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Technical report No. 937

May 2005
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Abstract:

General semantics of the logic whose axioms are those axioms of MTL (monoidal t-norm based fuzzy logic)
using only the connectives & and → (i.e. not mentioning ∧, 0̄) is given by the variety of algebras called
basic quasihoops. Completeness theorem is proved for propositional calculus and a corresponding predicate
calculus (complete with respect to linearly ordered quasihoops) is presented.
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1 Introduction

Standard semantics of fuzzy (propositional) logic is given on the unit real interval [0, 1] by a continuous
or at least left-continuous t-norm ∗ and its residuum ⇒. If ∗ is continuous then the lattice operations
∧,∨ are definable from ⇒, ∗; thus the t-norm algebra ([0, 1], ∗,⇒) determines a residuated lattice with
divisibility and prelinearity. The variety generated by all t-norm algebras in the language (∗,⇒,∧,∨, 1)
consists of all basic hoops and in the language (∗, ⇒, ∧,∨, 1, 0) of all BL-algebras. The lattice
operations can be omitted as definable.

In the case of left continuous t-norms one has to consider ∧ as primitive; ∨ remains definable (by
Dummett’s formula) and the variety generated by all left continuous t-norm algebras in the language
(∗,⇒,∧,∨, 1) is that of all basic semihoops and in (∗,⇒,∧,∨, 1, 0) that of all MTL-algebras. (See [4]
for definitions.) Not that ∨ can be omitted as definable.

Our first question reads: What is the general semantics of the logic whose axioms are those axioms
of MTL using only the connectives & and → (i.e. not mentioning ∧, 0̄)? This means: what is the
class of algebras of truth functions making those axioms valid?

Our answer is: the variety of basic quasihoops as defined below. These are some partially qua-
siordered algebras (not necessarily lattices) but admitting factorization we get a partial order; ordered
basic quasihoops are subalgebras of reducts of MTL-algebras to the language ∗,⇒, 1; the quasihoop
logic is complete w.r.t. basic quasihoops, as well as to (reducts of) MTL-algebras, MTL-chains, and to
left continuous t-norm algebras with (∗,⇒, 1). We easily get also results on subdirect representability
and conservation extensions. Note that our quasihoops are equivalent to (reversed left) BCK(RP)-
algebras of Iorgulescu, see [5]. Our logic fits well to the general hierarchy of fuzzy logics proposed by
Cintula [1].

Our second question reads: what is the variety generated by all left continuous t-norm algebras
just in the language ∗,⇒? It is not the variety of basic quasihoops but some smaller variety. (See
Remark 1 point (2) below.) It would be nice to describe it by an explicit system of equations; we
only show that the quasivariety generated by those algebras is strictly smaller (and consists of ordered
basic quasihoops).

Our third question reads: Can we build a quasihoop predicate logic complete w.r.t. models over
linearly ordered quasihoops? The last section contains a positive answer.

2 The quasihoop logic

Take the axioms (A1), (A2), (A3), (A5) of BL, i.e.

(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(A2) (ϕ&ψ) → (ψ&ϕ)
(A3) (ϕ&ψ) → ϕ
(A5a) (ϕ → (ψ → χ)) → ((ϕ&ψ) → χ)
(A5b) ((ϕ&ψ) → χ) → (ϕ → (ψ → χ))

and add, for each positive natural n, the axiom

(A6)n ((ϕ → ψ)n → χ) → (((ψ → ϕ)n → χ) → χ).

Deduction rule is modus ponens; αn is α & . . . & α (n factors). Clearly, all these axioms are
∗-tautologies for each left-continuous t-norm ∗. Call this logic quHL – the logic of (basic) quasihoops.
An easy checking gets the following:

Theorem 1 (1) The formulas (1) – (8), (19) – (20), (24) – (28) from [3] 2.2.7 – 2.2.16 (for 1̄ being
p → p for any fixed p, and ϕ ≡ ψ being (ϕ → ψ)&(ψ → ϕ)) are provable using only axioms (A1) –
(A3), (A5ab).

