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Abstract:

In the report, we present the full proof of the representation theorem for continuous Archimedean radial
fuzzy systems. Radial fuzzy systems have antecedents of their rules represented by radial basis functions.
The shape of such a function is considered to be the same as the shapes (membership functions) of
individual fuzzy sets which form individual IF-THEN rules. Thus, a shape preservation property holds in
radial fuzzy systems. Continuous Archimedean radial fuzzy systems are radial fuzzy systems employing a
continuous Archimedean t-norms for and connective representation. As the main result we show, that a
fuzzy system based on a continuous Archimedean t-norm t is radial if and only if the shapes of employed
fuzzy sets are given by the composition of the pseudo-inverse of the additive generator of t with the
polynomial of certain form.
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1 Introduction

Radial fuzzy systems are fuzzy systems which employ radial fuzzy sets in their rules and exhibit a
shape preservation property in rules’ antecedents. The property, which is called the radial property,
simplifies the computational model of radial systems. Especially, a substantial simplification is reached
for implicative (gradual) fuzzy systems [3]. Moreover, due to the property, an investigation of such
the properties as coherence and redundancy of rules is effective with reasonable results.

Continuous Archimedean radial fuzzy systems are radial fuzzy systems based on continuous Archi-
medean t-norms. More specifically, they are the systems employing a continuous Archimedean t-norm
for representation of and linguistic connective. Before we give an exact definition of a radial fuzzy
system let us specify the notation.

In the report we will recognize the following subsets of set R = (−∞, +∞) of real numbers: the
set of positive real numbers - R+ = (0, +∞), the set of non-negative real numbers - R0+ = [0,∞).
Cartesian products of these sets will be denoted as follows: Rn, Rn

+, Rn
0+, where n is an integer from

N = {1, 2, . . . }.
Further, we will work with the extended real line R∗ = [−∞,+∞] = R ∪ {−∞, +∞} and its

parts: R∗+ = [0, +∞], R∗0+ = (0,∞]. Non-proper reals −∞, +∞ will be considered as elements of
domains and ranges of continuous functions in such a way that we say that f(a) = b, a, b ∈ R∗ if
limx→a f(x) = b.

2 Radial fuzzy systems

Definition 1 A fuzzy system is radial if :

(i) There exists a continuous function act : [0,+∞] → [0, 1], act(0) = 1, act(+∞) = 0, such that:
(a) either there exists z0 ∈ (0, +∞) such that act is strictly decreasing on [0, z0] and act(z) = 0 for
z ∈ [z0, +∞] or (b) act is strictly decreasing on [0,+∞]. In this case we set z0 = +∞.

(ii) Fuzzy sets in antecedent and consequent of the j-th rule are specified as

Aji(xi) = act

(∣∣∣∣
xi − aji

bji

∣∣∣∣
)

, (2.1)

Bj(y) = act

(
max{0, |y − cj | − sj}

dj

)
, (2.2)

where n,m ∈ N ; i = 1, . . . , n; j = 1, . . . ,m; x ∈ Rn, x = (x1, . . . , xn); aj ∈ Rn, aj = (aj1, . . . , ajn);
bj ∈ Rn

+, bj = (bj1, . . . , bjn), (i.e., bji > 0); cj ∈ R; dj ∈ R+, (i.e., dj > 0); sj ∈ R0+, (i.e., sj ≥ 0).

(iii) For each x ∈ Rn the radial property holds, i.e.,

Aj(x) = Aj1(x1) ? · · · ? Ajn(xn) = act( ||x− aj ||bj ), (2.3)

where || · ||bj is a scaled version of some norm || · || in Rn. This norm is common to all rules of the
fuzzy system.

Let us comment on the definition. The specification of a radial fuzzy system consists of three steps.
In the first step, point (i) of the definition, an activation function act is specified. The domain of

act function corresponds to the set of non-negative extended reals R∗0+ = [0, +∞] and the range to
the unit interval [0, 1]. Values of the function at the limit points of the domain are required to be
specified as follows: act(0) = 1 and act(+∞) = 0, i.e., limz→+∞ act(z) = 0.

An act function can be of two types (ia) or (ib). The difference between two types is best presented
graphically, see Fig. 2.1.

In the second step, point (ii) of the definition, the membership functions of fuzzy sets in antecedents
and consequents are determined. It can be easily observed that the specification corresponds to a
specification of one-dimensional radial functions.

Radial functions are generally defined by formula f(x) = Φ(||x− a||), where Φ is a function from
R0+ (or R∗0+) to R, || · || is a norm in Rn and a ∈ Rn is a central point of the function. Concerning
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Figure 2.1: Examples of act function: (a) type (ia); (b) type (ib).

radial fuzzy systems, the class of so-called `p norms in Rn is important [4]. The definition formula of
`p norms depends on parameter p ∈ [1, +∞] and reads as follows:

||u||p = (|u1|p + · · ·+ |un|p)1/p for p ∈ [1, +∞),
||u||∞ = limp→+∞ ||u||p = maxi{|ui|}.

(2.4)

Scaled `p norms, denoted by || · ||pb
, are derived from corresponding `p norms by incorporating a

vector b ∈ Rn
+ of scaling parameters, b = (b1, . . . , bn), bi > 0, into the above formulas. That is,

||u||pb
= (|u1/b1|p + · · ·+ |un/bn|p)1/p ; p ∈ [1, +∞),

||u||∞b
= limp→+∞ ||u||pb

= maxi{|ui/bi|}. (2.5)

Clearly, original unscaled `p narm are obtained from scaled ones by choosing b = 1 = (1, . . . , 1).
The most prominent examples of scaled `p norms are scaled `1 or octaedric, scaled `2 or Euclidean
and scaled `∞ or cubic norms.

