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Abstract:

Dempster rule of combination of belief functions is shown not to commute with restriction to a sublanguage
— badly for one version of the rule and less badly, but still for an alternative version.
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For basic information on Dempster-Shafer theory (belief function, basic belief [probability] as-
signment] etc.) see [1]. Note that Shafer deals only with regular belief functions, i.e. assigning 0
to empty set. This is generalized in [2] (see also [3]). Here we deal with general (both regular and
singular) belief functions. If m is basic belief assignment then the corresponding belief function is
bel(A) = > gcam(B). Note that bel(A) + bel(W — A) < 14 m((). Dempster rule is a famous
operation assigning to two belief functions bely,bely on the same (finite) set W their combination
bely @ bels. It can be defined using the corresponding basic belief assignments mi, ms, defining, for
A CW, (bely ®belz)(A) = > grcca mi(B)-mo(C). (Note that bel; @ bely need not be regular even if
both bely an bels is.) Alternatively, one can use Dempster spaces (as defined in the pioneering paper
[4]) D; = (E;, W,T;, 1;)(i = 1,2) and define their product to be D = (E, W, T, u) where E = E; X Es,
T(e1,e2) =T1(e1) NTa(ez) and p is the product measure (p(e1, ez) = py(er) - pa(e2)). If bel; is given
by D, then bel; @ bels is given by D.

When we are interested in belief functions on (classes of equivalent boolean) formulas and consider
formulas built from finitely many variables p1, ..., p, then we may identify formulas with subsets of
2™ (sets of n-tuples of zeros and ones) in the obvious way; then we may compute, given bel;, the
corresponding belief assignments and define bel; @ bels.

Let B,, be the algebra of formulas built from propositional variables p1,...,p,. If kK < n then By is
a subalgebra of B,, and the restriction of a belief function on B,, to By is a belief function in By. This
is immediate using the condition of superadditivity: A function bel mapping the algebra of (classes of
equivalent) formulas into [0, 1] is a belief function (see [1]) iff bel(true) = 1 and

bel(p1 V-V ) > Z (—1)|I|+1bel(/\ i)

OAIC{1,...,n} i€l

A binary operation F' on belief functions (on the same algebra) commutes with restriction if for
any pair bely, bely of belief functions on B,, and for k < n,

F(bely, bels) | By = F(bely | B, bels | By)

A trivial example is a convex combination: for 0 < «,3 < 1 and o + 8 = 1, F(bely,bels)(A) =
abeli (A) + Bbela(A).

Our question is, if Dempster rule commutes with restriction, i.e. if we consider formulas from Br,
say, i.e. built using p1,...,p7r and among them we take a ¢ containing only p1, p2, p3, can we compute
(bely @ bels)(p) working only with restriction of bel; to B3? The answer is NO — for our definition of
bel. The following is an example, with n = 2 and k = 1, bel; = bels, ¢ is p, beli(p) = 0.9,m) = m), is
the b.b.a for bely | By. Furthermore, bel = bely & bels, bel’ = bel) & bel.

‘ p&q ‘ p&—q ‘ true
m 2 | 7 | 1

‘ D ‘true
mi ‘ 0.9 ‘ 0.1

p&q | p&—q | true
p&q | p&q | false | p&gq
.04 .14 .02
p&—q | false | p&—q | p&—q
14 .49 .07
true p&q | p&—q | true
.02 .07 .01

P true
p p p

.81 | .09
true | p true

.09 | .01




‘ false ‘ p&q | p&—q ‘ true
my@my | 28 [ .08 | 63 | .01

‘ D true
my ®mb ‘ .99 | .01

Observe the following: bel(p) = bel’(p) =0.99, bel(—p) = bel(false) = 0.28, bel’ (—p) = bel'(false) =
0.

Let us consider restriction from B, to B, _1, or, equivalently, the belief function bel’ on subsets of
27~! induced by bel on subsets of 2. Let A, B, C run on subsets of 2°~! and U, V, W on subsets of
2™, Define

ext(A){(e1,...,en)l{€1, ... En—1) € A e, € {0,1}},
proj(U){(e1,...,en—1)| for some &,,(€1,...,en—16n) € U},

(extension and projection). Clearly, bel’(A) = bel(ext(A)). If m is the b.b.a. of bel, put

m'(A) =Y mU);

proj(U)=A

this is the b.b.a. of bel’. Indeed, clearly 3° o, m/(A) = 1; moreover,

bel' (A) = bel(ext(A)) = Z m(U) = Z m(U) =

UCext(A) proj(U)CA

=Y > mU)=> m(B)

BCAproj(U)=B BCA

Lemma

(1) Under the above notation, proj(U N'V) C proj(U) Nproj(V); but there are U,V for which this
inclusion is proper.

(2) For each A C 2"~ 1 proj(U) C Aiff U C ext(A).

Proof.

(1) Evidently (U N V) C U and hence proj(UNV) C proj(U), similarly proj(U N V) C proj(V) and
hence proj(UNV) C proj(U)Nproj(V). For a counterexample take n = 2, U = {(1,0)},V ={(1,1) };
then UNV =0 =proj(UNV), but proj(U) = proj(V) = {(1)} = proj(U) Nproj(V).