(2) For the obvious notion of a theory, the deduction theorem [3] 2.2.18 holds over quHL (by the
same proof).
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Call a theory T prime (or complete as in [3]) if for each ϕ,ψ T ` ϕ → ψ or T ` ψ → ϕ.

Theorem 2 Let T 6` α. Then there is a prime theory T̂ ⊇ T such that T̂ 6` α.

Modify the proof from [3] using (A6)n.

3 Quasihoops

Definition 1 A quasihoop is an algebra L = (L, ∗,⇒, 1) satisfying the following, for each x, y, z ∈ L :

(x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) = 1,

(x ∗ y) = (y ∗ x), (x ∗ y) ⇒ x = 1,

((x ∗ y) ⇒ z) = (x ⇒ (y ⇒ z)),

1 ∗ x = x, x ⇒ x = 1, 1 ⇒ x = x.

Define further x ≤ y iff (x ⇒ y) = 1 and x ≡ y iff x ≤ y and y ≤ x.

Theorem 3 (1) ≤ is a quasiorder (reflexive and transitive).

(2) 1 is greatest, x ≤ 1 for each x.

(3) x ≤ y ⇒ z iff x ∗ y ≤ z (residuum)

(4) x ≡ 1 iff x = 1.

(5) If x = 1 and x ⇒ y = 1 then y = 1 (soundness of modus ponens).

Proof: (1) Reflexivity is evident. Assume x ⇒ y = y ⇒ z = 1. Then
1 = ((x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) = (1 ⇒ (1 ⇒ (x ⇒ z)) = (1 ⇒ (x ⇒ z)) = x = z. This
proves transitivity of ≤ .

(2) x ⇒ 1 = (x ⇒ (x ⇒ x)) = ((x ∗ x) ⇒ x) = 1.

(3) x ≤ y ⇒ z iff x ⇒ (y ⇒ z) = 1 iff ((x ∗ y) ⇒ z) = 1 iff x ∗ y ≤ z.

(4) x ≡ 1 implies 1 ≤ x, thus (1 ⇒ x) = 1 hence x = 1.

(5) x ⇒ y ≤ x ⇒ y, hence x ∗ (x ⇒ y) ≤ y. If x = (x ⇒ y) = 1 then 1 = 1 ∗ 1 = x ∗ (x ⇒ y) ≤ y,
hence y = 1 by (4).
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Definition 2 A quasihoop L is basic if for each x, y, z ∈ L and each positive natural n,

[((x ⇒ y)n ⇒ z) ∗ ((y ⇒ x)n ⇒ z)] ≤ z

(analogue of (A6)n.)

Remark 1 (1) Clearly, quasihoops form a variety and so do basic quasihoops. Note that the qua-
siorder ≤ of a (basic) quasihoop need not be an order. A trivial counterexample is a four-element
algebra 0 < a ≡ b < 1 such that {0, a, 1} and {0, b, 1} are copies of the three-valued MV-algebra and
a ∗ b = b ∗ a = 0, a ⇒ b = b ⇒ a = 1.

(2) A quasihoop is a hoop iff it satisfies x ∗ (x ⇒ y) = y ∗ (y ⇒ x). In each hoop ≤ is an order
which is an inf-semilattice with x ∩ y = x ∗ (x ⇒ y). A quasihoop is a semihoop iff it is ordered and
the order ≤ is an inf-semilattice (every pair of elements has an infimum).

(3) The proof of associativity of ∗ in hoops (see [4]) gives here x ∗ (y ∗ z) ≡ (x ∗ y) ∗ z (not
necessarily =). A counterexample: let 1 > a > b1 ≡ b2 > c1 ≡ c2; let x ⇒ y = 1 if x ≤ y and
x ⇒ y = y if x > y. Let 1 ∗ x = x, x ∗ y = y ∗ x, x ∗ x = x and further b1 ∗ b2 = b1, c1 ∗ c2 = c1,
a ∗ b1 = a ∗ b2, a ∗ ci = ci, bi ∗ cj = ci(!).
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Check that this is a linearly quasiordered quasihoop (thus it is basic) and (a ∗ b1) ∗ c1 = b2 ∗ c1 =
c2, a ∗ (b1 ∗ c1) = a ∗ c1 = c1.