Antecedent fuzzy sets differ from consequent ones in specification of their cores (kernels) [6, 7]. An
antecedent fuzzy set Aji with membership function (2.1), has its core given by point aji. In the case
of a consequent fuzzy set Bj , the core corresponds to closed interval [cj − sj , cj + sj ]. That is, the
central point of the core is determined by point cj and core’s length is driven by parameter sj ≥ 0.
As both antecedent and consequent fuzzy sets are determined on the basis of common act function,
consequent fuzzy sets Bjs can be seen as enhanced or trapezoid-like versions of antecedent fuzzy sets,
see Figs. 4.1, 4.2, 4.3 for examples. The introduction of trapezoid-like consequent fuzzy sets enhances
computational capabilities of radial fuzzy systems [2].

Point (iii) of the definition is crucial, as it presents the requirement for the validity of the radial
property in radial fuzzy systems. The property, formula (2.3 can be interpreted as the requirement
for the preservation of radial shape of one-dimensional fuzzy sets Ajis after their combination by a
given t-norm. Thus, the radial property can be seen as a shape preservation property.

The property is not trivial. Having specified membership functions of Aji sets and a t-norm ?, the
representation of an antecedent is already determined: Aj(x) = Aj1 ? · · · ? Ajn. The radial property
requires Aj(x) to be expressible in form

Aj(x) = act( ||x− aj ||bj ). (2.6)

That is, it requires Aj to be a multi-dimensional radial function based on the same act function as Ajis
are; and the norm occurring in formula (2.6) to be a scaled version of some norm in Rn with scaling
parameters bji of Ajis. Similarly, it is required that central point of Aj consists of central points of
Ajis. The non-triviality means that not all combinations of act functions with t-norms exhibit the
radial property. It can be shown [2], that triangular fuzzy sets (act(z) = max{0, 1 − z}) cannot be
combined by the product t-norm to (2.6) holds.

The non-triviality of the property induces a natural question: If there are any examples of radial
fuzzy systems and moreover what combinations of shapes (act functions) with what t-norms are
allowed in order to the radial property hold; and, what are the norms occurring in formula (2.3).
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3 Representation theorem

The above questions will be answered in this section by the main result of the report which is the repre-
sentation theorem for continuous Archimedean radial fuzzy systems. Before we state the theorem, let
us recall some notions and theorems from theories of triangular norms (t-norms) and quasi-arithmetic
means.

As it is well known a triangular norm T is an operation from the unit square to the unit interval, i.e.,
T: [0, 1]2 → [0, 1], which satisfies commutativity, associativity, monotonicity and boundary conditions.
Several other properties are recognized for t-norms such as continuity or the Archimedean property
which requires that for any pair (x, y) ∈ (0, 1)2 there exists an n such that Tn(x) < y. As usual

Tn(x) = T (x, ..., x) = x ? · · · ? x︸ ︷︷ ︸
n

,

which has sense due to the associativity of T . ? symbol is another symbol for a t-norm T , i.e.,
T (x, y) = x ? y.

Continuous Archimedean t-norms occupy a special place among other t-norms due to the following
representation theorem:

Theorem 1 [5]: T is a continuous Archimedean t-norm if and only if T has a continuous additive
generator, i.e., there exists a continuous, strictly decreasing function t : [0, 1] → [0,+∞] with t(1) = 0,
which is uniquely determined up to a positive multiplicative constant such that for all (x, y) ∈ [0, 1]2:

T (x, y) = t(−1)(t(x) + t(y)), (3.1)

where t(−1) is the pseudo-inverse of t.

The theorem says that a t-norm is continuous Archimedean if and only if it has some additive
generator. On the basis of the theorem it can be shown that for continuous Archimedean t-norms and
x = (x1, . . . , xn) ∈ [0, 1]n we have also

T (x1, . . . , xn) = t(−1)(t(x1) + · · ·+ t(xn)). (3.2)

The pseudo-inverse of an aditive generator is a function from [0, +∞] to [0, 1] defined as

t(−1) =
{

t−1(z) for z ∈ [0, t(0)]
0 for z ∈ [t(0), +∞] (3.3)

where t−1 is the ordinary inverse of t. The above formula can be equivalently written as

t(−1)(z) = t−1(min{t(0), z}), (3.4)

which enables us to rewrite formulas (3.1), (3.2) as follows:

T (x, y) = t−1(min{t(0), t(x) + t(y)}), (3.5)
T (x1, . . . , xn) = t−1(min{t(0), t(x1) + · · ·+ t(xn)}). (3.6)

Let t be a generator of a t-norm. Then the t-norm is nilpotent if t(0) < +∞ and strict if t(0) = +∞.
A continuous Archimedean t-norm is either nilpotent or strict [5].

From formula (3.3) and properties of additive generators it is easy to observe that for nilpotent
t-norms the coresponding pseudo-inverses are strictly decreasing on interval [0, t(0)], and constant
(t(−1)(z) = 0) on interval [t(0), +∞]. In the case of strict t-norms, the pseudo-inverses are strictly
decreasing on whole domain [0,+∞]. For both types we have t(−1)(0) = 1 and t(−1)(+∞) = 0.

