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http://www.nusl.cz/ntk/nusl-34169
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
Academy of Sciences of the Czech Republic

Variable metric method for minimization of
partially separable nonsmooth functions

Ladislav Lukšan, Jan Vlček
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1 Introduction

Nonsmooth optimization methods can be used efficiently in many areas of industrial
design. The most frequently used nonsmooth objective functions have the following forms

F (x) = max
1≤i≤m

fi(x), (1)

F (x) =
m∑

i=1

fi(x), (2)

where fi(x), 1 ≤ i ≤ m, are locally Lipschitz nonsmooth functions (usually absolute values
of smooth functions). The first function, which correspond to l∞ (minimax) approxima-
tion, can be used, e.g., for designing Chebyshev electrical filters. The second function,
which corresponds to l1 approximation, appears in image-restoration formulations as a
term for recovering sharp edges. Both of these functions are locally Lipschitz and we are
able to compute a (Clarke) subgradient g ∈ ∂F (x) at any point x ∈ Rn. Since a locally
Lipschitz function is differentiable almost everywhere by the Rademacher theorem, then
usually g = ∇F (x). A special feature of nonsmooth problems is the fact that the gradient
∇F (x) changes discontinuously and is not small in the neighborhood of a local extremum.
Thus the standard optimization methods cannot be used efficiently.

The most commonly used approach for solving nonsmooth optimization problems is
based on the bundle principle. In this case, values F (xk), g(xk) ∈ ∂F (xk) at a sin-
gle point xk are replaced by a bundle of values F j = F (yj), gj ∈ ∂F (yj) obtained at
trial points yj, j ∈ Jk ⊂ {1, . . . , k}. This bundle of values serves for defining a piece-
wise quadratic function (with quadratic regularizing term), which is used for direction
determination by solving a quadratic programming subproblem. The simplest proximal
bundle methods use quadratic term with diagonal (usually scaled unit) matrix [7]. In
this case, efficient methods require bundles containing approximately n elements, which
is not practical in the large-scale case. Note that the quadratic programming subproblem
corresponding to objective function (1) is sparse if functions fi(x), 1 ≤ i ≤ m, have sparse
subgradients. Thus the proximal bundle method can be used efficiently for function (1)
if sparse quadratic programming solver is available. Unfortunately, it is not the case if
objective function (2) is considered. In this case, the quadratic programming subproblem
has dense constraints even if subgradients of functions fi(x), 1 ≤ i ≤ m, are sparse.

To overcome difficulties concerning dense constraints, efficient nonsmooth variable met-
ric methods [12],[14] were developed. In this case, variable metric updates accumulate
information from previous iterations so that small-size bundles suffice for a rapid con-
vergence. Thus we can use three-element bundles for an efficient implementation of the
nonsmooth variable metric method and the solution of the corresponding quadratic pro-
gramming subproblem can be obtained by simple formulas. Note that the nonsmooth
variable metric method described in [14] uses three basic ideas of the bundle principle:
quadratic programming subproblem with three bundle constraints, aggregation of sub-
gradients and a special nonsmooth line search. These ideas will be mentioned below in
connection with our new method.

The nonsmooth variable metric method described in [14] uses standard (dense) variable
metric updates, which are not practical in the large-scale case. Therefore, additional
possibilities motivated by the smooth case were studied. In [5], [6], efficient methods
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utilizing limited-memory variable metric updates are described and their convergence is
studied.

In this paper we focus our attention on partially separable functions of the form (2),
where fi(x), 1 ≤ i ≤ m, are nonsmooth locally Lipschitz particular functions depending
on ni variables, where all numbers ni, 1 ≤ i ≤ m, are small comparing with n. Partially
separable functions are very popular in the smooth case, since efficient variable metric
methods exist for seeking their minima [3]. Before description of the new method, we
shortly describe the main ideas of variable metric methods for partially separable func-
tions.

