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Abstract:

We introduce a new formal computational model designed for studying the information transfer among
the generations of self–reproducing machines — so–called autopoietic automata. These can be seen as
finite state transducers whose “program” can become a subject of their own processing. An autopoietic
automaton can algorithmically generate an offspring controlled by a program which is a modification of
its parent’s program. We show that the computational power of lineages of autopoietic automata is
equal to that of an interactive nondeterministic Turing machine. We also prove that there exists an
autopoietic automaton giving rise to an unlimited evolution, providing suitable inputs are delivered to
individual automata. However, the problem of a sustainable evolution, asking for an arbitrary autopoietic
automaton and arbitrary inputs whether there is an infinite lineage of its offspring is undecidable.
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1 Introduction

The notion of autopoiesis has been coined by Chilean biologists Maturana and Varela since the nine-
teen seventies. Literally, autopoiesis means self–production and denotes a process whereby a system
(or an “organization”, as Maturana and Varela call it) produces itself (for more details concerning
computational autopoiesis, cf. [2]). Autopoiesis, as its proponents understand it, is not a precisely,
mathematically or otherwise formally defined notion and in fact we will use this notion in its literal
meaning to denote self–producing or self–creating units. The reason for calling our model autopoietic
automata has been the aspiration to distinguish such automata by name from the notoriously known
self–reproducing automata which are a kind of cellular automata. The autopoietic automata are not
based on the formalism of cellular automata and in fact they build upon the classical models of the
finite state automata. They are designed as a mathematical model of self-evolving units capturing
the computational (or information processing) essence of self–production, i.e., the use of a “program”
both to drive the (computational) behavior of a unit and to serve as a “template” for the evolutionary
process. The lastly mentioned idea originates, of course, from von Neumann [5] whose stress in de-
signing his self–reproducing automata had been just on the design of mechanisms of self–reproduction
alone. In our modelling, however, we will not be concerned in these mechanisms: rather, we take
their existence as granted and we concentrate instead on algorithms controlling the variations in the
reproduction process and (hence) the (“genetic”) information transfer from the parental machine to
its offspring. That is, we will not be interested in producing exact copies of the parental machine: in
our modelling we will focus on the evolution in which offsprings possess qualities different fom their
parents. Thus, instead of self–reproduction we should rather speak more precisely about self–like
production.

In von Neumann’s seminal paper on self–reproducing automata, the problem of the variation of
genetic information was not the main issue. Nevertheless, a related question concerning the “evo-
lutionary growth of complexity” of self–reproducing automata has become the issue in the field of
artificial life (for an overview, see [1]). In the absence of suitable computational models neither this
question nor the related problem of the computational power of automata exhibiting the evolutionary
growth of their complexity could have been answered convincingly.

In this paper we present a computational model answering the previous questions. Our model
is inspired by contemporary cellular biology. In its design it abstracts the information processing,
reproducing and evolutional abilities of the living cells. An autopoietic automaton is a specific kind of
a nondeterministic finite state transducer which has access to the representation of its own transition
relation. Controlled by this transition relation and making use of the possibility to read the repre-
sentation of this relation, an autopoietic automaton computes and outputs the transition relation of
its offspring. In this way the changes in the new transition relation are controlled by the parental
machine. Our main result shows that a series of lineal descents of a single autopoietic automaton (a
lineage of autopoietic automata) has a notable computational power — the same as an interactive
nondeterministic Turing machine. We also construct an autopoietic automaton which generates a lin-
eage containing all autopoietic automata, i.e., the members of this lineage exhibit unbounded growth
of complexity in the computational sense. Within our model, this result answers positively the related
question asked by McMullin and its predecessors in the field of artificial life (cf. [1]). Finally, we
define the problem of the so–called sustainable evolution which asks after any autopoietic automaton
and any infinite sequence of inputs whether there is an infinite lineage generated by that automaton
on that input. We show that this is an undecidable problem.

The content of the paper is as follows. Section 2 contains the formal definition of an autopoietic
automaton and of its computations, too. In Section 3 the computational power of lineage of autopoi-
etic automata is characterized via interactive nondeterministic Turing machines. The computational
aspects of the evolution of autopoietic automata, especially the unboundedness of evolutionary com-
plexity growth and an evolution’s sustainability, are studied in Section 4. Section 5 recapitulates the
main contributions of the paper.

