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Abstract

 

 

Basic definitions and approaches to evaluation of performance of different types of classifiers
are summarized for two-class problems and then two-classes classifiers. Local measures of
classification  quality are  presented and the parametric  dependence of  these measures  is
discussed  and  mutual  dependencies  like  ROC  curve  are  shown.  Local  measures  and
functional dependencies do not characterize the behavior of a classifier as whole or in some
broader region of possible applications. Thus some global measures and combined measures
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1 Introduction
We summarize the basic definitions and approaches to evaluation of performance of
different types of classifiers. Basically, we consider the two-class problems and then
the two-class classifiers will be discussed. It can be easily seen that there are two basic
variables  which  describe  the  performance  of  the  classifier.  The one  class  (signal)
efficiency  and  the  other  class  (background)  error.  From  these  values  all  other
parameters and characteristics can be derived. The two basic variables mentioned are
usually dependent on one free parameter – the threshold – and thus all other values
are, in fact, functions of this free parameter. In this case the other (internal) parameters
which  control  the  behaviour  of  classifier  are  considered  as  intrinsic  part  of  the
classifier and are not considered in this paper.

The work is organized as follows. First the basic data sets and the basic variables for
evaluation of error are introduced. Then the local measures of classification quality
are presented. After it, the parametric dependence of these measures is discussed and
mutual dependencies like the ROC curve are shown. Local measures and functional
dependencies do not characterize the behaviour of the classifier as whole or in some
broader region of possible applications. Thus some global measures and combined
measures are presented. 
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2 Basic data and basic error describing variables
In the two-class classification problem the task is to assign to a given samples a class
to which it most probably belongs. The class we are looking for primarily is often
denoted  by number  1  and is  called  “signal“.  The  other  class  is  often  denoted  by
number 0 (sometimes -1) and is called “background“ or noise. 

The classifier can be considered as a filter or a sieve which separates smaller particles
(signal samples) from larger ones (background samples) as illustrated in Fig. 1.

 Fig. 1. Illustration of a two-class classifier as a sieve.

Let N samples be given, S samples of class 1, B samples of class 0. A classifier should
separate from N samples,  S samples as class 1 and  B samples as class 0. This is an
ideal case. In reality we get 
S1 samples of class 1 correctly recognized as class 1
S0 samples of class 1 erroneously recognized as class 0
B0 samples of class 0 correctly recognized as class 0
B1 samples of class 0 erroneously recognized as class 1.

Of course,
S1 + S0 = S  and  B0 + B1 = B .

As a signal we get total S1 + B1 samples, as a background we get total S0 + B0 samples.
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3 Types of classifiers
From the point of view of the output values, there are two kinds of classifiers. Some
classifiers give just the class to which a particular sample should belong, others give a
real number from some interval. In the second case, in order to classify, it is necessary
to choose a fixed value θ, the threshold. Then, if the output value is equal to or larger
than θ, the sample belongs to one class, usually the signal, otherwise it belongs to the
other class, usually the background. Classification features depend on this threshold.
All parameters above are then functions of the threshold. 
Most classifiers have some other (intrinsic) parameters which must be properly tuned
to get the best results for particular data. In some cases, part of these parameters are
set  up  manually,  some  may be  tuned  during  the  learning  process.  In  contrast  to
threshold θ,  these parameters are fixed during testing or evaluation. The threshold is
the only free variable.
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4 Local measures for classification quality
Local measures depend on selection of particular threshold for separating classes.  

4.1 Signal efficiency or signal acceptance
The ratio Se = S1 /S gives the percentage of correctly recognized samples of class 1 and
is often called signal efficiency or signal acceptance. In fact, it is Pr(accepted|signal)
[3]. Sometimes this is called  “sensitivity“ [4] as it gives how sensitive the classifier is
to the signal.
The signal error is given by 1 - Se .