(4) The logic quHL is obviously sound for interpretations in basic quasihoops; it follows among
other things that the relation ≡ on a quasihoop is a congruence.

Define F ⊆ L to be a filter on L = (L, ∗,⇒, 1) if, for each x, y ∈ L, x ∈ F and x ≤ y implies y ∈ F,
and x, y ∈ F implies x ∗ y ∈ F. The factor algebra L/F is defined as usual: [x]F = {y|x ≡F y} (where
x ≡F y stands for (x ⇒ y) ∈ F and (y ⇒ x) ∈ F ); [x]F ∗ [y]F = [x ∗ y]F etc. The smallest filter is {1};
observe that L/{1} is an ordered quasihoop.

Each linearly ordered quasihoop is a lattice w.r.t. ≤ and hence it is a semihoop. By usual way (cf.
the last theorem of the previous section) one proves the following:

Theorem 4 Ordered basic quasihoops have subdirect representation property: each ordered basic
quasihoop is a subalgebra of (the (∗,⇒, 1)-reduct of) a direct product of semihoop chains (or, if you
want, of a direct product of MTL-chains, since each semihoop chain is a subalgebra of (the reduct of)
a MTL-chain.

Corollary 1 Let ϕ be a formula of quHL. The following are mutually equivalent:

(i) quHL proves ϕ

(ii) MTLH proves ϕ

(iii) MTL proves ϕ

(iv) ϕ is a tautology over each basic quasihoop,

(v) . . . over each ordered basic quasihoop,

(vi) . . . over each linearly ordered quasihoop

(vii) . . . over each (linearly ordered) basic semihoop

(viii) . . . over each (linearly ordered) MTL-algebra.

(ix) . . . over each algebra given by a left continuous t-norm on [0, 1].

Thus MTL is a conservative extension of quHL.

Now let us turn to our second question. As promised, we claim the following:

Theorem 5 The quasivariety generated by algebras of left-continuous t-norms and their residua (in
the language ∗,⇒) is the class of all ordered basic quasihoops.

Proof: Recall that a Horn formula is a formula of the form α1& . . . &αn → β where αi and β are
identities (n may be 0, 1, 2, . . . ; for n = 0 it is just β). A quasivariety is the class of all algebras (of a
given type) in which a given set of Horn formulas is valid. Clearly, a basic quasihoop is ordered iff the
Horn sentence ((x ⇒ y = 1)&(y ⇒ x = 1)) → (x = y) is valid; thus it is a quasivariety. Each Horn
formula valid in all ordered basic quasihoops is trivially valid in each left continuous t-norm algebra.
Conversely, if a Horn formula is not valid in an ordered basic quasihoop then it is not valid in a linearly
ordered quasihoop thanks to the subdirect representation property. Due to the fact that the quasihoop
is ordered, each identity τ = σ is equivalent to τ ≤ σ &σ ≤ τ, hence to (τ ⇒ σ) ∗ (σ ⇒ τ) = 1; thus
the Horn formula in question can be represented in the form

(ϕ1 = 1 & . . . &ϕn = 1) → (ψ = 1)

which can be interpreted as saying that the (corresponding) formulas ϕ1, . . . , ϕn of the logic quH are
1-true and the formula ψ is not 1-true (in the evaluation of variables making the Horn formula in
question not satisfied). We may assume, as stated above, that in fact our linearly ordered quasihoop
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is a MTL-chain (since it is a semihoop and if it does not have a least element, you can add one).
In other words, there is a model of the finite (propositional) theory {ϕ1, . . . , ϕn} over a MTL-chain
in which ψ is not 1-true. MTL has standard completeness and the proof of this in [6] immediately
gets so-called strong finite standard completeness: there is a left-continuous t-norm ∗ and a [0, 1]-
evaluation of propositional variables making ϕ1, . . . , ϕn 1-true and ψ not 1-true. Thus switching back
to the algebraic language, the standard MTL-algebra given by ∗ satisfies, for the given evaluation of
variables, the identities ϕ1 = 1, . . . , ϕn = 1 but does not satisfy ψ = 1, hence the Horn formula in
question is not valid. This completes the proof. 2