It is very tempting to interpret the previous results in the framework of original scientific disciplines
which served as inspiration for our modelling. As to the extent to which our model captures the
information processing and evolutionary abilities of living cells, our results seem to be among the first
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Figure 2.1: The schema of an autopoietic automaton

formal results shedding light on the computational nature and power of the respective mechanisms.

2 Autopoietic automata

Autopoietic automata are nondeterministic finite state machines capturing the information process-
ing, reproducing and evolving abilities of living cells. Technically, an autopoietic automaton is a
nondeterministic transducer (a Mealy automaton) computing and outputting the transition relation
of its offspring. The design of an autopoietic automaton supports working in two modes. The first of
them is a standard transducer mode controlled by a transition relation and processing external input
information read through an input port. In this phase the results of a computation (if any) are sent to
the output port. The second mode is a reproducing mode which is controlled by the same transition
relation as before. This time, however, no external information is taken into account and, instead,
the representation of the transition relation itself is used as a kind of the internal input. For this
purpose the representation of the automaton’s own transition relation is available to an autopoietic
automaton on a special, so–called program tape. It is a two–way read–only tape. The result of the
reproducing mode is written on a special one–way write–only output tape. Of course, both tapes
mentioned before are finite. After finishing the reproduction, the information written on this tape
is interpreted as a transition relation of a new autopoietic automaton and the tape itself becomes a
new automaton’s program tape. The new automaton starts its activity with the empty output tape.
The new automaton is seen as an offspring of the original automaton. Depending on the transition
relation of the parental automaton, the transition function of the new automaton can differ from the
original transition relation. Schematically, the architecture of an autopoietic automaton is depicted
in Fig. 1.

Now we are ready to proceed to a formal definition of an autopoietic automaton. One of our final
aims is to study the sequences of such automata with an increasing number of internal states and
working over alphabets of increasing size. Therefore, in general we will consider an infinite set Q
of states whose members will be numbered, i.e., Q = {q1, q2, . . .} and similarly an infinite, so–called
external working alphabet Σ = {σ1, σ2, . . .}. An equivalent, so–called internal representation of the
members of these sets will be via sequences of zeros: the i–th member will be encoded as a sequence
of i zeros, abbreviated as 0i.

Definition 2.1 An autopoietic automaton is a six–tuple A = {Σ, Q,R, q1, q2, δ}, where

• Σ, with ε ∈ Σ, is the finite or infinite external alphabet whose symbols are read on the input
port or are written to the output port, one symbol at a time; ε is the empty symbol;

• Q is the finite or infinite set of states;

• R ⊂ Q, R 6= ∅ is the distinguished set of reproducing states;

• q1 ∈ Q−R is the initial state in which the computation of A starts, with either head at the left
end on the respective tape;

• q2 ∈ R is the final reproducing state; entering it finishes the reproduction mode of A and starts
a computation of the A’s offspring which is an autopoietic automaton whose transition relation
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had been generated by A on its output tape. Simultaneously, A empties its output tape and
restarts its computation from its initial state. Since this time on the computation of both A and
that of its offspring have been independent, each of them receiving its own input;

• δ, the transition relation, comes in two forms depending on whether q ∈ Q−R or q ∈ R :

– Transducer mode: if A is in state q ∈ Q−R, then we say that A is in a transducer mode.
Then δ is a finite subset of Σ×Q× Σ×Q×D, where D = {d1, d2, d3} is the alphabet of
directions; the elements of δ are formed by five–tuples of form (σi, qj , σk, q`, dm) ∈ Σ×Q×
Σ×Q×D from which a sequence (in arbitrary order) is formed and encoded in binary on the
program tape; the respective encoding for the above mentioned tuple is 10i10j10k10`10m1;
the encoding of all tuples representing δ is also embraced by 1s (i.e., the entire encoding
starts and ends by two consecutive 1s). A tuple (σi, qj , σk, q`, dm) ∈ Σ × Q × Σ × Q × D
corresponds to one computational step (transition) of A in the following way: if A is in
state qj ∈ Q − R and σi ∈ Σ is a symbol at the input port, A changes its state to q`

and writes σk ∈ Σ to its output port; the position of the head on the output tape remains
unchanged while the head on the program tape shifts in direction dm (d1 denotes the left
shift by one position, d2 the right shift by one position, d3 means no shift);