4.2 Background error or background acceptance
The ratio Be = B1 /B gives the percentage of erroneously recognized samples of class 0.
It is often called background error or background acceptance, as it is in fact, 
Pr(accepted|background) [3]. The other term used is purity, which equals to 1 - Be . It
says how “pure“ is the output mixture considered as signal.

From these two basic variables other measures are derived.

4.3 Classification error (error rate)
Classification error gives a percentage of all errors of the classifier. The total number
of  erroneously  classified  samples  is  S0 + B1.  The  classification  error  is  then
Ce = (S0 + B1)/N .

The classification error or the weighted classification error (see the next paragraph) is
used in [2] for comparison of classifiers. Sometimes this value is very sensitive to
parametrization by threshold θ as illustrated in Figs. 2  and 3 .

Fig.2. Dependence of the classification error on the threshold for IRIS data [2] and
SFSloc7a [6] classifier. The minimal error is 0.0396 for threshold 0.134. 
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Fig. 3. Dependence of the classification error on the threshold for SPLICE data [2]
and SFSloc7a classifier. The minimal error is 0.233 for threshold 0.77379. One can
see that the minimum is very sharp here.

4.4 Weighted classification error
It is usual in financial and medical tasks that a false response is much more weighted
than success because a fault could have serious or fatal consequences. For example, if
background means that the patient is ill and signal means that the patient is healthy,
we must maximize the signal efficiency, i.e. minimize the signal error, i.e. cases when
the patient is considered healthy and he or she is, in fact, ill. In such a case the weight
of the signal is  much larger than the weight of the background. Let the weight  of
signal be Ws, say Ws = 5, and, at the same time, the weight of background Wb = 1. The
classification error is then given by

Ce = (Ws.S0 + Wb.B1 ) / N .

Note that data in [2] are in some cases evaluated in this way.

Sometimes no weight is assigned to the background error and the classification error
is evaluated (minimized) according to formula

C'e = S0 / N .

4.5 Enrichment factor (signal enhancement)
The enrichment factor or the signal enhancement, sometimes also signal-to-noise ratio
enhancement are defined as 

E = Se / Be .

Initially we have S signal samples in the mixture of N samples. The signal to noise
ratio of the mixture is Sc = S / B. After the classifier, the filter is used, we have S1

samples in the mixture of S1 + B1 samples recognized as a signal. The signal to noise
ratio in the mixture after classification is Scc = S1 / B1 . The ratio Scc / Sc is then

cccc SESS =/  .
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The signal to noise ratio in the mixture after the classifier is enlarged – enhanced -  by
factor E compared to the signal to noise ratio in the mixture before the classifier.

4.6 Quality factor
Important case in classification/filtering is the case of so called rare events. In this
case there is lot of background (noise) events-samples and small number of signal
samples so that S << B. Useful characteristic of the mixture of signal and background
samples  is  ratio  BSq = ,  where  S is  a  number  of  signal  samples,  and  B is  a
number of background samples. It is often denoted as the sensitivity or the quality
factor (of data). 
Let total N measurements be given. These N measurements may be repeated k times.
The random variable we are interested in is the number of signal samples X. The mean
value of X let be S, individual sets of data will have Si, i = 1, 2,.. k signal samples. The
width of confidence interval for variable X is 
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Sq =  for S << B, is called the sensitivity or quality

factor (of data).
Data after the classification/filtering is used should have this ratio at least as large as
original  data  because  we  wish  to  get  as  much  signal  samples  as  possible.  It  is
necessary to have data after classification/filtering process statistically at least as good
as before. 
The quality factor (of the classification/filtering process, not of data) is defined as 

ee BSQ =                                                    (Q)

The  Q larger than or equal to 1 says that the statistical quality q of the mixture after
the  classifier/filter  is  not  worse  than  the  statistical  quality of  the  original  mixture
itself, namely for  S << B it holds that  q(after  filter) =  Q.q(before filter), hence Q  can enhance
ratio BS  of the data set.

