(1) Find a spanning forest T = (VT , ET ) of G(DU −B) of maximum weight with

edge weights wij = |(DU −B)ij | for (i, j′) ∈ ET such that
{(i, i′)|1 ≤ i ≤ n} ⊆ ET .

(2) Find the entries of B̃ (and corresponding entries of DU −B of the difference
matrix) as well as a feasible ordering of Gauss-Jordan factors for

i1, . . . , in−1 in (3.10).
(3) For each k = 2, . . . , n add to DU −B all entries (DU −B)ikl of DU −B

such that l ∈ {i1, . . . , ik−1}.

Note that in the last step of Algorithm 3.1 we possibly put into DU −B much more
nonzero entries than the 2n − 1 entries provided by the weighted spanning forest.
The condition is based on Theorem 3.1. The complexity of the weighted minimum
spanning forest (here we need, in fact, a weighted maximum forest) is O(m log m) for
the Kruskal algorithm [18] and O(n + m log m) for the Prim algorithm [33], where m
is the number of edges in the graph G. While in some cases the algorithms may seem
time consuming, this procedure can provide useful updates. Note, in addition, that
we start with the partial spanning tree with the set of edges {(i, i′)|1 ≤ i ≤ n}.

Another approach to find a suitable approximation DU −B with I − B̃ based on
Gauss-Jordan transformations is to use a simple greedy procedure based on Theorem
3.1. It is described in Algorithm 3.2. Consider a sequential choice of indices i1, . . . , iK ,
where K ≤ n−1 will be determined by the algorithm. In each step we keep and update
a set of candidate rows R initialized by {1, . . . , n}. After choosing a row i we remove
from R all the rows j ∈ R for which b̃ij 6= 0. Here the sparsification of DU − B
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(removal of its “small” entries) does not need to be done in advance. Instead, it can
be performed on-the-fly when running the algorithm.

Algorithm 3.2. Algorithm to determine Gauss-Jordan transformations such
that the scaled matrix DU −B can be written in the form (3.11).

(1) set R = {1, . . . , n}, K = 0
(2) for k = 1, . . . , n do
(3) set row(k) = {i|i 6= k ∧ |(DU −B)ki| > tol}
(4) set pk =

∑
j∈row(k) |(DU −B)kj |

(5) end for
(6) while R 6= 0 do
(7) choose a row i ∈ R maximizing pi −

∑
j∈R∩row(i) pj

(8) set K = K + 1, iK = i
(9) set R = R\{row(iK) ∪ i}
(10) end while

The indices of Gauss-Jordan transformations provided by Algorithm 3.2 then
determine the approximation in (3.8) with I − B̃ equal to the product (3.10).

Both algorithmic strategies explained in this subsection can be directly applied
to approximate D −B for (3.2) by Gauss-Jordan transformations replacing DU −B
by D −B in Algorithms 3.1 and 3.2, and scaling the approximation similarly.

3.2. Coping with possible instabilities. So far, we have assumed all choices
(3.5), (3.6), (3.7) and those generated by Algorithms 3.1 and 3.2 are nonsingular but
this need not be so. Even worse, the application of (3.4) can become unstable for
nonsingular choices of DU −B in the same way as incomplete decomposition can be
unstable. For triangular updates this may happen whenever the off-diagonal entries of
DU −B are significantly larger than diagonal entries, even for perfectly stable original
incomplete decompositions M = LDU . Applying stabilization strategies to the initial
system, such as finding a maximal transversal [3], cannot guarantee to overcome the
instability encountered here. We suggest a slight modification of (3.4) that is very
natural in the context of updating preconditioners.

The “ideal” update of section 2 is M+ = LDU − B. As LDU approximates A,
we have

M+ = LDU −B ≈ A−B = A+,

hence we may expect M+ is far from being singular provided LDU is close to A.
Moreover, this M+ inherits diagonal dominance of A+. If A+ fails to be diagonally
dominant, we can preprocess it with an appropriate permutation. It seems reasonable
to modify (3.4) as

M+ = L (DU − L−1B),(3.13)

where (DU − L−1B) is close to (DU − L−1B). Certainly, the approximation of
(DU −L−1B) is more expensive than the approximation of (DU −B) treated before.
Nevertheless, in practice it can be still feasible.