– Reproducing mode: if A is in a state q ∈ R, then A is in a reproducing mode. In such
a case δ is a finite subset of {0, 1} × Q × {0, 1} × Q × D. A tuple (σi, qj , σk, q`, dm) ∈
{0, 1}×Q×{0, 1}×Q×D is represented on the A’s program tape similarly as any tuple of
a transducer mode, with 0 representing the element 0 and 00 representing 1. Such a tuple
corresponds to one computational step of A in the following way: if A is in state qj ∈ R,
and σi ∈ {0, 1}, the symbol scanned by the read head on the program tape, A changes its
state to q` and writes σk ∈ {0, 1} to its output tape; doing so the head on the program tape
shifts in direction dm and the head on the output tape shifts by one position to the right.

Note please that we have admitted that both sets Σ and Q can be infinite sets. However, the
transition relation δ must always be finite (or more precisely: a finite subset of Σ×Q×Σ×Q×D).
This unusual arrangement allows an autopoietic automaton to generate offsprings working over larger
(or different) sets of states or symbols than it was possible for the original automaton. In Section 4
we will see that this is what enables a kind of evolutionary growth of complexity of the underlying
automata.

An autopoietic automaton A starts its computation in state q1, with the head on either tape in
the leftmost position. The automaton reads the symbol appearing on its input port and realizes the
respective transition as described in the previous definition. In general, thanks to nondeterminism,
the transition relation allows several choices for the next step. As is customary with nondeterministic
computations we take the viewpoint that any choice that will eventually lead the automaton to enter
the final reproducing state q2 is a legal move.

In automaton’s further activities, the general rule is that while being in non–reproducing states the
automaton reads the symbols from the input port and writes the symbols to the output port, possibly
moving its head along the program tape. No symbols are written to the output tape. When entering
a reproducing state, instead of the external symbols the automaton reads the symbols scanned by
its head on the program tape and writes the binary symbols to the output tape. Entering the final
reproducing state q2, A terminates its current activities with (the binary representation of a) new
transition relation δnew written on its output tape, and reproduces by fission, so to say. It splits into
two automata (see Fig. 2): the first one is driven by the original transition relation δ (denoted as
Program 1 in Fig. 2) while the other one by relation δnew (denoted as Program 2). The new automata
start with the empty output tapes.

Thanks to the fact that on the same inputs the final reproducing state can be achieved via several
computational pathes, a single nondeterministic autopoietic automaton can produce several different
offsprings, not just one. In our further considerations we will assume that all such offsprings are
produced, indeed. Due to the nature of the fission mechanism one of the offsprings will be identical
to its parent. We can imagine that after the fission all automata continue processing their own input
symbols. In principle, we see that by iterating this scenario a potentially infinite tree of offsprings
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Figure 2.2: The fission of an autopoietic automaton

can be generated from a single autopoietic automaton. In this tree, each offspring is related to its
parent. Now, if we concentrate to a single path starting in the root of such a tree, we get a so–called
lineage of autopoietic automata. In its entirety each lineage realizes a translation of a potentially
infinite stream of the input symbols into a similar stream of output symbols. Note that along such a
computational path the automata enter the reproducing states infinitely often. In the sequel we will
study the computational power of lineages.

3 The power of lineages of autopoietic automata

The first question concerning any computational model is the one of its computational power. The
computational power of an autopoietic automaton is not different from that of a finite state transducer:
this is because it is driven by a finite state mechanism, and its ability to read its own “program” does
not add any power, since in principle the same information could be stored in the automaton’s states.
Nevertheless, when considering a lineage of autopoietic automata things get more interesting. We show
the equivalence of lineages of autopoietic automata with so–called interactive Turing machines. This
type of machines has been introduced by van Leeuwen and Wiedermann (cf. [3], [4]) when studying the
so–called interactive evolutionary algorithms. Interactive Turing machines are variants of standard
Turing machines adapted for processing infinite input streams. That is, instead of the input tape
with a priori given input data these machines read the input data through an input port much like
the autopoietic automata; the output symbols are also treated in a similar way. A nondeterministic
interactive Turing machine M is said to realize a translation from an infinite input stream S1 to an
infinite output stream S2 if there exists a computation of M on S1 passing through an infinite number
of accepting states of M and producing S2 as its output (we assume that after entering an accepting
state, M can prolong its computations). Two translations are considered to be equivalent if they are
equivalent after deleting all empty symbols from them.