For classifiers which give a real number from some interval as the output the quality
factor depends on the threshold.
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4.7 Rejection factor
The rejection factor should be called a background rejection factor as is given by

eBR 1= . This value shows how many times the background is suppressed – rejected
without respect to any signal efficiency. It has its sense in cases when a massive part
of the background should be removed under the assumption that an essential part of
signal samples remains retained. 

10



5 Parameter dependencies
As has been said earlier, in classifiers which give a real number from some interval as
the output the parameters mentioned can depend on a free parameter, threshold  θ.
Thus  in  such  a  case  all  parameters  are  functions  of  threshold  θ. Using  this
parametrization, one can find several interesting and illustrative dependences.  

5.1 ROC curve and related measures
We can have the ROC curve as a very general way of depicting a classifier's behaviour
with respect to a particular problem. On the vertical axis there is signal efficiency
(signal  acceptance),  and  on  the  horizontal  axis  the  background error  (background
acceptance). The threshold is a parameter of the curve shown for example in Fig. 4. 

Fig. 4. Example of ROC curve - “good“ data, i.e. relatively easily separable (upper
line) and  “bad“ data, i.e. difficult to separate (bottom line).

Receiver Operator Characteristic (ROC) curves [5] were developed in the 1950's as a
by-product of research into making sense of radio signals contaminated by noise [4].
This diagram is known also under the name Neyman–Pearson diagram or decision
quality diagram. In statistical terms, the ROC curve shows the probability of a false
alarm on the x-axis and the probability of detection on the y-axis. The assumption is
that samples of events or probability density functions are available both for signal
(authentic) and background (imposter) events; a suitable test statistic is then sought
which  optimally  distinguishes  between  the  two.  Using  a  given  test  statistic  (or
discriminant  function),  one  can introduce a  cut  which separates  acceptance region
(dominated  by  the  signal  events)  from  a  rejection  region  (dominated  by  the
background).  The  Neyman-Pearson  diagram  plots  contamination  (misclassified
background  events,  i.e.  classified  as  signals)  against  losses  (misclassified  signal
events,  i.e.  classified as the background),  both as fractions of the total  number of
samples of the corresponding class. 
An ideal test statistic causes the curve to pass close to the point where both losses and 
contamination  are  zero,  i.e.  the  acceptance  is  one  for  signals,  and  zero  for  the
background.  Different  decision  strategies  choose  a  point  of  the  closest  approach,
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where a “liberal'“ strategy favours the minimal loss (i.e. high acceptance of signals), a
“conservative'“  strategy favours the minimal  contamination (i.e.  high purity of the
signal). For a given test (fixed cut parameter), the relative fraction of losses (i.e. the
probability of rejecting good events, which is the complement of acceptance), is also
called the significance or the cost of the test; the relative fraction of contamination
(i.e. the probability of accepting background events) is denominated by the power or
purity of the test [3]. 

5.2 Classifier error
Suppose that there are non-equal numbers of signal and background samples so that
N = S + B , where  B is the number of samples of class 0 (background), and  S is the
number of samples of class 1 (signal). Moreover let errors be weighted. Then it is
possible to derive that 

N
BBWSSWC ebeS

e
+−= )1(

 .

From this equation it follows that

e
S

b
e

S
e B

SW
BWC

SW
NS +−= 1  .

This is a linear equation with respect to variable Be. In the most frequent case there is
S = B and Ws = Wb = 1 , and then

eee BCS +−= 21  .

The set  of  straight  lines for  different  constant  values  of the  classification  error  is
shown in Fig. 5.

Fig. 5. Lines of the constant classification error in the ROC diagram.
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5.3 Enrichment factor (signal enhancement)
Direct  dependence  of  the  enrichment  factor  on  the  threshold θ need  not  be  clear
enough. More useful is the dependence of the enrichment factor on the background
error. This dependence can be compared with ROC curve. An example is shown in
Fig.6. 

Fig. 6. Example of dependence of the enrichment factor on the background error for
“bad” data. This figure is comparable to the bottom ROC curve in Fig. 4.