Let Rn
i ⊂ Rn be the subspace defined by ni variables appearing in fi and Zi ∈ Rn×ni

be the matrix whose columns form the canonical orthonormal basis in Rn
i (i.e., they are

columns of the unit matrix). Then we can define reduced gradients gi = ZT
i ∇fi and

reduced Hessian matrices Gi = ZT
i ∇2fiZi. The k-th iteration of variable metric methods

for partially separable functions starts in the point xk with reduced gradients gk
i and

approximations of reduced Hessian matrices Bk
i , 1 ≤ i ≤ m. Then gradient gk and matrix

Bk are constructed in such a way that

gk =
m∑

i=1

Zig
k
i , Bk =

m∑

i=1

ZiB
k
i Z

T
i (3)

and the direction vector dk is computed by solving linear system Bkdk = −gk. The new
point xk+1 = xk + αkdk is determined by line search to satisfy the weak Wolfe conditions

F (xk + αkdk) − F (xk) ≤ ε1α
k(dk)Tgk,

(dk)Tg(xk + αkdk) ≥ ε2(d
k)Tgk,

with 0 < ε1 < 1/2 and ε1 < ε2 < 1. Finally, new reduced gradients gk+1
i are computed

and new approximations of reduced Hessian matrices Bk+1
i , 1 ≤ i ≤ m are obtained by

variable metric updates using differences sk
i = ZT

i (xk+1 − xk), yk
i = gk+1

i − gk
i , 1 ≤ i ≤ m.

We describe these updates in the next section.
The paper is organized as follows. In Section 2, we introduce a new variable metric

method for minimizing partially separable nonsmooth functions and describe the corre-
sponding algorithm in detail. In Section 3 we study theoretical properties of this parti-
tioned nonsmooth variable metric method. Namely, we prove that this method is globally
convergent under mild assumptions. Finally, in Section 4 we present results of our exper-
iments confirming efficiency of the new method.

2 Description of the new method

The algorithm given below generates a sequence of basic points {xk} ⊂ Rn which should
converge to a minimizer of F : Rn → R and a sequence of trial points {yk} ⊂ Rn

satisfying xk+1 = xk + tkLd
k, yk+1 = xk + tkRd

k for k ≥ 1 with y1 = x1, where tkR > 0,
tkR ≥ tkL ≥ 0 are appropriately chosen stepsizes, Bkdk = −g̃k is a direction vector, g̃k is an
aggregate subgradient and the matrix Bk obtained by partitioned variable metric updates
accumulates information about previous subgradients and represents an approximation of
the Hessian matrix if function f is smooth. Stepsizes tkR and tkL are chosen by a special
line-search procedure described in [14]. If the descent condition

F (yk+1) ≤ F (xk) − εLt
k
Lwk (4)
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is satisfied with suitable tkL, where 0 < εL < 1/2 is fixed and −wk < 0 represents the
desirable amount of descent, then xk+1 = yk+1 (descent step). In this case, the line-search
procedure guarantees that either tkL ≥ t or βk+1 > εAw

k, where

βk+1 = max
(|F (xk) − F (yk+1) − (xk − yk+1)Tgk+1|, γ|xk − yk+1|ν) (5)

and t > 0, 0 < εA < εR are fixed. Otherwise, if the condition

(dk)Tgk+1 ≥ βk+1 − εRw
k (6)

is satisfied, where εL < εR < 1 is fixed, then xk+1 = xk (null step). In this case, the
line-search procedure guarantees that ‖yk+1 − zk+1‖ ≤ Δ where Δ is fixed and zk+1 is a
point such that F (zk+1) < F (xk).

The aggregation procedure is very simple. Denoting by l the lowest index satisfying
xl = xk (index of the iteration after the last descent step) and having the basic subgradient
gl ∈ ∂F (xk), the trial subgradient gk+1 ∈ ∂F (yk+1) and the current aggregate subgradient
g̃k, we define g̃k+1 as a convex combination

g̃k+1 = λk
1g

l + λk
2g

k+1 + λk
3 g̃

k, (7)

where multipliers λk
1, λ

k
2, λ

k
3 can be easily determined by minimization of a simple quadratic

function (see Step 7 of Algorithm 1). This approach retains good convergence properties
but eliminates the solution of the rather complicated quadratic programming subproblem
that appears in standard bundle methods.

Matrices Bk are generated by using partitioned variable metric updates [3]. After
the null steps, symmetric rank one (SR1) update is used, since it gives a nondecreasing
sequence of matrices as required for proving the global convergence. Because these prop-
erties are not necessary after descent steps, the standard BFGS update appears to be
more suitable. Note that individual variable metric updates that could violate positive
definiteness are skipped.

Efficiency of the algorithm is very sensitive to the initial stepsize selection, though
it is not relevant for theoretical investigation. In fact, a bundle containing trial points
and corresponding function values and subgradients is required for an efficient stepsize
selection. Nevertheless, the initial stepsize selection does not require time-consuming
operations (see Section 4 for details).