The following definition and theorem are taken from Aczél and Dhombres [1]:

Definition 2 [1]: Let k : R0+ → R be a continuous and strictly decreasing function (injection) with
inverse k−1. The range of k is an interval (also domain R0+ may be replaced by other infinite or
finite intervals). Then

M(x, y) = k−1

(
k(x) + k(y)

2

)
(3.7)
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is a quasi-arithmetic mean. The arithmetic mean [k(x) = x], the exponential mean [k(x) = exp(px)],
p 6= 0], the root-mean-square [k(x) = x2], the root-mean-power [k(x) = xp, p > 0]; if R0+ (domain
of k) is replaced by R+ then also the root-mean-powers with p < 0, including the harmonic mean
[k(x) = 1/x] and the geometric mean [k(x) = ln(x)] are examples of quasi-arithmetic means.

Theorem 2 [1]: Geometric mean and root-mean-powers, i.e.,

√
xy and

(
xp + yp

2

)1/p

are only homogeneous quasi-arithmetic means. That is only these satisfy

M(cx, cy) = cM(x, y)

for x, y, c > 0.

Now we can approach to the main result of the report.

Theorem 3 Let the t-norm ? which is used to represent IF-THEN rules of a fuzzy system, be con-
tinuous Archimedean. Then the fuzzy system is radial if and only if for z ∈ [0, +∞] its act function
has form

act(z) = t(−1)(qzp), (3.8)

where t(−1) is the pseudo-inverse of an additive generator of ? and q > 0, p ≥ 1 are parameters.

Proof: A fuzzy system is radial if it satisfies requirements (i)-(iii) of Definition 1. The first two are
relatively unrestrictive as they specify properties of an act function, which are rather weak, and how to
determine shapes of membership functions of individual fuzzy sets. A really strong is the requirement
(iii), i.e., the requirement for the validity of the radial property (2.3), as a specification of an act
function and membership functions already gives, under the selected t-norm ?, the representation of
antecedent.

So, if we are interested in a search for at least sufficient conditions to a fuzzy system be radial, we
are, in fact, interested in a solution of functional equation (feq in short)

act

(∣∣∣∣
x1 − aj1

bj1

∣∣∣∣
)

? · · · ? act

(∣∣∣∣
xn − ajn

bjn

∣∣∣∣
)

= act

(∥∥∥∥
x1 − aj1

bj1
, . . . ,

xn − ajn

bjn

∥∥∥∥
)

. (3.9)

on domain Rn, x = (x1, . . . , xn) ∈ Rn. A solution consists of two functions act and || · || such that:
1) act : [0, +∞] → [0, 1], act(0) = 1, act(+∞) = 0 (limz→+∞ act(z) = 0), continuous, such that
either (ia) there exists z0 ∈ (0,+∞) such that act is strictly descreasing on [0, z0] and act(z) = 0 for
z ∈ [z0, +∞], or (ib) act is strictly decreasing on [0, +∞]; and
2) || · || is a continuous norm on Rn.

The paramaters of the feq are: (i) n ∈ N , n ≥ 2; (ii) aji ∈ R, i.e., aj ∈ Rn, aj = (aj1, . . . , ajn);
(iii) bji > 0, i.e., bj ∈ Rn

+, bj = (bj1, . . . , bjn).
We start with the easier part of the theorem, i.e., with showing that act function specified according

to formula (3.8) makes the system to be radial.
First of all we check that act of (3.8) meets requirement (i) of Definition 1. Recalling the properties

of pseudo-inverses and observing that function qzp is the strictly increasing bijection from [0, +∞]
onto [0, +∞] for q > 0, p ≥ 1, we get function t(−1)(qzp) either of (ia) type for nilpotent t-norms or
(ib) type for strict t-norms.

Let act and Ajis be specified according to (3.8) and (2.1), respectively. Let x = (x1, . . . , xn) ∈ Rn,
aj = (aj1, . . . , ajn) ∈ Rn, bj = (bj1, . . . , bjn) ∈ Rn

+ and uji = (xi−aji)/bji for some j and i = 1, . . . , n.

4



Then, due to formulas (3.2) and (3.8), the representation of antecedent Aj(x) reads as

Aj(x) = Aj1(|uj1|) ? · · · ? Ajn(|ujn|), (3.10)

Aj(x) = t(−1)

[
n∑

i=1

t(act(|uji|))
]

, (3.11)

Aj(x) = t(−1)

[
n∑

i=1

t(t(−1)(q|uji|p))
]

. (3.12)

By (3.6) the latter formula is written in form

Aj(x) = t(−1)

[
n∑

i=1

t(t−1(min{t(0), q|uji|p}))
]

, (3.13)

which gives

Aj(x) = t(−1)

[
n∑

i=1

min{t(0), q|uji|p}
]

. (3.14)

Now, two cases are possible. 1) If q|uji|p < t(0) for all i, then (3.14) has form Aj(x) =
t(−1)(

∑n
i q|uji|p), which can be written in an equivalent form as Aj(x) = t(−1)(q (p

√∑n
i |uji|p)p ),

i.e., Aj(x) = act(||u||p) = act(||x− aj ||pbj
).

2) If there exists an i such that q|ui|p ≥ t(0), then, on one hand, the sum in (3.14) is greater or
equal to t(0) and therefore Aj(x) = 0. On the other hand,

∑n
i q|uji|p ≥ t(0), i.e., q (p

√∑
i |ui|p)p =

q(||u||p)p ≥ t(0) and therefore act(||x−a||pbj
) = 0. Thus, also in this case we have Aj(x) = act(||x−

a||pbj
) and we see that the specification of act function according to (3.8) is sufficient for the validity

of the radial property.
Observe an important fact here that if act is specified according to (3.8), then scaled `p norms

occur in the representation of antecedents.
The proof of the necessity of act specification according to (3.8) is harder. It falls into the area of

functional equations of several variables. This area is well covered in book by Aczél and Dhombres
[1].