5.4 Quality factor
The dependence of the quality factor on the background error can be compared with
the ROC curve. As the quality factor can be less than 1, there are important intervals,
where Q ≥ 1 and data after classification are statistically at least as good as before.
Sometimes it need not be essential. An example is shown in Fig.7.

Fig. 7. Example of dependence of the quality factor on the background error for “bad”
data. This figure is comparable to the ROC curve for “bad” data in Fig. 4. One can see
that Q ≥ 1 for the background error larger than 0.7147. In this interval, the statistical
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validity remains  retained.  From the dependence of  the enhancement  factor on the
background error it follows that relatively low values of the enrichment factor can be
reached, Emax. = 1.182 for Be =  0.7147 and θ = 0.498 . Note that this example is a truly
bad case but serves well for illustration.

5.5 Acceptable region
The quality factor as well as the enrichment factor define the region of the ROC curve
where  the  ROC curve  should  lie.  In  cases  when  some statistical  data  processing
follows we need Q ≥ 1. Similarly, for an enrichment factor smaller than 1 filtering or
classification has no sense. These areas are shown in Figs. 8 and 9 for “good” and
“bad” data (or filtering) respectively.

Fig. 8. The ROC curve for “good” data with parabolic lines of constant quality factor
and straight lines of constant enrichment factor. We can see that the whole ROC curve
lies above the line for Q = 1 and that there is no problem to reach an enrichment factor
larger than 10.
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Fig.  9.  ROC curve for “bad” data (or a bad classifier!) with lines of the constant
quality factor and the constant enrichment factor. It is seen that nearly the whole ROC
the bold curve lies below the parabolic curve for Q = 1 and that there is a problem to
reach the enrichment factor a little bit larger than 1. If it is not necessary to have a
quality factor larger than or equal to 1, it is possible to get enrichment factor 2 – in
this case the best value of the quality factor is Q = 0.8 .
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6 Global measures
By global measures we try to evaluate the whole ROC curve or the whole range of the
classifier and get a single measure for classification quality. Possibly, a part of the
ROC curve can be used.
The classifier usually gives some response to each sample. Let this response be real
number between 0 and 1 (it may include 0 and 1 as well). 

6.1 Global measure with sorting
Let the samples of the testing set be sorted according to the response of the classifier.
Let each sample  xi be assigned to its order number  ji and let variable  zi be 1 for the
signal and 0 for the background. 
Let us define measure 

∑
=

=
N

i
ii zjA

1
where N is the number of all samples. The larger the A the better. The maximal value
of A is

∑
+=

=
N

Ni B

iA
1

max  .

It can be advantageous to relate results to maximal value using  a = A/Amax . 
An ideal case is a = 1. For “good“ data illustrated in Fig. 2 a = 0.9163, for bad data in
the example above a = 0.7456 . The random classification gives value 0.5. Thus, the
larger the a, the better the classification.

6.2 Area below ROC curve
The better classification, the larger is the area below the ROC curve. Simply, this area
can serve as global measure of the classification quality. Naturally, the best possible
classification gives value 1, and the random classification gives value 0.5. 

It is also possible to use a part of the area below ROC curve, e.g. the left half of the
diagram from the background error 0 to the background error 0.5 and similarly.

16



7 Combined measures
Sometimes it may be useful to use several values of some local measure for several
values of the threshold or of the signal efficiency or of the background error. Several
values thus define the region of interest, i.e. region of application thought about. One
can use e.g. mean value, a simple sum or a weighted sum. Such an approach has been
used in comparison of classifiers in [1]. 

8 Conclusions 
Evaluation of a classification task depends on the problem solved. According to it,
local measure, global measures or functional dependences are used. We have shown
that  especially a minimal classification error may be very sensitive to  a particular
value of the threshold in classifiers which give a real number from some interval as
the output.  It is  possible to deduce that  in such a case results  will  depend on the
particular selection of testing and also of a learning set. 
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