Now we are in a position to state the basic algorithm.

Algorithm 1

Data: A final accuracy tolerance ε ≥ 0, restart parameters εD ≥ 0, H > 0, line search
parameters εA ≥ 0, εL ≥ 0, εR ≥ 0, stepsize bounds t > 0, Δ > 0, subgradient
locality parameters γ, ν and a correction parameter ρ ≥ 0.

Step 0: Initiation. Choose the starting point x1 ∈ Rn and positive definite reduced
matrices B1

i , 1 ≤ i ≤ m (e.g. B1
i = I, 1 ≤ i ≤ m), set y1 = x1, α1 = 0 and

compute f 1
i = fi(x

1), g1
i ∈ ∂fi(x

1), 1 ≤ i ≤ m and f 1 = F (x1), g1 ∈ ∂F (x1)
(i.e. g1 = g1

1 + . . .+ g1
m). Initialize iteration counter k = 1.

Step 1: Descent step initiation. Initialize the reduced aggregate subgradients g̃k
i = gk

i

1 ≤ i ≤ m, the aggregate subgradient g̃k = gk, the aggregate subgradient
locality measure α̃k = 0 and set l = k.
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Step 2: Direction determination. Determine Bk from Bk
i , 1 ≤ i ≤ m, and compute the

Choleski decomposition Bk = LkDk(Lk)T . Solve LkDk(Lk)T d̃k = −g̃k and set
dk = d̃k − ρg̃k and wk = −(g̃k)Tdk + 2α̃k.

Step 3: Restart. If k = l and either −(dk)Tgk < εD‖dk‖‖gk‖ or ‖dk‖ > H‖gk‖, set
Bk

i = B1
i , 1 ≤ i ≤ m and go to Step 2.

Step 4: Stopping criterion. If wk ≤ ε, then stop.

Step 5: Line search. By the line search procedure given in [14] find stepsizes tkL and tkR
and the corresponding quantities xk+1 = xk + tkLd

k, yk+1 = xk + tkRd
k, fk+1

i =
fi(x

k+1), gk+1
i ∈ ∂fi(y

k+1), 1 ≤ i ≤ m and fk+1 = F (xk+1), gk+1 ∈ ∂F (yk+1)
(i.e. gk+1 = gk+1

1 + . . . + gk+1
m ). Compute βk+1 by (5). If tkL > 0, set αk+1 = 0

(a descent step is taken), otherwise set αk+1 = βk+1 (a null step occurs).

Step 6: Update preparation. For 1 ≤ i ≤ m, set uk
i = gk+1

i − gl
i and determine sk

i as a
part of sk = tkRd

k. If tkL > 0 (descent step), go to Step 9.

Step 7: Aggregation. Using the Choleski decomposition Bk = LkDk(Lk)T , determine
multipliers

λk
i ≥ 0, i ∈ {1, 2, 3}, λk

1 + λk
2 + λk

3 = 1,

which minimize the function

ϕ(λ1, λ2, λ3) = (λ1g
l + λ2g

k+1 + λ3g̃
k)T ((Bk)−1 + ρI)(λ1g

l + λ2g
k+1 + λ3g̃

k)

+ 2(λ2α
k+1 + λ3α̃

k),

Set

g̃k+1
i = λk

1g
l
i + λk

2g
k+1
i + λk

3 g̃
k
i , 1 ≤ i ≤ m,

g̃k+1 = λk
1g

l + λk
2g

k+1 + λk
3 g̃

k,

α̃k+1 = λk
2α

k+1 + λk
3α̃

k.

Step 8: SR1 update. Let vk
i = uk

i −Bk
i s

k
i , 1 ≤ i ≤ m. Set

Bk+1
i = Bk

i +
vk

i (vk
i )T

(sk
i )

Tvk
i

, (sk
i )

Tvk
i > 0,

Bk+1
i = Bk

i , (sk
i )

Tvk
i ≤ 0.

Set k = k + 1 and go to Step 2.

Step 9: BFGS update. Set

Bk+1
i = Bk

i +
uk

i (u
k
i )

T

(sk
i )

Tuk
i

− Bk
i s

k
i (B

k
i s

k
i )

T

(sk
i )

TBk
i s

k
i

, (sk
i )

Tuk
i > 0,

Bk+1
i = Bk

i , (sk
i )

Tuk
i ≤ 0.