A very cheap approximation of (DU − L−1B) is obtained by scaling the upper
triangle of B as

(DU − L−1B) ≡ DU − diag(||Le1||, . . . , ||Len||)−1triu(B).(3.14)
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Another choice,

(DU − L−1B) ≡ DU − triu(L−1B),(3.15)

seems expensive at first sight due to the product L−1B. But exploiting the sparsity of
B, the triangularity of L and the fact that we need only one triangle of the product,
computing triu(L−1B) can be done effectively. For example, if B arises from standard
2D central difference discretization, then the number of multiplications needed is at
most n(

√
n + 1). For localized large entries in the update matrix, approximation to

triu(L−1B) can be even cheaper. Straightforward reduction of these costs follows
from considering

DU − L−1B ≡ (DU − L−1B)[i1,...,il],(3.16)

for a small number of positions i1 to il. It is easy to see that when the positions are
chosen to correspond to the nonzero upper subdiagonals of B, then the computation
of this approximation of DU −L−1B is comparable to executing one matvec with B.

Finally, in analogy with the preceding subsection, it may be advantageous to
take into account both triangles of the update. This can be achieved by applying
Algorithms 3.1 or 3.2 to

(DU − L−1B)[i1,...,il],(3.17)

where we allow negative indexes to denote lower subdiagonals starting on the corre-
sponding row (as in Matlab).

The next section is devoted to numerical experiments with the most promising
updates introduced in the paper.

4. Numerical experiments. In this section we report on numerical experi-
ments aimed at assessing the performance of preconditioned Krylov subspace methods
for solving sequences of systems of linear algebraic equations where preconditioners
are updated instead of recomputed. The sequences were generated with the optimiza-
tion software from [25]. We always consider the entire sequence of linear problems
needed to reduce the nonlinear residuals to the tolerance defined in [25]. The software
uses Fortran 90 double precision arithmetic. Preconditioners and their updates were
written both in Fortran90 (ILUT preconditioners) and in Matlab (drop tolerance-
based ILU), and we present results of codes from both environments. The codes were
run on computers with Intel processors.

As an accelerator, the BiCGSTAB [39] iterative method was used. We also per-
formed experiments with the restarted GMRES method [34]. The results were similar
and we do not report on them here. Iterations were stopped when the Euclidean
norm of the residual was decreased by 7 orders of magnitude. Nevertheless, in our
experiments we observed close to linear behavior of convergence curves of the precon-
ditioned iterative method. Therefore, we might expect qualitatively the same results
for weaker or nonuniform stopping criteria used in nonlinear solvers. Except for one
experiment, the BiCGSTAB method was preconditioned from the right.

Most of the experiments which we present here are related to the following two
nonlinear problems. The first of them is the two-dimensional nonlinear convection-
diffusion problem (Kelley, 1995)

∆u−Ru∇u = 2000x(1− x)y(1− y), R = 50,(4.1)
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Table 1
Number of iterations for preconditioned nonlinear convection-diffusion problem with a frozen

preconditioner.

A M its/NO
A1 M1 21
A2 M1 29
A3 M1 39
A4 M1 52
A5 M1 77
A6 M1 80
A7 M1 102
A8 M1 102
A9 M1 98
A10 M1 101
A11 M1 99

A1−11 M1−11 21 ± 5

on the unit square, which was discretized by 5-point finite differences on a uniform
grid. The initial approximation was the discretization of u0(x, y) = 0. We chose a
moderate Reynolds number in order to avoid potential discretization problems such
as the necessity to add stabilization terms.