Let us start by the following observation: If a solution (a pair act, || · ||) of feq (3.9) exists, then it
is also the solution of

act(x1) ? · · · ? act(xn) = act(||x1, . . . , xn||) (3.15)

for x = (x1, . . . , xn) ∈ Rn
0+.

Indeed, let s = (act, || · ||) be a solution of (3.9). If an x = (x1, . . . , xn) ∈ Rn
0+ would violate (3.15)

for s, then x′, x′i = bixi + ai, i = 1, . . . , n would violate (3.9) and s would not be the solution of (3.9).
A contradiction.

In the sequel we will consider the case n = 2. The proof for n > 2 follows the case of n = 2. Thus,
we will search for necessary conditions on “shapes” of a solution of feq

act(x) ? act(y) = act(n(x, y)) (3.16)

on domain (x, y) ∈ R2
0+ (x = x1, y = x2) and parameters specified as above. A solution consists of

two functions act, || · || = n(x, y) with the characteristics already mentioned.
Employing an additive generator t of ? and formula (3.5), we obtain (3.16) in form

act(n(x, y)) = t−1(min{t(0), t(act(x)) + t(act(y))}) (3.17)

for (x, y) ∈ R2
0+.

Lemma 1 Let an act(z) with some z0 ∈ (0, +∞] and a n(x, y) form a solution of feq (3.16). Then
for (x, y) ∈ R2

0+

n(x, y) < z0 iff t(act(x)) + t(act(y)) < t(0). (3.18)
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Proof of Lemma 1: Let us denote the left side of (3.17) by L(x, y) and the right side by P (x, y). We
have L(x, y) > 0 iff n(x, y) < z0 and L(x, y) = 0 iff n(x, y) ≥ z0 from properties of act; P (x, y) > 0 iff
t(act(x)) + t(act(y)) < t(0) from properties of t−1 (see below). P (x, y) = 0 iff t(act(x)) + t(act(y)) ≥
t(0) by definition of P (x, y). If act(z) and n(x, y) solve (3.17) then L(x, y) = P (x, y) must hold for all
(x, y) ∈ R2

0+, which gives the assertion of the lemma. 2

Let an act has some z0 ∈ (0, +∞] and solves (3.17) for some norm n(x, y). We denote by f the
restriction of act on [0, z0], i.e., f : [0, z0] → [0, 1], f(z) = act(z) for z ∈ [0, z0]. Let us review the
properties of functions f , t, their inverses and compositions:

• f : [0, z0] ↔ [0, 1], bijection (indicated by symbol ↔), f(0) = 1, f(z0) = 0, continuous, strictly
decreasing

• t : [0, 1] ↔ [0, t(0)], bijection, t(1) = 0, continuous, strictly decreasing

• h = t(f(z)), h : [0, z0] ↔ [0, t(0)], bijection, h(0) = 0, h(z0) = t(0), continuous, strictly increasing
( if x1 < x2 then f(x1) > f(x2) and therefore t(f(x1)) < t(f(x2)) )

• f−1 : [0, 1] ↔ [0, z0], bijection, f−1(1) = 0, f−1(0) = z0, continuous, strictly decreasing

• t−1 : [0, t(0)] ↔ [0, 1], bijection, t−1(0) = 1, continuous, strictly decreasing

• h−1 = f−1(t−1(z)), h−1 : [0, t(0)] ↔ [0, z0], bijection, h−1(t(0)) = z0, h−1(0) = 0, continuous.
Obviously, h−1 is the inverse of h.

Lemma 2 Let n(x, y) be a continuous norm in R2
0+ and z0 ∈ (0,+∞]. Then there exists a finite z∗0 ,

0 < z∗0 < z0 such that n(x, y) < z0 for (x, y) ∈ [0, z∗0 ]2.

Before we give a proof, let us explain the meaning of the lemma. For a general norm n(x, y) spec-
ified on R2

0+ and a positive finite z0 the assertion “if x < y ≤ z0 and n(y, y) < z0, then n(x, y) < z0”
does not hold. As an example consider norm2 n(x, y) = 2x+4y− 4

√
xy for z0 = 3, y = 1, x = 0. The

lemma says that for a given z0 there exists 0 < z∗0 < z0 such that for elements of square [0, z∗0 ]2 we
have simultaneously x < z0, y < z0 and n(x, y) < z0.

Proof of Lemma 2: If z0 = +∞, then z∗0 can be arbitrary positive real, i.e., z∗0 ∈ R+. For z0 finite,
let us consider a square [0, u]2 for u > 0. As this square is a compact set and n(x, y) is a continuous
mapping, the set {v | v = n(x, y), (x, y) ∈ [0, u]2} is compact (the image of a compact set under a
compact mapping is a compact set), i.e., it is a closed interval in R. The left limit point of this
interval is 0 and the right limit point we denote g(u), i.e., [0, g(u)] = {v | v = n(x, y), (x, y) ∈ [0, u]2}.
Let us set g(0) = 0, function u → g(u), u > 0 is continuous (from right) at 0. Indeed, according to
the equivalence theorem for norms, we have n1(x, y) ≤ αn2(x, y), α > 0, for arbitrary two norms.
Hence, considering `1 norm `1(x, y) = |x|+ |y|, we have 0 ≤ n(x, y) ≤ α(|x|+ |y|) and g(u) ≤ 2αu for
any u > 0. Obviously, chosing an arbitrary sequence {ui}, ui > 0 such that lim {ui} = 0, we obtain
lim {2αui} = 0, i.e., lim {g(ui)} = 0 and therefore g is continuous at 0.