Set k = k + 1 and go to Step 1.

Conditions in Step 3 of the algorithm, guaranteing that vectors dk, k ≥ 1, are uniformly
bounded and eliminating badly conditioned cases, appear rarely and do not have influence
on the efficiency of the algorithm. At the same time, corrections with ρ > 0 in Step 2
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strongly affect efficiency of the method.

3 Properties of the new method

In this section, we prove under mild assumptions that the new method is globally conver-
gent, which means that every cluster point x∗ of the sequence {xk} ⊂ Rn is a stationary
point of F , i.e., 0 ∈ ∂F (x∗). For this purpose, we will assume that sequence {xk} is
infinite, i.e., ε = 0 in Algorithm 1.

Assumption 1 Points xk, yk, k ≥ 1, lie in the compact region D(F ) and functions
fi : Rn → R, 1 ≤ i ≤ m, are locally Lipschitz on D(F ).

Remark 1 If the level set L(F ) = {x ∈ Rn : F (x) ≤ F (x1)} is compact, then also set
D(F ) = L(F ) + Δ B(0, 1) is compact (B(0, 1) is the unit ball). Moreover, xk ∈ L(F ) and
yk ∈ D(F ) for k ≥ 1, since ‖yk − zk‖ ≤ Δ for some zk ∈ L(F ) (it is assured by our line
search procedure). If fi, 1 ≤ i ≤ m, are locally Lipschitz on D(F ), then also F is locally
Lipschitz on D(F ). Thus subgradients gk ∈ ∂F (yk), k ≥ 1, all their convex combinations
and also values |F (xk)|, k ≥ 1 are uniformly bounded (see [1]). Conditions in Step 2 of
Algorithm 1 assure that direction vectors dk, k ≥ 1, are uniformly bounded.

First we will investigate null steps. In the null steps, dk = −Hkg̃k and wk = (g̃k)THkg̃k+
2α̃k hold, where Hk = (Bk)−1 + ρI.

Lemma 3.1 Let ρ > 0. Then matrices Hk, k ≥ 1, are uniformly positive definite. More-
over matrices Hk are uniformly bounded and diferences Hk−Hk+1 are positive semidefinite
in consecutive null steps (even if ρ = 0).

Proof. Variable metric updates used in Steps 8 and 9 of Algorithm 1 guarantee that all
matrices Bk

i , 1 ≤ i ≤ m, k ≥ 1, are positive definite (see [10]). Since

vTBkv =
m∑

i=1

vTZiB
k
i Z

T
i v =

m∑

i=1

vT
i B

k
i vi

and vi = ZT
i v 	= 0 for at least one index 1 ≤ i ≤ m if v 	= 0, also matrices Bk, (Bk)−1,

k ≥ 1, are positive definite and if ρ > 0, matrices Hk = (Bk)−1 +ρI, k ≥ 1, are uniformly
positive definite. In the null steps, rank 1 updates used in Step 8 of Algorithm 1 assure
that diferences Bk+1

i −Bk
i , 1 ≤ 1 ≤ m, are positive semidefinite (since (sk

i )
Tvk

i > 0, if the
rank 1 update is not skipped). Thus Bk+1 − Bk is positive semidefinite and, therefore,
Hk − Hk+1 = (Bk)−1 − (Bk+1)−1 is positive semidefinite (the last fact is proved in [9]).
Positive semidefiniteness of Hk −Hk+1 implies that ‖Hk+1‖ ≤ ‖Hk‖. Thus matrices Hk

are uniformly bounded in consecutive null steps. �

Lemma 3.2 Let ρ > 0 and Assumption 1 holds. If the number of descent steps in
Algorithm 1 is finite, then wk → 0.

Proof. Let xl be the last point obtained by a descent step and k ≥ l. Denote

g̃k(λ) = λgk+1 + (1 − λ)g̃k,

α̃k(λ) = λαk+1 + (1 − λ)α̃k,
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where 0 ≤ λ ≤ 1. Since matrix Hk −Hk+1 is positive semidefinite by Lemma 3.1, we can
write

wk+1 = (g̃k+1)THk+1g̃k+1 + 2α̃k+1 ≤ (g̃k+1)THkg̃k+1 + 2α̃k+1

≤ (g̃k(λ))THkg̃k(λ) + 2α̃k(λ)
Δ
= wk(λ).