The equivalence between a lineage of autopoietic automata and an interactive Turing machine will
be shown by mutual simulations of these devices. We start with a simpler case — namely simulating a
lineage of autopoietic automata by an interactive Turing machine. Prior to proceeding to the respective
simulation we must solve one fine detail. This is the problem of the unbounded input alphabet and
that of translating the symbols of the external alphabet to their internal representation being used on
the program tape. While the offsprings of autopoietic automata can, by their very definition, work
with increasingly complex symbols, for a Turing machine with a fixed transition relation this is not
possible: more complex symbols require a longer encoding. Therefore we will assume that the elements
of Σ which can be directly read by the members of a lineage of autopoietic automata will be presented
to a Turing machine in their unary notation, as stated in Definition 2.1. That is, for a Turing machine
a symbol σi ∈ Σ will be presented as a string of form 0i and the strings in a sequence will be separated
by ones. Thus, a Turing machine needs O(i) steps to read (or write down) σi. However, we are not
interested in the exact complexity of our simulations — we are merely concerned with the principal
possibility of such simulations and in this respect a less efficient coding does not make any difference.

Having said so we are ready to present our first simulation theorem:
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Theorem 3.1 Any lineage of autopoietic automata can be simulated by a nondeterministic interactive
Turing machine.

Sketch of the proof. Let A = A1, A2, . . . be a lineage of the autopoietic automata. We design a
nondeterministic interactive Turing machine M simulating A and working as follows. M is a universal
Turing machine which reads via its input port the inputs encoded in the unary notation and is able to
simulate any Ai given by the description (encoding) of its transition relation δi. For such a purpose,
M maintains the representation of both tapes of Ai on its tapes: the program tape, on which a
representation of δi is written in the form as stated in Definition 2.1, and the output tape on which
the transition relation δi+1 of Ai+1 is generated, for i = 1, 2, . . .. Starting from i = 1, M simulates the
actions of Ai as dictated by δi written on the program tape until Ai reproduces and the processing
is taken over by Ai+1. In such a case, M enters its accepting state and exchanges the roles of its
two tapes: the output tape becomes the program tape with δi+1 already being written on it, and the
original program tape after being “cleaned” becomes the new output tape. Clearly, in this way M
realizes the same translation as A does.

2

The reverse simulation is more complicated and requires more preliminaries. First of all, we have
to specify, in more detail, the Turing machine to be simulated. We will consider a nondeterministic
interactive Turing machine M with one input and one output port and with only one working tape
unbounded to the right. The input and output symbols will be from a finite alphabet ΣM ⊂ Σ,
with Σ being the external alphabet of the autopoietic automata at hand. The working (or tape)
alphabet of M will be Ω = {0, 1, [}, with [ denoting the blank symbol. The set of states of M will
be QM = {q1, q2, . . . , qz} for some z > 1. The transition relation of M will be δM ⊆ ΣM ×Ω×QM ×
ΣM × Ω × QM × D, where D = {d1, d2, d3} is the alphabet of directions of the moves of M ’s head
on its tape and the meanings of di’s are the same as in Definition 2.1. An element of δM of form
(σi, xj , qk, σ`, xm, qn, dp) is read as “machine M, reading σi at its input port and scanning xj in state
qk sends σ` to its output port, writes xm into the scanned cell, enters state qn and moves its head in
direction dp”.

For the purpose of simulation, we split the processing time of M into time intervals during which
the space complexity of M remains unchanged. Thanks to our assumption on the left–boundedness of
M ’s tape, the amount of the space consumed by M ’s computation increases by 1 when the head of M
reads [, going past the rightmost rewritten cell on its tape. Within the intervals of unchanged space
complexity M is seen as a finite transducer. Let Ci be the finite transducer which is equivalent to M
computing within space of size i. The idea of the simulation is then to encode the (tape) configurations
of M into states of an autopoietic automaton Ai which, in its non–reproducing states, behaves as Ci.
When M is to increase its space complexity, Ai switches to a reproduction mode and generates a new,
“bigger” automaton Ai+1 which in its non–reproducing states simulates Ci+1, etc. Thus, in fact Ai

is a merger of two automata: one corresponds to Ci while the other — let us call it R — takes care
of reproduction. The transition relations of both automata are written on Ai’s program tape. In the
reproduction mode, Ai reads the transition relation of Ci and, being controlled by R, Ai generates
the code for Ci+1 and appends to it the code of R again. Thus, the code of R remains unchanged in
all Ais.