Our second nonlinear test problem is a finite difference analogue of the following
porous media nonlinear equation [15] solved over the unit square with zero Dirichlet
boundary conditions

∇u2 + R

(
∂u3

∂x
+ f(x, y)

)
= 0.(4.2)

The function f(x, y) was evaluated in order to have a simple analytic form of the solu-
tion, namely u = x(x− 1)y(y− 1). This enabled us to check that our sequence solves
not only the discretized problem but also the physical one. The initial approximation
was a discretization of u0(x, y) = 1−xy. As above, R = 50. We chose this second test
problem in order to demonstrate potential instabilities in updated decompositions.

Table 1 contains results for the nonlinear convection-diffusion problem (4.1) dis-
cretized on a 70× 70 grid in case of freezing the preconditioner. Namely, we used the
same ILUT(0.1,5) preconditioner for all the systems. By “A” we denote the matrix
with the superscript denoting its order in the sequence, by “M” we denote the pre-
conditioner with the superscript denoting its order in the sequence, and “its / NO”
denotes the number of BiCGSTAB iterations preconditioned by M without any up-
dates. The last line of the table shows that iteration counts for solving systems with
preconditioners computed from their system matrices, that is Ai preconditioned by
M i for i = 1, . . . , 11, do not deteriorate. They stay always approximately equal to
21. Clearly, we can conclude that freezing one preconditioner may not be enough for
getting efficiently preconditioned iterative methods for all the systems.

In Table 2 we present results obtained for two simple linear 2D convection-
diffusion problems discretized with a 5-point discretization stencil. The two problems
are related by a 1D constant convection shift. More precisely, the matrix of the first
system is the 2D Laplacian, and the second problem is obtained from the first one by
a modification of entries by shifts on its main diagonal and one upper subdiagonal.
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Table 2
Number of iterations for 2D linear convection-diffusion for a problem with a 1D convection

shift with/without an update based on GJ transformations.

shift its/NO its/GJ
0.1 34 33
0.2 36 35
0.3 39 34
0.4 38 33
0.5 44 34
0.6 56 38
0.7 53 34
0.8 63 34
0.9 69 30

These shifts are constant along these diagonals and they have the same value and
opposite signs. This is an idealized case of what may happen when solving a sequence
of problems from a nonlinear convection-diffusion problem such as (4.1). The dimen-
sion of the problem is n = 10000. By “shift” we denote the shift value, by “its /
NO” we denote the number of iterations for solving the second, shifted system by
BiCGSTAB preconditioned by the ILUT(0.1,5) preconditioner for the first system.
For solving the shifted system we also updated the preconditioner according to (3.2),
based on the incomplete factors from the first system. The matrix (D−B), where B
contains one diagonal and one subdiagonal, is written as a product of Gauss-Jordan
(GJ) transformations. By “its / GJ” we denote the corresponding number of itera-
tions needed by the BiCGSTAB method. Note that in this case D −B is triangular,
hence we could as well multiply with (D − B)−1 through backward solves. Table 2
presents one of more experiments of this kind which we performed, and it represents
the situation when one of the systems was more difficult to solve and needed more
iterations than the other one. Solving the system with recomputed preconditioners
needs 35±1 iterations. Clearly, the GJ-based update of the preconditioner is rather
helpful for larger shifts. In addition, the preconditioner is very cheap both to compute
and to apply. If both systems were very easy to solve (with a weak convection) then
the update did not bring an overall improvement.

Excellent behavior of the triangular (TR) updates with the choice (3.5) for the
preconditioner M+ from (3.4) is demonstrated by results in Table 3 for solving the
nonlinear convection-diffusion problem (4.1) on the 70× 70 grid. Under “A / M” we
display which system matrix and preconditioner from the sequence of problems we
used. The two other columns give the number of iterations in case of no updates (“its
/ NO”) and triangular updates (“its / TR”) (3.5), respectively. As a preconditioner
we used ILUT(0.1,5). In this case, the number of nonzeros in the system matrices
was 24220, the size of the incomplete LU decomposition was 19320. There is a strong
overlap between the location of the nonzeros in B and in the preconditioner. Con-
sequently, we could spare some space by merging triu(B) into DU but we did not
do this. Instead, we kept the update matrix implicitly. In any case, we can conclude
that the updated preconditioner perfectly replaces the one which would be obtained
by a new ILUT decomposition.