From continuity of g at 0: For any z0 > 0 there must exists ε0 > 0 such that g(u) < z0 for u ∈ [0, ε0).
By this we can choose z∗0 as an arbitrary point from intersection of intervals (0, ε0) ∩ (0, z0]. 2

Let an act has some z0 and solves (3.17) for some n(x, y). Then for (x, y) ∈ [0, z∗0 ]2 we have
x, y < z0, n(x, y) < z0, and from (3.17), by equivalence (3.18), we obtain

f(n(x, y)) = t−1(t(f(x)) + t(f(y)), (3.19)
t(f(n(x, y))) = t(f(x)) + t(f(y)), (3.20)

h(n(x, y)) = h(x) + h(y). (3.21)

That is, if an act solves (3.17) for some n(x, y) then h solves feq (3.21) on domain (x, y) ∈ [0, z∗0 ]2.

2See Appendix for more details about this norm.
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For (x, y) ∈ [0, z∗0 ]2 we have n(x, x) < z0, n(y, y) < z0 and therefore

h(n(x, y)) = h(x) + h(y), (3.22)
h(n(x, x)) = 2h(x) hence h(x) = h(n(x, x))/2, (3.23)
h(n(y, y)) = 2h(y) hence h(y) = h(n(y, y))/2, (3.24)
h(n(x, y)) = [h(n(x, x)) + h(n(y, y))]/2. (3.25)

By linearity of norms we have n(x, x) = x · n(1, 1). Let us consider substitutions u = n(x, x),
v = n(y, y), which gives x = u/n(1, 1) and y = v/n(1, 1); and let us denote c = n(1, 1), i.e.,

h(n(u/c, v/c)) = [h(u) + h(v)]/2, (3.26)
h(1/c · n(u, v)) = [h(u) + h(v)]/2, (3.27)

n∗(u, v) = h−1

(
h(u) + h(v)

2

)
. (3.28)

where n∗(u, v) = 1/c · n(x, y) and (u, v) ∈ [0, cz∗0 ]2, c > 0.
n∗(u, v) is a norm and it is a homogenous quasi-arithmetic mean by (3.28). As root-mean-powers

for p < 0 and geometric mean are not defined if domain of k contains 0, see definition 2; and, in our case
h is defined at 0, h(0) = 0, these means cannot interpret n∗(u, v). Further, root-mean-power means
for p ∈ (0, 1) do not satisfy the triangle inequality (consider x = y). Similarly, the geometric mean
does not satisfy the triangle inequality for x = 0, y > 0, which makes another reason why it cannot
correspond to n∗(u, v). Thus, the only possibility is that n∗(u, v) = (xp + yp)1/p for p ∈ [1,+∞), i.e.,
that n∗(u, v) corresponds to an `p norm for (x, y) ∈ R2

0+, p ∈ [1, +∞).
We have

1/c · n(u, v) = [(up + vp)/2]1/p, (3.29)
n(x, y) = [((xc)p + (yc)p)/2]1/p, (3.30)

n(x, y) =
c

p
√

2
· (xp + yp)1/p. (3.31)

Now, the question is what is the value of c = n(1, 1).

h(n(x, y)) = h(x) + h(y), (3.32)
h(n(x, 0)) = h(x), (3.33)

n(x, 0) = x. (3.34)

From (3.31) we get p
√

2 · n(x, 0) = cx. Employing (3.34), we obtain p
√

2 = c. Hence the final form of
the norm is

n(x, y) = (xp + yp)1/p (3.35)

for (x, y) ∈ [0, z∗0 ]2, p ≥ 1.
What we have shown is that if a solution of (3.17) exists, and act function has some z0 ∈ (0, +∞]

then n(x, y) is an `p norm for (x, y) ∈ [0, z∗0 ]2. As we are searching for a solution on R2
0+, we can

translate this result as, if a solution of (3.17) exists, then the restriction of the norm occurring in the
solution must correspond to an `p norm on square [0, z∗0 ]2, z∗0 > 0. It can be easily shown that this is
satisfied only if the original norm is an `p norm having the same value of p as occurs in the restriction.

Indeed, let the restriction of a norm n(x, y) on a square [0, z∗0 ]2, z∗0 > 0 be an `p norm `p(x, y) =
p
√

xp + yp, p ≥ 1. Now, let n(x1, y1) 6= `p(x1, y1) for some (x1, y1) ∈ R2
0+. Then there exists c > 0

such that cx1, cy1 < z∗0 . By linearity we have cn(x1, y1) 6= c`p(x1, y1), i.e., n(cx1, cy1) 6= `p(cx1, cy1),
which clearly contradicts the requirement on the form of the restriction of n(x, y) on [0, z∗0 ]2.

Going back to feq (3.17) and equivalence (3.18), we can state that, if a solution of (3.17) exists,
then the norm of the solution is an `p norm, and there must exist a bijection h : [0, z0] ↔ [0, t(0)]
satisfying feq

h( p
√

xp + yp ) = h(x) + h(y) (3.36)
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for (x, y) ∈ R2
0+ such that `p(x, y) < z0 and 0 ≤ x, y ≤ z0. As `p(x, y) < z0 implies x < z0, y < z0,

the domain of the above feq consists of (x, y) ∈ R2
0+ such that xp + yp < zp

0 . For z0 = +∞, p ≥ 1 we
set zp

0 = +∞.
Let us introduce substitutions u = xp, v = yp for x, y ≥ 0, xp + yp < zp

0 and put them into (3.36).
We obtain feq

h( p
√

u + v) = h( p
√

u) + h( p
√

v)) (3.37)

for u, v ≥ 0 such that u + v < zp
0 . Introducing function h′ : [0, zp

0 ] ↔ [0, 1], h′(z) = h( p
√

z), the above
can be written as

h′(u + v) = h′(u) + h′(v). (3.38)

That is, if a function h solves (3.36), then function h′ must solve Cauchy’s functional equation on
restricted domain Z0 = {(u, v) |u ≥ 0, v ≥ 0, u + v < zp

0}.
In [1], there is proved that only solutions of this feq are restrictions of linear functions g(x) = qx,

x ∈ R, q ∈ R on corresponding domain. By this result and due to the specification of domain Z0, we
have h′(u) = qu for u ∈ [0, zp

0). This reads as h( p
√

zp) = qzp for z ∈ [0, z0), i.e., h(z) = qzp. Moreover,
as the range of h is considered to be non-negative, q < 0 is not allowed. Similarly, due to the strictly
increasing character of h, q = 0 is not allowed.