The last inequality follows from the fact that pair (g̃k+1, α̃k+1) minimizes ϕ(λ1, λ2, λ3) (in
Step 7 of Algorithm 1) over all convex combinations of pairs (gl, αl), (gk+1, αk+1), (g̃k, α̃k).
Furthermore, inequality

αk+1 + (gk+1)THkg̃k ≤ εRwk

holds for k ≥ l, since αk+1 = βk+1 in null steps. By successive arrangements, we obtain

wk(λ) = (g̃k(λ))THkg̃k(λ) + 2α̃k(λ)

= (g̃k)THkg̃k + 2α̃k + 2λ
(
(gk+1)THkg̃k − (g̃k)THkg̃k + αk+1 − α̃k

)

+2λ2
(
gk+1 − g̃k

)T
Hk(gk+1 − g̃k)

≤ wk + 2λεRwk − 2λwk + 2λ2(gk+1 − g̃k)THk(gk+1 − g̃k)

≤ wk + 2λ(εRwk − wk) + λ2M,

where the existence of constant M follows from the boundedness of vectors gk+1, g̃k

and matrices Hk (see Remark 1 and Lemma 3.1). The expression on the right hand
side acquires the minimum for λ = (1 − εR)wk/M and its minimum value is equal to
wk − (1 − εR)2w2

k/M . Therefore, one has

wk+1 ≤ wk − (1 − εR)2w2
k

M
. (8)

Now we can easily finish the proof. We show that wk → 0. If it were not true, constant
δ > 0 would have to exist such that wk ≥ δ, ∀k ≥ l (since sequence {wk} is nonincreasing
for k ≥ l). Then we would obtain wk+1 ≤ wk − (1 − εR)2δ2/M ∀k ≥ l from (8) so that
wk < δ would hold for sufficiently large indices, which is a contradiction. �

Theorem 3.1 Let the number of descent steps in Algorithm 1 be finite and xl be the last
point obtained by a descent step. If ρ > 0 and Assumption 1 holds, then xl is a stationary
point of F , i.e., 0 ∈ ∂F (xl).

Proof. If k = l, then g̃k = gk and α̃k = 0 (Step 1 of Algorithm 1). If k > l, then
pair (g̃k, α̃k) is a convex combination of pairs (gl, αl), (gk, αk), (g̃k−1, α̃k−1) (Step 7 of
Algorithm 1) and, therefore, it is a convex combination of pairs (gi, αi), l ≤ i ≤ k, where

αi = max
(|F (yi) − F (xl) − (yi − xl)Tgi|, γ|yi − xl|ν) ≥ γ|yi − xl|ν (9)

(with αl = 0, since yl = xl). By the Caratheodory theorem, there exist at most n + 2
pairs (gk,i, αk,i), gk,i ∈ ∂f(yk,i), (yk,i, gk,i, αk,i) ∈ {(yi, gi, αi) : l ≤ i ≤ k} such that

(g̃k, α̃k) =
n+2∑

i=1

λk,i
(
gk,i, αk,i

)
, (10)

6



where λk,i ≥ 0, 1 ≤ i ≤ n+2, λk,1 + . . .+λk,n+2 = 1. Since vectors yk,i, gk,i, 1 ≤ i ≤ n+2,

are uniformly bounded, there is a subset K such that yk,i K→ y∗,i, gk,i K→ g∗,i, λk,i K→ λ∗,i,
1 ≤ i ≤ n + 2. But g∗,i ∈ ∂f(y∗,i), 1 ≤ i ≤ n + 2 (see [1]) and (10) implies that
(g̃k, α̃k) → (g̃∗, α̃∗), where

(g̃∗, α̃∗) =
n+2∑

i=1

λ∗,i(g∗,i, s∗,i)

and λ∗,i ≥ 0, 1 ≤ i ≤ n + 2, λ∗,1 + . . . + λ∗,n+2 = 1. Since wk → 0 by Lemma 3.2 and

matrices Hk are uniformly positive definite, one has g̃k K→ 0, α̃k K→ 0, which implies

(0, 0) =
n+2∑

i=1

λ∗,i(g∗,i, α∗,i). (11)

Assume without loss of generality that λ∗,i > 0, 1 ≤ i ≤ n + 2 (zero multipliers can be
omitted). Since α∗,i ≥ γ|y∗,i − xl|ν ≥ 0 by (9), we obtain α∗,i = 0 and y∗,i = xl for
1 ≤ i ≤ n+ 2. Thus g∗i ∈ ∂F (y∗i ) = ∂F (xl) and 0 = λ∗1g

∗
1 + . . .+ λ∗n+2g

∗
n+2 ∈ ∂F (xl). �

Theorem 3.2 Let ρ > 0 and Assumption 1 holds. Then every cluster point of the se-
quence {xk} ⊂ Rn obtained by Algorithm 1 is a stationary point of F .