We will assume that the tape configuration of M is of form $w1$q$w2$, where w1, w2 ∈ Ω∗ ∪ {ε},
q ∈ QM and w1 is the contents of M ’s tape to the left of the position of M ′s head on M ’s tape, and
w2 is the contents of M ’s tape to the right of w1. That is, M ’s head points to the first symbol of w2

(which might be a blank symbol, [ in the case when w2 = ε). The length of the tape configuration
$w1$q$w2$ is |w1|+ |w2|, i.e., the sum of lengths of w1 and w2, respectively.

A tape configuration of M in state qj will be represented as a sequence ${0, 1}∗ ∪{ε}$0j${0, 1}∗ ∪
{[}$, i.e., the states of M are represented in unary, the tape contents in binary. As mentioned above
the tape configurations of M in the previous form will straightforwardly correspond to the states of an
autopoietic automaton. This idea requires a slight change in the definition of an autopoietic automaton
— so far the states of an autopoietic automaton have been expressed in unary on automaton’s program
tape. The newly proposed representation of states calls for introduction of a further separator symbol
($) among the symbols of the automaton’s tape alphabet. Also note that neither the symbol read
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from the input port nor the one written to the output port by M is included in the above defined
notion of M ’s configuration — these two symbols will be represented explicitly in Ai’s configuration.

Now we are ready to formulate and prove the next theorem.

Theorem 3.2 Any nondeterministic interactive Turing machine can be simulated by a lineage of
autopoietic automata.

Sketch of the proof. Let M be a given nondeterministic interactive Turing machine. By induction
on i we will construct a lineage {Ai} of autopoietic automata such that each Ai will simulate M with
tape configurations of length i (or of space complexity i) and each Ai+1 will be an offspring of Ai, for
i ≥ 2. As mentioned above the “program” of each Ai will consist of two parts. The first part describes
the transition relation of Ci while the second one that of R. For technical reasons — viz. the necessity
to begin with an automaton which is able to simulate both right and left moves of the M ’s head on
a tape of length 2 we start our induction with i = 2. This case is captured by C2 and corresponds
to the beginning of M ’s computation and to its subsequent computations until the moment when the
M ’s head is about to enter the 3-rd cell on its tape.

Consider a generic “instruction” of δM of form (σi, xj , qk, σ`, xm, qn, dp) performed over a tape
configuration t1 and resulting into tape configuration t2, with both configurations corresponding to a
tape of length 2 and the head positioned either on cell 1 or 2. This is reflected in C2’s instructions
of form (σi, t1, σ`, t2, dp). All these instructions, i.e., the instructions for all σi, σ` ∈ ΣM , all t1 and t2,
all qk, qn ∈ QM and all dp ∈ D conformed with δM are written on the A2’s program tape encoded as
shown in Definition 2.1.

Any instruction of M attempting to move the M ’s head to the right of the 2-nd cell (or in general:
increasing the current space complexity) will lead to the reproduction of A2. Let (σi, xj , qk, σ`, xm, qn, d2)
be the move of M performed over a tape configuration t1 of length 2 and resulting in tape configura-
tion t2 of length 3, with the head in t1 positioned on the second cell and the head in t2 positioned on
the 3-rd cell.

Then, when A2 reads σi in state t1, it recognizes that this is the case when the head will move to the
right. Under this circumstance A2 will write σ` to its output port and will enter a reproducing phase
in which the program tape of A3 will be generated using the code for R. First, the program for C3

will be constructed by reading the program for C2. Starting from the state which corresponds to tape
configuration t2, automaton C3 must be able to simulate all moves of M in space of size 3. In order
to do so C3 must have basically the same instructions as C2 had. However, these instructions must
be adopted for the case of the longer Turing machine tape (which is now longer by 1 cell that could
contain [, 0 or 1). The “new” instructions are generated from the “old” ones by making appropriate
local changes to the latter. The new instructions are generated to A2’s output tape. The respective
changes must be made for all one–symbol prolongments (i.e., for 0, 1, and [) of the (current) tape
configurations of M. To generate all new instructions, several (but a fixed finite number, depending on
δM ) scans over the simulation code of C2 are needed. No doubt that this is an algorithmic procedure
which can be carried by a finite automaton R thanks to the fact that the “templates” for producing
new instructions are available on the program tape of A2. An extra care is needed for capturing also
transitions which so far have not been represented in C2 since they could not come into action due to
the small size of the M ′ tape at that time. The details of an actual design of R are left to the reader.