By the composition of h function, h(z) = t(f(z)) and the fact that h(z0) = 0 we obtain

t(f(z)) = qzp for z ∈ [0, z0), q > 0, p ≥ 1. (3.39)

Let us remark that according to the representation theorem for continuous Archimedean t-norms,
the additive generator is unique up to a positive multiplicative constant. As q in (3.39) is an arbitrary
positive real number, the concrete version of additive generator does not affect formula (3.39) because
the used multiplicative constant can be incorporated into q ∈ R+.

As h is assumed to be continuous on its domain [0, z0], from definition of h for z0 we get t(0) =
h(z0) = limz→z−0

h(z) = limz→z−0
qzp = qzp

0 , which gives z0 = p
√

t(0)/q. Thus qzp ∈ [0, t(0)) for
z ∈ [0, z0), and (3.39) can be written in form

f(z) = t−1(qzp) for z ∈ [0, z0 = p
√

t(0)/q ), q > 0, p ≥ 1. (3.40)

Again, as f must be continuous on its domain [0, z0], we get from the above formula f(z0) =
limz→z−0

f(z) = t−1(qzp
0 = t(0)) = 0, which is consistent with the specification of f as the restriction

of act function on interval [0, z0].
As we have defined act(z) = 0 for z ∈ [z0, +∞], we can conclude the proof by the following

statement: If a solution s = (act(z), n(x, y)) of (3.17) exists, then n(x, y) = p
√

xp + yp for some p ≥ 1,
x, y ≥ 0, i.e., n(x, y) is an `p norm on R2

0+; and act is specified according to formula

act(z) =
{

t−1(qzp) for z ∈ [0, z0 = p
√

t(0)/q ],
0 for z ∈ [z0,+∞].

(3.41)

Employing the notion of pseudo-inverse of t, the above can be written in a more elegant way as

act(z) = t(−1)(qzp) for z ∈ [0, +∞], q > 0, p ≥ 1, (3.42)

which is the assertion of the theorem.
To end let us add two remarks: First, as a side-result, we have shown that the norm in a solution

of feq (3.17) must be an `p norm on R2
0+. With respect to a solution of original feq (3.9) for n = 2, the

norm must be again an `p norm on whole plane R2. This result follows from the direct computation
of the formula for Aj(x) when act is specified according to (3.42). See, two paragraphs bellow formula
(3.14).

Second, let us comment on a solution of feq (3.15) for n > 2. Clearly, the proof of sufficiency of
act specification according to (3.42) holds for any n ≥ 2. The necessary part of the proof proceeds
almost in the same way as for n = 2 due to the following reduction: If a solution of (3.15) exists for
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all x ∈ Rn
0+, then it is also the solution for all n-tuples (x, y, 0, . . . , 0), (x, y) ∈ R2

0+. Thus, if we set
xi = 0 for i = 3, . . . , n we obtain feq (3.15) in form

act(x) ? act(y) = act(n0(x, y)), (3.43)

where n0(x, y) = n(x = x1, y = x2, 0, . . . , 0) and (x, y) ∈ R2
0+.

If we replace n(x, y) by n0(x, y) in (3.17), then Lemma 1 and consequential considerations still
work and we find out that n0(x, y) must be a quasi-arithmetic mean. If n(x1, . . . , xn) is a norm in
Rn

0+, then n0(x, y) = n(x, y, 0 . . . , 0) is a norm in R2
0+. Thus n0(x, y) must be an `p norm on R2

0+.
This completes the reduction of n > 2 case on n = 2 case. The proof then proceeds in the same way
as for n = 2. 2

4 Examples of radial fuzzy systems

In this section we show several examples of radial fuzzy systems which are based on different continuous
Archimedean t-norms.

4.1 Gaussian radial fuzzy system

The first radial fuzzy system we present here is the system based on the product t-norm. In fact, the
properties of the Gaussian system led us to the idea of radial fuzzy systems.

The product t-norm TP(x, y) = xy, (x, y) ∈ [0, 1]2 is continuous Archimedean with the additive
generator t(z) = − ln(z), z ∈ [0, 1], t(0) = +∞. As t(0) is infinite, the pseudo-inverse of t corresponds
to the ordinary inverse, i.e., t(−1)(z) = t−1(z) = exp(−z) for z ∈ [0,+∞], exp(−∞) = 0. By employing
Theorem 3 and setting q = 1, p = 2 we obtain the specification of act function as follows:

act(z) = exp(−z2) for z ∈ [0,+∞]. (4.1)
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(b)

Figure 4.1: Fuzzy sets of a Gaussian radial fuzzy system: (a) antecedent a = 0, b = 2; (b) consequent
c = 0, d = 1, s = 1.