Example 1 (due to F. Esteva). The following is an ordered quasihoop whose order is not a lattice
order:

A = {1, a, b, c, d, e, 0}, 1 > a > b > d > 0, 1 > a > c > e > 0, b > e, c > d;

(b, c) incomparable, (d, e) incomparable; 1 ∗ x = x, x ∗ y = 0 for x, y 6= 1. (Residuum: x ⇒ y = 1 for
x ≤ y, 1 ⇒ y = y, otherwise x ⇒ y = a.) Here inf(b, c) does not exist. The quasihoop is not basic:

((d ⇒ e) ⇒ a) ⇒ (((e ⇒ d) ⇒ a) ⇒ a = (1 ⇒ (1 ⇒ a)) = a 6= 1.

4 Quasihoop predicate logic

We define an L-interpretation M of a predicate logic over a basic quasihoop in the same way as usual
and define the value ‖ϕ‖LM,v (v being an evaluation of variables). For quantified formulas we use inf
and sup of instances and call M L-safe also as usual. In the analogy with BL∀, MTL∀ etc. we pay
main attention to linearly ordered quasihoops (quasihoop chains). The problem is how to formulate
axioms to prove (strong) completeness. Axioms (∀1), (∀2), (∃1), (∃2) make no problems – they are
expressed in the language of the logic of quasihoops. But the axiom (∀3) is not since it contains
disjunction: (∀x)(ϕ∨ν) → ((∀x)ϕ∨ν), x not free in ν. We first show that over MTL∀, the axiom (∀3)
can be equivalently replaced by four axioms formulated in the language of quasihoops (which seems
to be of independent interest) and than we show that two axioms implied by our four ones can be
added to (∀1)− (∃2) to get (together with propositional axioms of quasihoops logic) an axiom system
strongly complete for safe interpretations over quasihoop chains.

Definition 3 ϕ ≺ ψ is the formula (ϕ → ψ) → ψ. (Cf. [2]; in [7] the notation ϕ ↑ ψ is used.)

Recall that in MTL the disjunction α ∨ β is defined as (α ≺ β) ∧ (β ≺ α) (in our notation); thus
(∀3) can be written as

(∀x)((ϕ ≺ ν) ∧ (ν ≺ ϕ)) → [((∀x)ϕ ≺ ν) ∧ (ν ≺ (∀x)ϕ)]

By [3] 5.1.21 (15) (provable in MTL not using (∀3)), this is equivalent to

[(∀x)(ϕ ≺ ν) ∧ (∀x)(ν ≺ ϕ)] → [((∀x)ϕ ≺ ν) ∧ (ν ≺ (∀x)ϕ)].

Write it as (A1∧A2) → (S1∧S2) (A1 being (∀x)(ϕ ≺ ν) etc.). Observe that for any α, β, the formula

(α ∧ β) ≡ [(α&(α → β)) ∨ (β&(β → α))]

is a MTL-tautology (verify for any MTL-chain), thus (A1 ∧ A2) → (S1 ∧ S2) is equivalent to
[(A1&(A1 → A2))∨(A2&(A2 → A1))] → (S1∧S2). Over MTL, this formula as an axiom is equivalent
to the following quadruple of axioms (i = 1, 2) :

(∀31) [A1&(A1 → A2)] → Si

(A32) [A2&(A2 → A1)] → Si

We have proved:
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Theorem 6 In MTL∀, the axiom (∀3) can be replaced by the following four axioms (x not free in
ν) :