Proof. If the number of descent steps in Algorithm 1 is finite, then there is a unique
cluster point xl of the sequence {xk}, which is a stationary point of F by Theorem 3.1.

Assume that the number of descent steps is infinite and xk K→ x∗. Since the current point
is unchanged in null steps, we can assume without loss of generality that points xk ∈ K
were chosen in such a way that the step xk+1 = xk + tkLd

k is descent (note that point xk+1

can lie outside K). Since sequence {F (xk)} is non-increasing and bounded from below by

Assumption 1, one has F (xk) − F (xk+1)
K→ 0, which together with

0 ≤ εLt
k
Lw

k ≤ F (xk) − F (xk+1)

(see (4)) gives tkLw
k K→ 0. Let K = K1 ∪ K2 where K1 = {k ∈ K : tkL ≥ t} and

K2 = {k ∈ K : βk+1 > εAw
k} (this partitioning is guaranteed by our line search procedure,

see Section 2). If K1 is infinite, then tkLw
k K1→ 0 implies wk K1→ 0, which together with

wk = (gk)
THkg

k (since g̃k = gk and α̃k = 0 in descent steps) and uniform positive

definiteness of matrices Hk (Lemma 3.1) gives gk K1→ 0. Thus 0 ∈ ∂F (x∗) (see [1]). If
K1 is finite, then K2 is infinite. Assume first that subset K3 = {k ∈ K2 : wk ≥ δ} is

infinite for some δ > 0. Then tkLw
k K3→ 0 implies tkL

K3→ 0 and since vectors dk are uniformly
bounded (Remark 1), one has

‖xk+1 − xk‖ = tkL‖dk‖ K3→ 0.

Since yk+1 = xk+1 in descent steps, we obtain ‖yk+1 − xk‖ K3→ 0, which together with (5)

and continuity of F gives βk+1 K3→ 0. Since K3 ⊂ K2 one has 0 ≤ εAw
k < βk+1 for all

k ∈ K3. Thus wk
K3→ 0, which is the contradiction with the definition of K3 implying that

K3 is finite. In this way, we have proved that wk K2→ 0. Thus gk K2→ 0 and 0 ∈ ∂F (x∗) as
in the case when K1 is infinite. �

7



4 Implementation details

Algorithm 1 contains all important features of the partitioned nonsmooth variable metric
method, which are necessary for the theoretical investigation. In this section we dis-
cuss some details concerning our implementation of the algorithm. These details are in
fact the same as described in [14], i.e., Algorithm 1 is implemented in a similar way as
Algorithm 2.1 in [14]. Therefore, we only mention main ideas, details can be found in
[14].

Since quadratic programming subproblem used in Step 7 of Algorithm 1 is very simple,
initial stepsize t = 1 need not be a good choice in connection with its solution. Therefore
we store and use a bundle of values F j = F (yj), gj ∈ ∂F (yj) obtained at trial points yj,
j ∈ Jk = {k − nB + 1, . . . , k}. These values serve for the construction of the piecewise
linear function

ϕk
P (t) = max

j∈Jk

{F (xk + tdk) + t(dk)Tgj − βk
j },

where
βk

j = max(|F k − F (yj) − (xk − yj)Tgj|, γ|xk − yj|ν).
After a descent step, we use quadratic approximation

ϕk
Q(t) = F k + t(dk)Tgk +

1

2
t2(dk)T (Hk)−1dk = F k + (t− 1

2
t2)(dk)Tgk

and compute the initial stepsize by minimizing the function ϕk(t) = max(ϕk
P (t), ϕk

Q(t))
in the interval 0 ≤ t ≤ 2. After a null step, the unit stepsize is mostly satisfactory. To
utilize the bundle and improve the robustness and the efficiency of the method, we use
the aggregate subgradient g̃k to construct the linear approximation ϕk

L(t) = F k + t(dk)T g̃k

of F (xk + tdk) and compute the initial stepsize by minimizing the function

ϕ̃k(t) = max(ψk
L(t), ψk

P (t)) +
1

2
t2(dk)T (Hk)−1dk = max(ψk

L(t), ψk
P (t)) − 1

2
t2(dk)Tgk

in the interval 0 ≤ t ≤ 1.
The second comment is related to the solution of the simple quadratic programming

subproblem in Step 7 of Algorithm 1. This computation is not time consuming, but
corresponding formulas are not simple because of the possible influence of round-off errors.
More details are given in [14].