This specification of act function determines the membership functions of one-dimensional fuzzy
sets Aji, Bj according to Definition 1 as

Aji(xi) = exp

[
−

(
xi − aji

bji

)2
]

, (4.2)

Bj(y) = exp

[
−

(
max{0, |y − cj | − sj}

dj

)2
]
. (4.3)

It can be easily observed that membership functions of Ajis correspond to the well know Gaussian
curves, which explains the name of this class of fuzzy systems. In the case of Bj the obtained shape
is not a proper Gaussian curve, but the modified one, which we call a trapezoid-like Gaussian curve.
An example of both Gaussian curves is presented in Fig. 4.1.
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Due to the well known behavior of Gaussian curves with respect to the product, we can check
the radial property for a Gaussian system. Indeed, the specification of an antecedent in a Gaussian
system reads as follows:

Aj(x) =
∏

i

exp

[
−

(
xi − aji

bji

)2
]

= exp

[
−

∑

i

(
xi − aji

bji

)2
]

= exp(−||x− aj ||22bj
), (4.4)

where || · ||2bj
is the scaled Euclidean norm (p = 2).

4.2 ÃLukasiewicz radial fuzzy system

This system is based on the ÃLukasiewicz t-norm TL = max{0, x + y − 1}. The ÃLukasiewicz t-norm is
continuous Archimedean with the aditive generator t(z) = 1 − z for z ∈ [0, 1], t(0) = 1. The inverse
of the aditive generator is the generator itself, i.e., t−1(z) = 1 − z for z ∈ [0, 1]. The pseudo-inverse
in this case is specified according to formula t(−1)(z) = max{0, 1− z}, z ∈ [0, +∞]. By setting q = 1,
p = 1 we obtain the specification of act function according to Theorem 1 as

act(z) = max{0, 1− z} for z ∈ [0, +∞]. (4.5)

The specification determines the membership functions of fuzzy sets forming the j-th IF-THEN rule
in form

Aji(xi) = max
{

0, 1−
∣∣∣∣
xi − aji

bji

∣∣∣∣
}

, (4.6)

Bj(y) = max

{
0, 1− max{0, |y − cj | − sj}

d2
j

}
. (4.7)

An example of such functions is presented in Fig. 4.2. We can see that antecedent sets correspond to
the triangular and consequent to the trapezoidal fuzzy sets.

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

(a)

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.2: Fuzzy sets of a ÃLukasiewicz radial fuzzy system: (a) antecedent a = 0, b = 3; (b) consequent
c = 0, d = 2, s = 1.

The representation of an antecedent in a ÃLukasiewicz system is based on the scaled octaedric `p

norm ||u||1b =
∑

i |ui/bi|. That is,

Aj(x) = max{0, 1− ||x− aj ||1bj} = max

{
0, 1−

n∑

i=1

∣∣∣∣
xi − aji

bji

∣∣∣∣
}

. (4.8)

4.3 Schweizer-Sklar radial fuzzy system

This system is based on the Schweizer-Sklar family of t-norms and we present it here because this
class of t-norms leads to a somehow uncommon shapes of membership functions.
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The Schweizer-Sklar family of t-norms is specified as

Tλ(x, y) = (max{xλ + yλ − 1, 0})1/λ (4.9)

for parametr λ ∈ (−∞, 0) ∪ (0,+∞). T−∞ corresponds to the minimum t-norm. T0 to the product
t-norm and T+∞ to the drastic product [5].

Schweizer-Sklar t-norms are continuous Archimedean for λ = (−∞, +∞) with additive generators
t(z) = (1−zλ)/λ for λ ∈ (−∞, 0)∪(0,+∞); and t(z) = − ln(z) for λ = 0. For the first case the inverse
writes as t−1(z) = (1−λz)1/λ for z = [0, t(0)]. The form of corresponding pseudo-inverses depends on
value of λ. If λ > 0, then t(0) = 1/λ and the pseudo-inverse writes as t(−1) = (1− λ min{1/λ, z})1/λ.
If λ < 0, then t(0) = +∞ and pseudo-inverse corresponds to the inverse, i.e., t(−1) = (1− λz)1/λ.

In the following, we will consider the case of λ > 0. That is, by choosing λ > 0 and q = 1, p = 1
we obtain the specification of act function in form

actλ(z) = (1−min{1, λz})1/λ = (max{0, 1− λz})1/λ. (4.10)

The specification of act function determines the membership functions of antecedents and conse-
quents:

Aji(xi) =
(

max
{

0, 1− λ

∣∣∣∣
xi − aji

bji

∣∣∣∣
})1/λ

, (4.11)

Bj(y) =
(

max
{

0, 1− λ
max{0, |y − cj | − sj}

dj

})1/λ

. (4.12)

Examples of these function for λ = 2 are presented in Fig. 4.3. We can see that flanks of member-
ship functions are concave other than convex, which is more usual shape in practical applications.
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Figure 4.3: Fuzzy sets of a Schweizer-Sklar radial fuzzy system for λ = 2: (a) antecedent a = 0, b = 6;
(b) consequent c = 0, d = 4, s = 1.

5 Conclusion

The main goal of the report was to present the full proof of sufficient and necessary conditions on a
shape of the activating function in a fuzzy system to it be radial.

We have shown that the shape is determined by a composition of the pseudo-inverse of the additive
generator of the t-norm used in the fuzzy system, with a polynomial qzp, q > 0, p ≥ 1. As a corollary,
it was proved that the norm occurring in representation of antecedents in radial fuzzy system must
be necessary an `p norm if a continuous Archimedean t-norm is employed.