In Table 4 we compare the efficiency of approaching (DU − B) according to
(3.5) (by TR updates (3.4)) and (D − B) according to (3.2) (with GJ updates using
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Table 3
Number of iterations for solving preconditioned linear systems of a nonlinear convection-

diffusion problem with no updates and triangular updates, respectively.

A/M its / NO its / TR
A1 / M1 21 21
A2 / M1 29 25
A3 / M1 39 27
A4 / M1 52 25
A5 / M1 77 25
A6 / M1 80 26
A7 / M1 102 26
A8 / M1 102 27
A9 / M1 98 27
A10 / M1 101 26
A11 / M1 99 26

A1−11 / M1−11 21 ± 5 —

Algorithm 3.2) for Problem 4.1 discretized on a 50 × 50 grid. The table presents
results with left-preconditioned BiCGSTAB for another preconditioner M1, namely
ILU(10−3) from Matlab. Both L and U have approximately 35000 nonzeros, the TR
update uses the same space, the GJ update adds 5500 nonzeros. Both the TR and GJ
updates are very cheap since they need a very small number of additional operations
in each iteration. In addition to the notation from Table 3 we use “its / GJ” to denote
the number of iterations when GJ updates of M1 were used. Algorithm 3.2 used the
parameter tol = 0.1. Clearly, the approach of (3.5) is more powerful in this case than
the approach of (3.2). This confirms the theory from Section 3 according to which
it is advantageous to exploit at only one of the triangular factors that it is close to
diagonal. In the Frobenius norm we have here

‖I − L‖
‖L‖ = 0.434 =

‖I − U‖
‖U‖ .

If we would apply (3.5) with GJ updates and (3.2) with TR updates we would probably
obtain similar results.

Tables 5 and 6 present results for the same problem but now the BiCGSTAB
method is preconditioned from the right. GJ transformations computed by Algorithm
3.2 approximate (DU − B) in this case, the TR update is used as above, according
to (3.5). The results in Table 5 were computed for the ILU(10−2) and ILU(10−3)
preconditioners whereas the results in Table 6 were computed for ILU(10−1) to get
an idea how successful the GJ updates can be when a very sparse matrix is to be cov-
ered by Gauss-Jordan transformations. It is readily seen from Theorem 3.1 that the
sparser a matrix, the larger the potential part that can be covered by Gauss-Jordan
transformations. This also motivated our relatively large drop tolerance tol = 0.1
in Algorithm 3.2. With ILU(10−2) and ILU(10−3) as initial preconditioners TR
updates needed less iterations than GJ updates. In addition, TR updates are com-
puted without any effort whereas some costs are made while computing GJ updates
with Algorithm 3.2. But GJ updates are advantageous for a different reason: The
sizes of the factors L and U are for the drop tolerances 10−3, 10−2 and 10−1 equal
to approximately 35000, 12000 and 5000, respectively. The sizes of the GJ updates
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Table 4
Number of iterations for the preconditioned nonlinear convection-diffusion problem with pre-

conditioner updated by GJ updates applied to approximate (D −B) for (3.2) and TR updates (3.5)
for (3.4), respectively.