What concerns the termination criterion, the simple test wk ≤ ε is not always suitable,
since it can lead to premature termination. Therefore additional conditions should be sat-
isfied simultaneously. These conditions are discussed in [14] where a suitable termination
criterion is introduced.

5 Computational experiments

Our partitioned nonsmooth variable metric method was tested by using the collection of
relatively difficult problems with optional dimension chosen from [11], which can be down-
loaded (together with the above report) from www.cs.cas.cz~luksan/

8



test.html as Test 15. In [11], functions fi(x), 1 ≤ i ≤ m, are given, which serve
for defining the objective function

F (x) =
m∑

i=1

|fi(x)|.

We have used parameters ε = 10−8, εD = 10−6, εA = 10−4, εL = 10−4, εR = 0.25,
H = 1010, t = 10−10, ν = 2, ρ = 10−12 and nB = 20 (size of the bundle for the initial
stepsize selection) in our tests. Parameters Δ (the maximum stepsize) and γ (subgradient
locality parameter) were carefully tuned for every method (including VBM and PBM).

Results of computational experiments are given in three tables, where P is the problem
number, NEV is the number of function and also gradient evaluations and F is the function
value reached. Note that problems used are relatively difficult, usually having more local
solutions (values 8.000000, 64.000000 in Table 1 and 2.000000, 390.000000, 264.000000
in Table 2 seems to be local solutions different from the global ones). The last row of
every table contains summary results: the total number of function evaluations and the
total computational time. Tables 1 and 2 contain comparison of the new method PSVBM
(Algorithm 1) with the nonsmooth variable metric method VBM described in [14] and
the proximal bundle method PBM (see [7]) on small (n=50) and medium (n=200) size
problems. Table 3 compares three versions (ρ = 0, ρ = 10−12 and ρ = 10−10) of our
PSVBM method on large scale partially separable problems with 1000 variables.

PSVBM VBM PBM
P NEV F NEV F NEV F
1 605 .102544E-08 5096 .545119E-13 6258 .387512E-07
2 235 .275184E-08 998 8.000000000 1242 .156714E-07
3 70 .758451E-10 440 .532703E-08 2631 .211869E-07
4 72 29.10695109 338 29.10695109 169 34.10626848
5 242 .663320E-09 353 .473741E-08 133 .180701E-08
6 248 .323124E-08 447 .445267E-08 197 .887983E-08
7 296 583.9000724 1000 566.7522096 1175 583.9002160
8 356 .765773E-08 1320 .598195E-08 5476 .150995E-05
9 1821 134.8481786 688 132.6493773 3027 137.8278133

10 748 33.23330761 1051 32.36926315 3274 32.36926680
11 25887 .375443E-09 11198 .505268E-08 15915 .678975E-08
12 5310 150.3277379 3886 171.9263661 8489 150.3276924
13 440 709.6182298 806 709.6182298 10865 709.6182308
14 303 27.22786762 440 27.22786762 298 27.22786763
15 267 8.749955784 404 8.749955780 214 8.749955787
16 506 3.200000006 1214 3.200000000 1504 3.200000136
17 486 .283228E-08 571 .435820E-01 2704 .485198E-06
18 10119 .272617E-08 1565 18.55686116 3257 .368177E-07
19 462 .486099E-08 520 .438375E-08 1083 .208525E-05
20 443 .483206E-08 634 .423488E-08 9669 .330697E-07
21 665 64.00000000 316 63.98856687 562 64.00000001
22 385 143.3417786 4084 143.3778676 17004 143.3677713
Σ 49920 TIME = 5.83 37369 TIME = 5.20 95146 TIME = 48.82