As an application of this result, we can consider the problem of representation of fuzzy systems by
radial basis neural networks and vice versa. If the t-norm for a (conjuctive) fuzzy system is selected
and it is continuous Archimedean, the result advice us as how to design shapes of fuzzy sets so that this
fuzzy system be representable in a form of an RBF network in which hidden nodes utilize activating
function which corresponds to the selected shapes (membership functions) of fuzzy sets.
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The stronger result can be obtained. Let the enhanced radial property be formulated by the
following feq on domain Rn:

Aj(x) = Aj1(x1) ? · · · ? Ajn(xn) = f( ||x− aj ||bj
), (5.1)

where f : [0, +∞] → [0, 1] is a non-increasing continuous function such that f(0) = 1, f(+∞) = 0.
That is, in comparison with the basic radial property we do not require that f corresponds to act
which is used in Ajis specification. The used t-norm ? is again considered continuous Archimedean.
The question is what are the conditions on act, f and ||·|| in order to the enhanced radial property hold.

Solution: Let us solve the following feq for (x, y) ∈ R2
0+:

f(n(x, y)) = t−1(min{t(0), t(act(x)) + t(act(y))}) (5.2)

By setting y = 0 we get (t(act(0)) = 0):

f(n(x, 0)) = t−1(min{t(0), t(act(x))}). (5.3)

As t is strictly decreasig on [0, 1], we have min{t(0), t(act(x))}) = t(act(x)) and the above has form

f(n(x, 0)) = act(x). (5.4)

Considering substitution x = u/n(1, 0) for u ∈ R0+ and the linearity of n, n(x, 0) = x · n(1, 0) for
x ∈ R0+, we have n(u/n(1, 0), 0) = u and therefore for all u ∈ R0+

f(n(u/n(1, 0), 0) = act(u/n(1, 0)), (5.5)
f(u) = act(u/n(1, 0)). (5.6)

Let us put this expression for f into (5.2). We obtain

act(n(x, y)/n(1, 0)) = t−1(min{t(0), t(act(x)) + t(act(y))}). (5.7)

If n(x, y) is a norm, then n1(x, y) = n(x, y)/n(1, 0) is also a norm. Hence we have

act(n1(x, y)) = t−1(min{t(0), t(act(x)) + t(act(y))}) (5.8)

where n1(x, y) is a norm on R2
0+. As we have proved, the above feq has a solution if and only if

n1(x, y) is an `p norm. This gives us immediately n(1, 0) = 1 and (5.6) reads as

f(u) = act(u) for u ∈ R0+. (5.9)

By this equality we see that the enhanced radial property holds if and only if the basic radial
property holds and we can state that: The antecedent of an IF-THEN rule which is based on a
continuous Archimedean t-norm t, can be represented by a hidden node of an RBF neural network
Φ(||x − a||) if and only if Φ(z) = t(−1)(qzp), q > 0, p ≥ 1, where t(−1) is the pseudo-inverse of the
additive generator of the employed t-norm t.

6 Appendix

Here we discuss norm n(x, y) = 2x + 4y − 4
√

xy on R2
0+. The norm is an example of the non-

monotonic norm. Let (x1, y1) ≤ (x2, y2) iff x1 ≤ x2 and y1 ≤ y2. A norm on R2
0+ is monotonic if

(x1, y1) ≤ (x2, y2) implies n(x1, y1) ≤ n(x2, y2). Not all norms on R2
0+ are monotonic. The question

is how to find an example of such a norm.
Our search is based on the Euler’s feq on homogeneous function of degree k = 1. The solution

of this feq states that if a function f(x, y) defined on R2
0+ is homogenous of degree k ∈ N , i.e., if

f(cx, cy) = ckf(x, y) for x, y, c > 0, k ∈ N , then there exists a function g such that f(x, y) = x ·g(y/x)
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and vice versa. If g is a non-monotonic function we can obtain (triangle inequality must hold) a non-
monotonic norm.

Our norm is obtained by chosing g(z) = (2
√

z − 1)2 + 1, i.e.,

n(x, y) = x · g(y/x) = x · [(2
√

y/x− 1)2 + 1] = 2x + 4y − 4
√

xy. (6.1)

for x, y > 0. However, the right side is defined on all x, y ≥ 0.
Let us show that (6.1) constitutes the norm on R2

0+.
(N1): n(0, 0) = 0. If x > 0 and y = 0 then n(x, y) = 2x > 0. If both x > 0, y > 0 then g(y/x) > 0

from the composition of quadratic function g.
(N2): Obviously, n(cx, cy) = c · n(x, y) for c > 0.
(N3) (the triangle inequality): The following chain of inequalities hold for arbitrary x1, x2, y1, y2 ≥

0, a = x1y2, b = x2y1

0 ≤ (
√

a−
√

b)2 = a− 2
√

ab + b, (6.2)

2
√

ab ≤ a + b, (6.3)
2
√

x1y2x2y1 ≤ x1y2 + x2y1, (6.4)
x1y1 + 2

√
x1y2x2y1 + x2y2 ≤ (x1 + x2)(y1 + y2), (6.5)

(
√

x1y1 +
√

x2y2)2 ≤ (x1 + x2)(y1 + y2), (6.6)
√

x1y1 +
√

x2y2 ≤
√

(x1 + x2)(y1 + y2), (6.7)

−4
√

x1y1 − 4
√

x2y2 ≤ −4
√

(x1 + x2)(y1 + y2), (6.8)
n(x1, y1) + n(x2, y2) ≥ n(x1 + x2, y1 + y2). (6.9)

To demonstrate the non-monotonic character of n(x, y) let us consider points (1, 0.25), (1, 0). We
have (1, 0) ≤ (1, 0.25) but n(1, 0) = 2 > n(1, 0.25) = 1.

Obviously, since n(x, y) is norm on R2
0+, n(x, y) = 2|x|+ 4|y| − 4

√
|xy| is norm on R2.
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