národní
úložiště
šedé
literatury

A Note on Dempster Rule

Hájek, Petr
2003
Dostupný z http://www.nusl.cz/ntk/nusl-34140

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložišť̌ šedé literatury (NUŠL).
Datum stažení: 17.06.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

A NOTE ON DEMPSTER RULE

PETR HÁJEK and DAGMAR HARMANCOVÁ

Technical report No. 891

January 2003

Institute of Computer Science Academy of Sciences of the Czech Republic

A NOTE ON DEMPSTER RULE

PETR HÁJEK and DAGMAR HARMANCOVÁ ${ }^{1}$
Technical report No. 891
January 2003

Abstract:

Dempster rule of combination of belief functions is shown not to commute with restriction to a sublanguage - badly for one version of the rule and less badly, but still for an alternative version.

Keywords:
Dempster-Shafer theory, belief functions, Dempster rule

[^0]For basic information on Dempster-Shafer theory (belief function, basic belief [probability] assignment] etc.) see [1]. Note that Shafer deals only with regular belief functions, i.e. assigning 0 to empty set. This is generalized in [2] (see also [3]). Here we deal with general (both regular and singular) belief functions. If m is basic belief assignment then the corresponding belief function is $\operatorname{bel}(A)=\sum_{B \subset A} m(B)$. Note that $\operatorname{bel}(A)+\operatorname{bel}(W-A) \leq 1+m(\emptyset)$. Dempster rule is a famous operation assigning to two belief functions bel $_{1}$, bel $_{2}$ on the same (finite) set W their combination $b e l_{1} \oplus$ bel $_{2}$. It can be defined using the corresponding basic belief assignments m_{1}, m_{2}, defining, for $A \subseteq W,\left(\right.$ bel $_{1} \oplus$ bel $\left._{2}\right)(A)=\sum_{B \cap C \subseteq A} m_{1}(B) \cdot m_{2}(C)$. (Note that $b e l_{1} \oplus$ bel $_{2}$ need not be regular even if both bel $_{1}$ an bel $_{2}$ is.) Alternatively, one can use Dempster spaces (as defined in the pioneering paper [4]) $\mathbf{D}_{i}=\left(E_{i}, W, \Gamma_{i}, \mu_{i}\right)(i=1,2)$ and define their product to be $\mathbf{D}=(E, W, \Gamma, \mu)$ where $E=E_{1} \times E_{2}$, $\Gamma\left(e_{1}, e_{2}\right)=\Gamma_{1}\left(e_{1}\right) \cap \Gamma_{2}\left(e_{2}\right)$ and μ is the product measure $\left(\mu\left(e_{1}, e_{2}\right)=\mu_{1}\left(e_{1}\right) \cdot \mu_{2}\left(e_{2}\right)\right)$. If bel ${ }_{i}$ is given by \mathbf{D}_{i} then bel $_{1} \oplus$ bel $_{2}$ is given by \mathbf{D}.

When we are interested in belief functions on (classes of equivalent boolean) formulas and consider formulas built from finitely many variables p_{1}, \ldots, p_{n} then we may identify formulas with subsets of 2^{n} (sets of n-tuples of zeros and ones) in the obvious way; then we may compute, given $b e l_{i}$, the corresponding belief assignments and define $b e l_{1} \oplus b e l_{2}$.

Let B_{n} be the algebra of formulas built from propositional variables p_{1}, \ldots, p_{n}. If $k<n$ then B_{k} is a subalgebra of B_{n} and the restriction of a belief function on B_{n} to B_{k} is a belief function in B_{k}. This is immediate using the condition of superadditivity: A function bel mapping the algebra of (classes of equivalent) formulas into $[0,1]$ is a belief function (see [1]) iff $\operatorname{bel}(\operatorname{true})=1$ and

$$
\operatorname{bel}\left(\varphi_{1} \vee \cdots \vee \varphi_{n}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \operatorname{bel}\left(\bigwedge_{i \in I} \varphi_{i}\right)
$$