After the entire program for C3 is generated, the program for R is appended to it. This finishes
the generation of the entire output tape of A2 and therefore A2 undergoes a fission and finishes its
activity. The output tape of A2 becomes the program tape of A3 and the simulation of M is taken
over by A3. As mentioned before, A3 starts from the state corresponding to configuration t2.

Now, assuming that we have any Ai for i ≥ 3 simulating M on tape configurations of size i it
is a straightforward matter to see that upon entering its reproducing phase Ai will produce Ai+1

simulating M on tape configurations of size i + 1, for any i ≥ 3. In fact, the “induction step” itself
is performed by the automata themselves, by their very design as described at the beginning of this
proof. The size (measured in the number of states, or length of the program tape) of our automata
grows exponentially in i, i.e., in the length of the tape configuration of M at the time interval in which
M is simulated by the automaton at hand.
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Note that during their reproducing phases the automata in A are neither reading nor producing
any external symbols. Therefore it is clear that on any inputs the lineage of Ais realizes the same
translation as M does.

2

Putting the claims of both previous theorems together we get the following consequence:

Corollary 3.1 The computational power of lineages of autopoietic automata is equal to the compu-
tational power of nondeterministic interactive Turing machines.

4 The evolution of autopoietic automata

At the close of Section 2 we have already mentioned that in principle a single nondeterministic au-
topoietic automaton can produce an infinite tree (or at least a lineage) of its descendants. In order
that this can happen, it must hold that at least one of the offsprings of a given parent must “sur-
vive”, i.e., it must reach a reproducing state on a given input. Thus, in addition to the automaton’s
functionality the existence of infinite lineages depends on the “availability” of the “right” inputs. A
trivial solution would be supplying the same inputs as before to all offsprings of an automaton which
has just reproduced. Since among its offsprings there is one identical to its parent, this strategy will
lead to an infinite lineage of identical automata. Obviously, this is not a very interesting case since
no evolution is involved.

Under the assumption that the “right” inputs are supplied to the respective automata at each
level of the descendant tree we construct an autopoietic automaton among whose descendants all
possible autopoietic automata will appear. For the brevity we will call the mode of purposefully
supplying inputs which will cause the given automaton to reproduce (if such inputs exist at all) the
nondeterministic input mode. This mode assumes that the data read by the automaton exist and are
supplied to the input port in such an order that will eventually lead to the fission of the automaton
at hand.

Theorem 4.1 There exists an autopoietic automaton which, when working in a nondeterministic
input mode, generates a descendant tree containing all autopoietic automata.

Sketch of the proof. The idea is to construct a single automaton which generates a descendant tree
in which all autopoietic automata are enumerated. That is, this automaton will generate offsprings
(direct descendants) with syntactically correct transition relations of a bounded length which will
increase with the depth of the tree on which the offsprings are located. If a generated transition relation
happens to be a transition relation of an autopoietic automaton that reproduces on some input, then
the nondeterministic input mode will guarantee that the automaton at hand will reproduce.

Let B be the automaton we are after. Its transition relation δ will consist of k five–tuples, for some
k > 0 (see Definition 2.1) and will be written on the B’s program tape in form of a binary code. This
code will read the B’s program tape tuple by tuple and copy the tape either faithfully or with some
modifications. Call any sequence of zeros representing a state or a symbol of Σ in the representation
of the transition relation of B as written on the B’s program tape, a segment. A segment from the
program tape will be transformed via δ into a segment on the output tape according to the following
rules:

• when reading a symbol in a segment, B nondeterministically decides whether to copy or skip
it; in the former case, it writes 0 on the output tape and in both cases it proceeds to the next
symbol in the program tape;

• after reaching the end of a segment, B will nondeterministically decide whether to prolong the
segment by one additional zero;

• after processing the last segment, B will nondeterministically decide whether to add one tuple
more to the generated transition relation, and if so, B will generate it nondeterministically,
respecting the syntax of the encoding stated in Definition 2.1;
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• in any tuple, the direction d of the move of the head on the program tape is also a subject to a
nondeterministic choice.