Table 1: 22 problems with 50 variables
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PSVBM VBM PBM
P NEV F NEV F NEV F
1 3134 .287703E-08 12782 2.000000022 5337 .309460E-04
2 305 .379422E-08 1471 390.0000000 7527 388.0000385
3 74 .226193E-09 1259 .807210E-07 20000 .641472E-03
4 51 126.8635489 89 126.8635489 68 126.8635555
5 282 .732927E-07 699 .883032E-07 269 .335841E-06
6 344 .836329E-08 1269 .895936E-07 305 .499088E-04
7 289 2391.169985 1891 2351.383667 5294 2391.170012
8 616 .317243E-05 2571 .971029E-06 4803 .123909E-03
9 2516 552.3805506 4061 550.4463151 20000 550.4604738

10 907 131.8884763 1581 131.0242899 6475 131.0243091
11 17908 .654127E-02 20000 310.9025527 20000 325.6756651
12 2043 621.1289465 20000 635.0621402 20000 621.4310634
13 718 2940.509429 1352 2940.509413 20001 2940.561237
14 348 112.3149539 1018 112.3149541 473 112.3149622
15 364 36.09356760 1896 36.09356759 282 36.09358633
16 1070 13.20000001 1573 13.20000002 9671 13.20004084
17 380 .268534E-01 1314 .929480E-07 5722 .269042E-01
18 5225 .8002196153 2219 .9441431850 2513 .7756495183
19 4056 .565862E-08 1679 .963094E-07 20000 1.052512009
20 701 .404661E-08 1845 .104635E-06 531 187.4357267
21 253 264.0000000 1122 264.0000001 1309 263.9885705
22 1425 593.3607049 8914 593.3687578 15981 593.3677799
Σ 48021 TIME = 28.78 90605 TIME = 88.83 186561 TIME = 1204.50

Table 2: 22 problems with 200 variables

Results presented in the above tables imply several conclusions:

• Our partitioned nonsmooth variable metric method is competitive with standard
nonsmooth methods VBM and PBM in small-size problems. It gives the best results
for medium-size problems with 200 variables for which the proximal bundle method
(that uses quadratic programming subproblems with large numbers of constraints)
is unsuitable.

• Partitioned nonsmooth variable metric method succesfully solves large-scale prob-
lems, which cannot be solved by standard nonsmooth methods utilizing dense ma-
trices.

• A nonzero value of parameter ρ has not only a theoretical significance, but it really
improves efficiency and robustness of the method. Usually very small values ρ =
10−12 or ρ = 10−10 are sufficient. Greater values, e.g. ρ = 10−8, decrease the
efficiency of the method.
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ρ = 0 ρ = 10−12 ρ = 10−10

P NEV F NEV F NEV F
1 545 998.5562640 540 .815757E-08 1312 .394281E-06
2 295 89.80742693 473 .153343E-07 2388 .797028E-06
3 78 .364876E-13 114 .374913E-08 274 .781997E-07
4 55 648.2320706 54 648.2320706 54 648.2320706
5 166 .147116E-03 285 .422724E-05 2896 .407612E-07
6 400 .481325E-05 560 .649530E-08 966 .423583E-08
7 582 12029.94285 650 12029.94285 375 12029.94286
8 337 .296523E-01 1032 .680061E-04 988 .191923E-04
9 1428 4020.325073 4429 2780.112235 6830 2777.336534

10 555 658.0486676 704 658.0486567 2612 658.0486551
11 209 1017.127487 3754 992.9332153 4650 993.7932861
12 7066 3135.352992 2183 3125.893056 2584 3125.777919
13 396 14808.85245 728 14808.85239 1249 14808.85054
14 277 566.1127477 514 566.1127477 1056 566.1127477
15 185 181.9261656 654 181.9261639 766 181.9261639
16 1223 66.53758673 1376 66.53333334 11108 66.53333334
17 512 .3971713814 9092 .337978E-08 1568 .547473E-08
18 1258 .8020794852 173 .8022190262 966 .8012616805
19 2517 1.389267650 15944 .239244E-08 6688 .241375E-07
20 6428 .420664E-02 2311 .145626E-03 1337 .931539E-07
21 223 1328.000003 1545 1327.988568 1297 1327.950162
22 325 2993.587989 9875 2993.375706 8790 2993.372248
Σ 25060 TIME = 110.67 56990 TIME = 296.86 60754 TIME = 325.88

Table 3: 22 problems with 1000 variables
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