A binary operation F on belief functions (on the same algebra) commutes with restriction if for any pair $b e l_{1}$, bel $_{2}$ of belief functions on B_{n} and for $k<n$,

$$
F\left(b e l_{1}, b e l_{2}\right) \upharpoonright B_{k}=F\left(b e l_{1} \upharpoonright B_{k}, b e l_{2} \upharpoonright B_{k}\right)
$$

A trivial example is a convex combination: for $0<\alpha, \beta<1$ and $\alpha+\beta=1, F\left(b e l_{1}\right.$, bel $\left._{2}\right)(A)=$ $\alpha b e l_{1}(A)+\beta b e l_{2}(A)$.

Our question is, if Dempster rule commutes with restriction, i.e. if we consider formulas from B_{7}, say, i.e. built using p_{1}, \ldots, p_{7} and among them we take a φ containing only p_{1}, p_{2}, p_{3}, can we compute $\left(b e l_{1} \oplus b e l_{2}\right)(\varphi)$ working only with restriction of $b e l_{i}$ to B_{3} ? The answer is NO - for our definition of bel. The following is an example, with $n=2$ and $k=1$, bel $l_{1}=b e l_{2}, \varphi$ is $p, \operatorname{bel}_{1}(p)=0.9, m_{1}^{\prime}=m_{2}^{\prime}$ is the b.b.a for $b e l_{1} \upharpoonright B_{1}$. Furthermore, bel $=$ bel $_{1} \oplus$ bel $_{2}$, bel $^{\prime}=$ bel $_{1}^{\prime} \oplus$ bel $_{2}^{\prime}$.

	$p \& q$	$p \& \neg q$	true
m_{1}	.2	.7	.1

	p	true
m_{1}^{\prime}	0.9	0.1

	$p \& q$	$p \& \neg q$	true
$p \& q$	$p \& q$	false	$p \& q$
	.04	.14	.02
$p \& \neg q$	false	$p \& \neg q$	$p \& \neg q$
	.14	.49	.07
true	$p \& q$	$p \& \neg q$	true
	.02	.07	.01

	p	true
p	p	p
	.81	.09
true	p	true
	.09	.01

	false	$p \& q$	$p \& \neg q$	true
$m_{1} \oplus m_{2}$.28	.08	.63	.01
	p	true		
$m_{1}^{\prime} \oplus m_{2}^{\prime}$.99	.01		

Observe the following: $\operatorname{bel}(p)=\operatorname{bel}^{\prime}(p)=0.99, \operatorname{bel}(\neg p)=\operatorname{bel}($ false $)=0.28, b e l^{\prime}(\neg p)=b e l^{\prime}($ false $)=$ 0.

Let us consider restriction from B_{n} to B_{n-1}, or, equivalently, the belief function bel ${ }^{\prime}$ on subsets of 2^{n-1} induced by bel on subsets of 2^{n}. Let A, B, C run on subsets of 2^{n-1} and U, V, W on subsets of 2^{n}. Define

$$
\begin{gathered}
\operatorname{ext}(A)\left\{\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle \mid\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right\rangle \in A, \varepsilon_{n} \in\{0,1\}\right\} \\
\operatorname{proj}(U)\left\{\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right\rangle \mid \text { for some } \varepsilon_{n},\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n-1} \varepsilon_{n}\right\rangle \in U\right\}
\end{gathered}
$$

(extension and projection). Clearly, $\operatorname{bel}^{\prime}(A)=\operatorname{bel}(\operatorname{ext}(A))$. If m is the b.b.a. of bel, put

$$
m^{\prime}(A)=\sum_{\operatorname{proj}(U)=A} m(U)
$$

this is the b.b.a. of $b e l^{\prime}$. Indeed, clearly $\sum_{A \subseteq 2^{n}} m^{\prime}(A)=1$; moreover,

$$
\begin{gathered}
\operatorname{bel}^{\prime}(A)=\operatorname{bel}(\operatorname{ext}(A))=\sum_{U \subseteq e x t(A)} m(U)=\sum_{\operatorname{proj}(U) \subseteq A} m(U)= \\
=\sum_{B \subseteq A} \sum_{\operatorname{proj}(U)=B} m(U)=\sum_{B \subseteq A} m^{\prime}(B)
\end{gathered}
$$