A separator between the segments (i.e., symbol 1) will be copied without any change.
Having done so, B enters the final reproducing state. In this way, a bounded number of offsprings

of B is generated, one on each branch of the respective nondeterministic computation. Each offspring
possesses a syntactically correct (encoding of a) transition relation, differing in all but one offspring in
certain segments from δ and containing at most one tuple more. The number of offsprings is related
to the length of the program tape of B (it is exponential in k). Not all offsprings are functionally
different since any transition relation admits a number of equivalent representations. On the other
hand, among the offsprings there are all automata with the transition relation consisting of k or k +1
tuples.

Now, all these offsprings start to act on their own. Thanks to the nondeterministic input mode
those automata that can in principle reach the final reproducing state will get such an input which will
eventually lead to their reproduction, indeed. The automata which cannot reproduce on any input
will either stuck in some state or fall into endless loops. In any case, some automata will reproduce
and give birth to still larger automata. In the worst case this will be automata functionally identical
to their parents, having an equivalent transition relation but larger by one tuple. These automata
will reproduce on the same input as their parents did. Eventually, a sufficiently large automaton not
appearing in the lineage of its predecessors will be generated having a functionally different transition
function and reproducing on different inputs than its parent.

In such a way the evolutionary process will continue, generating among other automata also
different automata of increasing size, covering increasingly larger part of the space of all autopoietic
automata.

2

In the previous theorem we answered positively the question whether there is an autopoietic
automaton which under suitable inputs (supplied in a nondeterministic mode) leads to an unbounded
evolution producing automata with increasingly complex computational behavior. Now we will pose in
a sense a reverse question. Namely, we will ask whether we can decide, for any autopoietic automaton
and any infinite input sequence, whether there is an infinite lineage of automata whose members are
all descendants of a given automaton on a given input. This is the problem of sustainable evolution.
We will show a negative answer:

Theorem 4.2 The problem of sustainable evolution is undecidable.

Sketch of the proof. Let A be an autopoietic automaton and let S be a potentially infinite sequence
of inputs. In accordance with the results from Section 3 for each lineage starting by A there is a
nondeterministic interactive Turing machine simulating that lineage on S. Now it is obvious that the
sustainability problem can be transformed to the halting problem which is undecidable.

2

It is interesting to compare the two previous results. While the first one assures that there is an
autopoietic automaton which, when “fed” by proper inputs, will give rise to an unbounded evolution,
the second result points to the fact that in general we cannot decide whether an autopoietic automaton
will give birth to an infinite lineage of offsprings, under the given input. Thus, sustainability seems to
require either adaptation of machines to their environment, or changes in the environment enabling
the machines to survive, or both.

5 Conclusions

We have presented a novel model of self–reproducing automata based on the notion of finite state
transducers. This model allows studies of the algorithmic variability of information controlling the
computational behavior and replication of automata. This is achieved by enhancing the functional
abilities of a standard transducer by allowing it to read its own transition relation and based on it,
to generate a transition relation of its offsprings. The transition relation of an autopoietic automaton
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contains programs both for automaton’s information processing tasks and for controlling its own
evolution (via its offsprings). This idea allows a fresh look at the mechanisms of variability and
inheritance of the “genetic information” passed from the parent to its offspring. Namely, in our model
the driving force behind the evolution is an algorithmic procedure which itself can become a subject
of an evolution driven by itself, so to say. In contrast to many previous approaches and speculations
the evolution in our model is not based primarily on random mutations of randomly chosen parts of
the controlling code, but on mutations which are algorithmically directed to those parts of the code
which can bring only syntactically correct changes in programs controlling both the computational
and evolutionary activities of the automaton at hand. The results showing the equivalency with the
interactive nondeterministic Turing machines (Corollary 3.1) point to the great computing power of
the lineages of autopoietic automata. There exist autopoietic automata which under suitable input
conditions could give rise to unbounded complexity growth along the lineages of offsprings of such
automata (Theorem 4.1). This offers a positive answer to the related open problem in the domain of
artificial life. On the other hand, Theorem 4.2 shows the fragility of such phenomena — in general
one cannot decide whether a lineage will evolve infinitely under given input conditions. The potential
of our model in artificial life modelling is the subject of author’s ongoing research.
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