(2) is obvious. a

Theorem 1. Let, for i = 1,2 bel; be a belief function on B,, and bel} its restriction to B,_1. Let
bel = bely @ bely, bel’ = bel| @ bely. Then, for each ¢ € B,,_1,

bel'(p) < bel(yp)

Proof. Let A be the set of (n — 1)-tuples satisfying ¢; we claim bel’(A) < bel(ext(A)).
We compute:

(bels ® bely)(A) = > mi(B).mh(C) =

BNCCA

= > D mU). D ma(V)=

BNCCA proj(U)=B proj(V)=C

- 3 mi(U)-ma(V) < > ma(U)-ma(V) =

proj(U)Nproj(V)CA proj(UNV)CA



= ) m(U)-my(V) =

UnNV Cext(A)
= bely @ bely(ext(A))

O
*

So far so good; but now consider another (and more usual) definition of the belief function given
by a possibly singular b.b.a. m, namely Bel(A) = Z@?éBgA m(B) (this works for A # {); one puts
Bel(@) = 0). This may be not-normalized (Bel(true) may be < 1). A normalized belief function is
then nBel(A) = (3 p,pcam(B))/ (3_p.9m(B)). Dempster rule for (normalized) belief functions
Bely, Bely is then defined for A # 0 as

(Bely ® Belp)(A) = > ma(B)-ma(C),
0#£BNCCA

(non-empty subsets!), (Bely ¢ Bely)() = 0. This may give a non-normalized belief function; it can
be normalized by dividing by 1 — > p~c_gmi(B) - ma(C) (if this is non-zero). Even if reasonably
motivated, it has the following (unwanted?) property:

Observation. Let m;, Bel;, Bel!, Bel, Bel’ be as above but belief functions in the new meaning just
defined; Dempster rule either normalized or not. Then no inequality can be proved for Bel(A), Bel’(A);
all three possibilities

Bel'(A) < Bel(A), Bel' (A) = Bel(A), Bel'(A) > Bel(A)
may occur (and similarly for nBel’, nBel).

For Bel'(p) > Bel(p) consider the example above: (Bely @ Bely)(p) = .08 + .63 = .71 (normalized:
71/72) but (Bel} @ Bel})(p) = .99 (normal).

Now Bel'(¢) = Bel(p) as well as bel’(¢) = bel(p)) holds for all ¢ € B,,_; if all focal elements have
the form ext(A) for some A C 2™ (verify!l), In general, if m is a b.b.a. and bel is the corresponding belief
function in our former sense then Bel(p) = bel(p) — bel(false) is the (possibly non-normalized) belief
function in the latter sense and nBel(p) = (bel(yp) — bel(false)/(1 — bel(false)) is its normalisation.
Now if bel = bely ®bels and bel’” = bel| ®bell, in the former sense then Dempster sum in the latter sense
of Bely, Bely is bel —bel( false) and its normalized nBel is (bel —bel( false))/(1—bel( false)); similarly
for bel, bel’. Put x = bel’(¢),y = bel(p),c = bel'(false),d = bel(false). Then x <y and ¢ < d (by
Theorem 1) and Bel’(¢) < Bel(yp) iff t —c <y —d iff (d—c¢) < (y—z) and nBel’(p) < nBel(yp) iff
=< % iff (d—c¢) <y(l—c)—x(1—d) (by elementary computations). In particular, the following
is an example for Bel’(y) < Bel(p) and for nBel’(p) < nBel(p):

mi(q) =0.5 mq (true) = 0.5 m}(p) = mh(p) =0
ma(p=q) =0.5 ma(true) =0.5 m} (true) = mh(true) =0
then
bel(p) = 0.25 = Bel(p) = nBel(p) bel'(p) = 0 = Bel'(p) = nBel'(p)

1 Conclusion.

As commonly known, the set BEL(B,,) all belief functions on algebra B,, endowed with the operation
@ makes BEL to a commutative semigroup with a unit element. The natural projection of B,, onto
B, 1 (or to By, k < m) induces a natural projection of BEL(B,,) onto BEL(B,_1). The fact that
this projection does not commute with the operation @ (i.e. it is not a semigroup homomorphism)
may be disappointing; but, to take it positively, contributes to our understanding of Dempster rule,
which has proven to be useful in many situation. From possible variants of the definition of Dempster



rule, our first variant shows to have smoother properties than the other ones; but on the other hand,
the fact that bel(p) 4 bel(—¢) may be more than 1 may be felt to be counter-intuitive (if not carefully
interpreted). One can ask if there is still other natural variant of Dempster-style combination of belief
functions that would commute with taking subalgebra. This remains as an interesting open problem.

Remark. In this context let us mention that in [5] (section 2.4) the authors consider a related but
different problem that can be formulated using our framework as follows: Let B, be given and let
B,,,, Bp, be subalgebra of formulas built from propositional variables pi,...p; and p;41, ...pn respec-
tively. Let Bel be a normalized belief function on B,, and let Bel;, Bela be projections to By, , Bn,
respectively; let Bell/, B€l2/ be their extensions to B,, and let Bel* = Bell/ @ Belgl. Can ones con-
clude Bel(A) < Bel*(A) or Bel*(A) < Bel(A)? They give examples showing that the answer is no.
(Thanks are due to D. Dubois for calling our attention to [5].)
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