Lemma

(1) Under the above notation, $\operatorname{proj}(U \cap V) \subseteq \operatorname{proj}(U) \cap \operatorname{proj}(V)$; but there are U, V for which this inclusion is proper.
(2) For each $A \subseteq 2^{n-1}, \operatorname{proj}(U) \subseteq A$ iff $U \subseteq \operatorname{ext}(A)$.

Proof.

(1) Evidently $(U \cap V) \subseteq U$ and hence $\operatorname{proj}(U \cap V) \subseteq \operatorname{proj}(U)$, similarly $\operatorname{proj}(U \cap V) \subseteq \operatorname{proj}(V)$ and hence $\operatorname{proj}(U \cap V) \subseteq \operatorname{proj}(U) \cap \operatorname{proj}(V)$. For a counterexample take $n=2, U=\{(1,0)\}, V=\{(1,1)\}$; then $U \cap V=\emptyset=\operatorname{proj}(U \cap V)$, but $\operatorname{proj}(U)=\operatorname{proj}(V)=\{(1)\}=\operatorname{proj}(U) \cap \operatorname{proj}(V)$.
(2) is obvious.

Theorem 1. Let, for $i=1,2 b e l_{i}$ be a belief function on B_{n} and $b e l_{i}^{\prime}$ its restriction to B_{n-1}. Let bel $=b e l_{1} \oplus b e l_{2}, b e l^{\prime}=b e l_{1}^{\prime} \oplus b e l_{2}^{\prime}$. Then, for each $\varphi \in B_{n-1}$,

$$
b e l^{\prime}(\varphi) \leq \operatorname{bel}(\varphi)
$$

Proof. Let A be the set of $(n-1)$-tuples satisfying φ; we claim $\operatorname{bel}^{\prime}(A) \leq \operatorname{bel}(\operatorname{ext}(A))$.
We compute:

$$
\begin{gathered}
\left(b e l_{1}^{\prime} \oplus b e l_{2}^{\prime}\right)(A)=\sum_{B \cap C \subseteq A} m_{1}^{\prime}(B) \cdot m_{2}^{\prime}(C)= \\
=\sum_{B \cap C \subseteq A}\left(\sum_{p r o j(U)=B} m_{1}(U) \cdot \sum_{p r o j(V)=C} m_{2}(V)\right)= \\
=\sum_{\operatorname{proj}(U) \cap \operatorname{proj}(V) \subseteq A} m_{1}(U) \cdot m_{2}(V) \leq \sum_{\operatorname{proj}(U \cap V) \subset A} m_{1}(U) \cdot m_{2}(V)=
\end{gathered}
$$

$$
\begin{gathered}
=\sum_{U \cap V \subseteq \operatorname{ext}(A)} m_{1}(U) \cdot m_{2}(V)= \\
=\operatorname{bel}_{1} \oplus \operatorname{bel}_{2}(\operatorname{ext}(A))
\end{gathered}
$$

So far so good; but now consider another (and more usual) definition of the belief function given by a possibly singular b.b.a. m, namely $\operatorname{Bel}(A)=\sum_{\emptyset \neq B \subseteq A} m(B)$ (this works for $A \neq \emptyset$; one puts $\operatorname{Bel}(\emptyset)=0)$. This may be not-normalized ($\operatorname{Bel}($ true $)$ may be $<1)$. A normalized belief function is then $n \operatorname{Bel}(A)=\left(\sum_{\emptyset \neq B \subseteq A} m(B)\right) /\left(\sum_{B \neq \emptyset} m(B)\right)$. Dempster rule for (normalized) belief functions $B e l_{1}, B e l_{2}$ is then define $\overline{\bar{d}}$ for $A \neq \emptyset$ as

$$
\left(B e l_{1} \oplus B e l_{2}\right)(A)=\sum_{\emptyset \neq B \cap C \subseteq A} m_{1}(B) \cdot m_{2}(C)
$$