A/M its / NO its / GJ its / TR
A1 / M1 5 5 5
A2 / M1 31 36 14
A3 / M1 51 40 13
A4 / M1 71 51 15
A5 / M1 91 59 15
A6 / M1 97 63 14
A7 / M1 100 64 16
A8 / M1 97 70 16
A9 / M1 103 65 16
A10 / M1 100 76 17
A11 / M1 99 71 16

Table 5
Number of iterations for the preconditioned nonlinear convection-diffusion problem with precon-

ditioner updated by Gauss-Jordan updates applied to (DU −B) and triangular updates, respectively

A / M ILU(10−3) ILU(10−2)
its / NO its / GJ its / TR its / NO its / GJ its / TR

A1 / M1 6 6 6 13 13 13
A2 / M1 37 17 14 32 20 17
A3 / M1 61 18 16 58 23 17
A4 / M1 78 21 17 89 24 17
A5 / M1 104 21 17 127 23 17
A6 / M1 109 23 16 131 24 18
A7 / M1 132 21 17 182 25 18
A8 / M1 132 23 18 172 26 19
A9 / M1 113 22 16 157 22 18
A10 / M1 120 22 19 166 24 18
A11 / M1 127 22 17 163 24 19

are in the range < 6700, 7800 > for all tolerances. Taking this into account, we can
conclude that application of GJ based preconditioners is cheaper than application of
TR updates, especially for the drop tolerance 10−3. This is because in case of GJ
updates we replace each solve with the factor U by a very cheap procedure and save
the substitution step with U in each solve.

For ILU(10−2) the departure of L from identity can be expressed as

‖I − L‖
‖L‖ = 0.423

in the Frobenius norm. For ILU(10−1) we have

‖I − L‖
‖L‖ = 0.397.

Finally, we noted that the scaling (3.14) improves slightly, but not significantly, the
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Table 6
Number of iterations for the preconditioned nonlinear convection-diffusion problem with pre-

conditioner updated by Gauss-Jordan updates applied to (DU − B) and by triangular updates, re-
spectively, different preconditioner than in Table 5

A / M ILU(10−1)
its / NO its / GJ its / TR

A1 / M1 24 24 24
A2 / M1 27 26 24
A3 / M1 38 27 21
A4 / M1 47 25 23
A5 / M1 52 22 23
A6 / M1 58 21 22
A7 / M1 68 22 23
A8 / M1 91 24 24
A9 / M1 70 20 23
A10 / M1 68 22 24
A11 / M1 76 24 25

power of the TR updates.
Potential instabilities of the basic updating procedures are demonstrated on the

results from the difficult nonlinear Problem 4.2. Table 7 presents overview results
with different GJ-based and TR-based updates on a 50 × 50 grid. In order to show
more variants of updates we present results for one matrix A+ (A10) of the sequence.
The preconditioner is Matlab-generated ILU(10−3) which provides powerful but costly
preconditioning. Its recomputation is rather expensive. It has a much larger number
of nonzeros (approximately 100 000) than the original matrix (12300). In the Frobe-
nius norm, ‖I−L‖

‖L‖ = 0.349. Although cheaper ILU decompositions are often more
practical, we chose these parameters in order to get a clear view on various variants of
the updates in case of instabilities. Preconditioning of the matrix A+ by the simple
GJ preconditioner based on approximation of DU −B for (3.4) with the ILU precon-
ditioner for A1 is not successful since the iterative method does not converge. The
same is true for the TR update (3.5). In both cases the updated preconditioners fail
to be stable due to lack of diagonal dominance. By “Update type” we denote the
variant of the update which was used to overcome the problem. The matrix in this
column was used to provide a triangular or a GJ-based update. If the matrix was tri-
angular, TR update was used. Otherwise, we computed a GJ update using Algorithm
3.2. The only exception is the last row of Table 7 in which we used the GJ update
based on Algorithm 3.1 where the weighted spanning tree was computed by Kruskal’s
algorithm [18]. Before running the algorithm, the matrix was sparsified with the drop
tolerance τ = 0.2. As mentioned above, superscripts of methods in Table 3 on rows 3
to 8 denote the restriction to certain subdiagonals (e.g., 0: main diagonal, -50: -50-th
subdiagonal) given in the MATLAB notation. The triangular or GJ-updates were
chosen from these subdiagonals only. In the GJ case, all the matrices were sparsified
on-the-fly using the drop tolerance τ = 0.2 before the GJ updates were computed.
The size of all the GJ updates was around 7200. Since they effectively replaced half of
the substitution with the much larger factor U (seven times), and there are two solves
in each step of BiCGSTAB, the updated procedure is competitive in more cases. We
can see here that the spanning tree-based update is not so powerful as some other
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Table 7
Number of iterations for solving systems from Problem 4.2 with the system matrix A+ = A10

for different variants of an update of the preconditioner for A based on triangular and Gauss-Jordan
transformations.