[(∀x)(ϕ ≺ ν)&((∀x)(ϕ ≺ ν) → (∀x)(ν ≺ ϕ))] → [(∀x)ϕ ≺ ν],
[(∀x)(ϕ ≺ ν)&((∀x)(ϕ ≺ ν) → (∀x)(ν ≺ ϕ))] → [ν ≺ (∀x)ϕ],
[(∀x)(ν ≺ ϕ)&((∀x)(ν ≺ ϕ) → (∀x)(ϕ ≺ ν))] → [(∀x)ϕ ≺ ν],
[(∀x)(ν ≺ ϕ)&((∀x)(ν ≺ ϕ) → (∀x)(ϕ ≺ ν))] → [ν ≺ (∀x)ϕ].

(Remember them as (∀31), (∀32) with our Ai, Si).

Corollary 2 MTL∀ proves, for our Ai, Si,

(∀33) (A&A2) → Si,

i.e.

[(∀x)(ϕ ≺ ν)&(∀x)(ν ≺ ϕ)] → [(∀x)ϕ ≺ ν],
[(∀x)(ϕ ≺ ν)&(∀x)(ν ≺ ϕ)] → [ν ≺ (∀x)ϕ].

Remark 2 Observe that since (A1&A2) → Si is equvalent (in the quasihoop logic) to A1 → (A2 →
Si) we can express (∀33) using implication as the only connective.

Definition 4 quHL∀ (the quasihoop predicate logic) is the fuzzy predicate logic over the quasihoop
propositional logic with the axioms (∀1), (∀2), (∃1), (∃2), (∀33) for quantifiers.

Theorem 7 (Completeness theorem.) Let T be a theory over quHL∀ and let ϕ be a formula. T
proves ϕ (over quHL∀) iff ϕ is true in all models of T (i.e. all safe interpretations over quasihoop
chains making all axioms of T true).

Proof: We just inspect the proof of completeness of BL∀ [3] 5.2.7 – 5.2.9 and construct theory T̂ ⊇ T
which is complete, Henkin and T̂ 6` ϕ, which gives a model of T over the Lindenbaum algebra of T̂ ,
which is a quasihoop chain. The only place to be changed is Case 2 of the proof of 5.2.7 (handling
(∀x)χ(x)). We proceed as follows: given Tn, αn and χ(x), distinguish three subcases (c being a new
constant):

(i) Tn 6` αn ≺ χ(c), thus Tn 6` χ(c) and Tn 6` (∀x)χ(x). Let Tn+1 = Tn, αn+1 = αn ≺ χ(c). We
claim: For any theory S ⊇ Tn+1, if S 6` αn ≺ χ(c) then S 6` χ(c) (evident by the definition
of ≺) and S 6` αn. Indeed, if S ` αn then S ` χ(c) ≡ (αn → χ(c)), hence S ` αn ≺ χ(c),
contradiction.

(ii) Tn 6` χ(c) ≺ αn. Then analogously as above we show that S ⊇ Tn and S 6` αn (evident) and
S 6` χ(c). We let Tn+1 = Tn and αn+1 = χ(c) ≺ αn.

(iii) Tn proves both χ(c) ≺ αn and αn ≺ χ(c), hence Tn proves (∀x)(χ(x) ≺ αn) and (∀x)(αn ≺
χ(c)) (since Tn assumes nothing on c). By ∀33), Tn ` (∀x)χ(x) ≺ αn. This implies that Tn +
((∀x)χ(x) → αn ` αn (recall that (∀x)χ(x) ≺ αn is ((∀x)χ(x) → αn) → αn) and therefore

Tn + (αn → (∀x)χ(x)) 6` αn

(since Tn 6` αn, recall (A6)!). Thus we let Tn+1 = Tn + (αn → (∀x)χ(x)), αn+1 = αn. This
completes the proof.

2

This is a pleasing result: the fuzzy logic over (linearly ordered) quasihoops is a well-behaving
t-norm based logic, both as propositional and as predicate logic.
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