(non-empty subsets!), $\left(B e l_{1} \oplus B e l_{2}\right)(\emptyset)=0$. This may give a non-normalized belief function; it can be normalized by dividing by $1-\sum_{B \cap C=\emptyset} m_{1}(B) \cdot m_{2}(C)$ (if this is non-zero). Even if reasonably motivated, it has the following (unwanted?) property:

Observation. Let m_{i}, Bel $_{i}, \mathrm{Bel}_{i}^{\prime}, \mathrm{Bel}^{\mathrm{B}} \mathrm{Bel}^{\prime}$ be as above but belief functions in the new meaning just defined; Dempster rule either normalized or not. Then no inequality can be proved for $\operatorname{Bel}(A), \operatorname{Bel}^{\prime}(A)$; all three possibilities

$$
\operatorname{Bel}^{\prime}(A)<\operatorname{Bel}(A), \operatorname{Bel}^{\prime}(A)=\operatorname{Bel}(A), \operatorname{Bel}^{\prime}(A)>\operatorname{Bel}(A)
$$

may occur (and similarly for $n B e l^{\prime}, n B e l$).
For $\operatorname{Bel}^{\prime}(p)>\operatorname{Bel}(p)$ consider the example above: $\left(\operatorname{Bel}_{1} \oplus \operatorname{Bel}_{1}\right)(p)=.08+.63=.71$ (normalized: $71 / 72)$ but $\left(\right.$ Bel $\left._{1}^{\prime} \oplus \operatorname{Bel}_{2}^{\prime}\right)(p)=.99$ (normal).

Now $\operatorname{Bel}^{\prime}(\varphi)=\operatorname{Bel}(\varphi)$ as well as $\left.\operatorname{bel}^{\prime}(\varphi)=\operatorname{bel}(\varphi)\right)$ holds for all $\varphi \in B_{n-1}$ if all focal elements have the form $\operatorname{ext}(A)$ for some $A \subseteq 2^{n}$ (verify!), In general, if m is a b.b.a. and bel is the corresponding belief function in our former sense then $\operatorname{Bel}(\varphi)=\operatorname{bel}(\varphi)-\operatorname{bel}($ false) is the (possibly non-normalized) belief function in the latter sense and $n \operatorname{Bel}(\varphi)=(\operatorname{bel}(\varphi)-\operatorname{bel}(f a l s e) /(1-\operatorname{bel}(f a l s e))$ is its normalisation. Now if bel $=b e l_{1} \oplus b e l_{2}$ and $b e l^{\prime}=b e l_{1}^{\prime} \oplus b e l_{2}^{\prime}$ in the former sense then Dempster sum in the latter sense of $\mathrm{Bel}_{1}, \mathrm{Bel}_{2}$ is bel - bel (false) and its normalized $n \mathrm{Bel}$ is $($ bel - bel $(f a l s e)) /(1-b e l(f a l s e))$; similarly for bel $_{i}^{\prime}$, bel' . Put $x=\operatorname{bel}^{\prime}(\varphi), y=\operatorname{bel}(\varphi), c=b e l^{\prime}(f a l s e), d=\operatorname{bel}(f a l s e)$. Then $x \leq y$ and $c \leq d$ (by Theorem 1) and $\operatorname{Bel}^{\prime}(\varphi) \leq \operatorname{Bel}(\varphi)$ iff $x-c \leq y-d$ iff $(d-c) \leq(y-x)$ and $n \operatorname{Bel}^{\prime}(\varphi) \leq n B e l(\varphi)$ iff $\frac{x-c}{1-c} \leq \frac{y-d}{1-d}$ iff $(d-c) \leq y(1-c)-x(1-d)$ (by elementary computations). In particular, the following is an example for $\operatorname{Bel}^{\prime}(\varphi)<\operatorname{Bel}(\varphi)$ and for $n \operatorname{Bel}^{\prime}(\varphi)<n \operatorname{Bel}(\varphi)$:

$$
\begin{array}{lll}
m_{1}(q)=0.5 & m_{1}(\text { true })=0.5 & m_{1}^{\prime}(p)=m_{2}^{\prime}(p)=0 \\
m_{2}(p \equiv q)=0.5 & m_{2}(\text { true })=0.5 & m_{1}^{\prime}(\text { true })=m_{2}^{\prime}(\text { true })=0
\end{array}
$$

then

$$
\operatorname{bel}(p)=0.25=\operatorname{Bel}(p)=n \operatorname{Bel}(p) \quad \operatorname{bel}^{\prime}(p)=0=\operatorname{Bel}^{\prime}(p)=n \operatorname{Bel}^{\prime}(p)
$$

1 Conclusion.

As commonly known, the set $B E L\left(B_{n}\right)$ all belief functions on algebra B_{n} endowed with the operation \oplus makes $B E L$ to a commutative semigroup with a unit element. The natural projection of B_{n} onto B_{n-1} (or to $B_{k}, k<m$) induces a natural projection of $B E L\left(B_{n}\right)$ onto $B E L\left(B_{n-1}\right)$. The fact that this projection does not commute with the operation \oplus (i.e. it is not a semigroup homomorphism) may be disappointing; but, to take it positively, contributes to our understanding of Dempster rule, which has proven to be useful in many situation. From possible variants of the definition of Dempster
rule, our first variant shows to have smoother properties than the other ones; but on the other hand, the fact that $\operatorname{bel}(\varphi)+\operatorname{bel}(\neg \varphi)$ may be more than 1 may be felt to be counter-intuitive (if not carefully interpreted). One can ask if there is still other natural variant of Dempster-style combination of belief functions that would commute with taking subalgebra. This remains as an interesting open problem.

Remark. In this context let us mention that in [5] (section 2.4) the authors consider a related but different problem that can be formulated using our framework as follows: Let B_{n} be given and let $B_{n_{1}}, B_{n_{2}}$ be subalgebra of formulas built from propositional variables $p_{1}, \ldots p_{i}$ and $p_{i+1}, \ldots p_{n}$ respectively. Let Bel be a normalized belief function on B_{n} and let $\mathrm{Bel}_{1}, \mathrm{Bel}_{2}$ be projections to $B_{n_{1}}, B_{n_{2}}$ respectively; let $B e l_{1}{ }^{\prime}, \mathrm{Bel}_{2}{ }^{\prime}$ be their extensions to B_{n} and let $B e l^{*}=\operatorname{Bel}_{1}{ }^{\prime} \oplus \operatorname{Bel}_{2}{ }^{\prime}$. Can ones conclude $\operatorname{Bel}(A) \leq \operatorname{Bel}^{*}(A)$ or $\operatorname{Bel}^{*}(A) \leq \operatorname{Bel}(A)$? They give examples showing that the answer is no. (Thanks are due to D. Dubois for calling our attention to [5].)

Acknowledgement

Partial support by the grant No. AA1030004/00 of the Grant Agency of the Academy of Sciences of the Czech Republic is acknowledged.

Bibliography

[1] G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press 1975).
[2] Ph. Smets, "The combination of evidence in transferable belief model", IEEE Trans. Pattern Anal. and Machine Int. 12 (1990) 447-458.
[3] P. Hájek, "Getting belief functions from Kripke models", Int. J. General Systems, 24 (1996) 325-327
[4] A. P. Dempster, "Upper and lower probabilities induced by a multi-valued mapping", Ann. Math. Stat. 38 (1967) 325-ff.
[5] D. Dubois and H. Prade, "A set-theoretic view of belief functions", Int. J. General Systems 12 (1986) 193-226.

[^0]: ${ }^{1}$ Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 18207 Prague, Czech Republic, Phone: +420 266053760