Update type its
DU − triu(L−1B) 45
DU − diag(L−1B) ∞
(DU − L−1B)[0,1,50] 48
(DU − L−1B)[0,1] 78
(DU − L−1B)[0] 101

(DU − L−1B)[−1:1,50] 50
(DU − L−1B)[−50,−1:1,50] 44

(DU − L−1B)[−50,−10:10,50] 43
Algorithm 3.1 81

Table 8
Number of iterations for solving systems from Problem 4.2 with the system matrix A+ for

stabilized TR and GJ updates explained in the text.

A / M its / NO its / GJ its / TR
A1 / M1 3 3 3
A2 / M1 7 8 5
A3 / M1 10 22 11
A4 / M1 16 14 13
A5 / M1 26 18 17
A6 / M1 35 21 20
A7 / M1 51 29 25
A8 / M1 51 32 33
A9 / M1 ∞ 50 43
A10 / M1 ∞ 45 49
A11 / M1 ∞ 40 39
A12 / M1 ∞ 44 42
A13 / M1 ∞ 39 44
A14 / M1 ∞ 44 44
A15 / M1 ∞ 39 43
A16 / M1 ∞ 43 48

approaches. On the other hand, we consider as the best variants those which restrict
additional computations only to a part of L−1B, since this product may be sometimes
time-consuming. Strengths and weaknesses of the updates for the Problem 4.2 are
clearly visible from Table 8. Here we present comparison of results for two stabilized
updates, namely the TR update based on the matrix (DU − L−1B)[0,1,50] and the
GJ update based on approximating (DU − L−1B)[−50,−1:1,50] using Algorithm 3.2.
The notation of columns is the same as above. The nonstabilized updates (that is
those omitting the factor L−1 in the update) could be used only for preconditioning
the first three systems and provided similar results as the stabilized ones. We can
see that both types of updates should be used only if the preconditioners M are very
costly to recompute. In addition, the computation of the update which involves the
sparsified product L−1B is cheap only if at least one of the factors L or B is sparse,
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or if, for example, nonzeros in B are local (their indices can be embedded into a short
interval).

We performed also some experiments where our nonlinear problems where dis-
cretized by upwind schemes, leading to triangular difference matrices. As one can
guess, the results for solving the linear problems were rather good, but we typically
needed more nonlinear iterations. Also, our intention here was to show that TR and
GJ updates can be very useful even for more general than triangular difference ma-
trices, or systems in which the changes in nonlinear steps are mostly in one matrix
triangle.

5. Conclusions. In this paper we proposed a couple of algebraic procedures
which may be useful for solving sequences of systems of linear equations. The numer-
ical experiments confirm that our updated preconditioners can be rather successful
in practice, and the updates can often replace recomputation of preconditioners. In
many cases, one would like to make the overall number of operations smaller with sim-
ple updates, and our experiments confirm that this is possible. Nevertheless, there
can be also different, and sometimes very strong, reasons for avoiding preconditioner
recomputations. In matrix-free and/or parallel environments, which are nowadays
quite common, any recomputation of a preconditioner may be expensive. This is es-
pecially true for strong algebraic preconditioners which are used for solving difficult
problems.

An interesting problem which was not considered here is to choose triangular
updates which correspond to the sparsity pattern and sizes of entries of the difference
matrix differently for each system of the sequence. Namely, we have the option to
choose in each separate step either a lower, or an upper triangular, or even a different
update. A closely related problem which we will consider in the future is to find a
nonsymmetric permutation which would transform the system matrices into a form
which could be more suitable for one particular triangular or GJ-based update.
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