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Abstract:

Dempster rule of combination of belief functions is shown not to commute with restriction to a sublanguage
– badly for one version of the rule and less badly, but still for an alternative version.
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Czech Republic, Phone: +420 266 053 760



For basic information on Dempster-Shafer theory (belief function, basic belief [probability] as-
signment] etc.) see [1]. Note that Shafer deals only with regular belief functions, i.e. assigning 0
to empty set. This is generalized in [2] (see also [3]). Here we deal with general (both regular and
singular) belief functions. If m is basic belief assignment then the corresponding belief function is
bel(A) =

∑
B⊂A m(B). Note that bel(A) + bel(W − A) ≤ 1 + m(∅). Dempster rule is a famous

operation assigning to two belief functions bel1, bel2 on the same (finite) set W their combination
bel1 ⊕ bel2. It can be defined using the corresponding basic belief assignments m1,m2, defining, for
A ⊆ W, (bel1⊕ bel2)(A) =

∑
B∩C⊆A m1(B) ·m2(C). (Note that bel1⊕ bel2 need not be regular even if

both bel1 an bel2 is.) Alternatively, one can use Dempster spaces (as defined in the pioneering paper
[4]) Di = (Ei,W,Γi, µi)(i = 1, 2) and define their product to be D = (E, W,Γ, µ) where E = E1×E2,
Γ(e1, e2) = Γ1(e1) ∩ Γ2(e2) and µ is the product measure (µ(e1, e2) = µ1(e1) · µ2(e2)). If beli is given
by Di then bel1 ⊕ bel2 is given by D.

When we are interested in belief functions on (classes of equivalent boolean) formulas and consider
formulas built from finitely many variables p1, . . . , pn then we may identify formulas with subsets of
2n (sets of n-tuples of zeros and ones) in the obvious way; then we may compute, given beli, the
corresponding belief assignments and define bel1 ⊕ bel2.

Let Bn be the algebra of formulas built from propositional variables p1, . . . , pn. If k < n then Bk is
a subalgebra of Bn and the restriction of a belief function on Bn to Bk is a belief function in Bk. This
is immediate using the condition of superadditivity: A function bel mapping the algebra of (classes of
equivalent) formulas into [0, 1] is a belief function (see [1]) iff bel(true) = 1 and

bel(ϕ1 ∨ · · · ∨ ϕn) ≥
∑

∅6=I⊆{1,...,n}
(−1)|I|+1bel(

∧

i∈I

ϕi).

A binary operation F on belief functions (on the same algebra) commutes with restriction if for
any pair bel1, bel2 of belief functions on Bn and for k < n,

F (bel1, bel2) ¹ Bk = F (bel1 ¹ Bk, bel2 ¹ Bk)

A trivial example is a convex combination: for 0 < α, β < 1 and α + β = 1, F (bel1, bel2)(A) =
αbel1(A) + βbel2(A).

Our question is, if Dempster rule commutes with restriction, i.e. if we consider formulas from B7,
say, i.e. built using p1, . . . , p7 and among them we take a ϕ containing only p1, p2, p3, can we compute
(bel1 ⊕ bel2)(ϕ) working only with restriction of beli to B3? The answer is NO – for our definition of
bel. The following is an example, with n = 2 and k = 1, bel1 = bel2, ϕ is p, bel1(p) = 0.9,m′

1 = m′
2 is

the b.b.a for bel1 ¹ B1. Furthermore, bel = bel1 ⊕ bel2, bel
′ = bel′1 ⊕ bel′2.

p&q p&¬q true
m1 .2 .7 .1

p true
m′

1 0.9 0.1

p&q p&¬q true
p&q p&q false p&q

.04 .14 .02
p&¬q false p&¬q p&¬q

.14 .49 .07
true p&q p&¬q true

.02 .07 .01

p true
p p p

.81 .09
true p true

.09 .01
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false p&q p&¬q true
m1 ⊕m2 .28 .08 .63 .01

p true
m′

1 ⊕m′
2 .99 .01

Observe the following: bel(p) = bel′(p) =0.99, bel(¬p) = bel(false) = 0.28, bel′(¬p) = bel′(false) =
0.

Let us consider restriction from Bn to Bn−1, or, equivalently, the belief function bel′ on subsets of
2n−1 induced by bel on subsets of 2n. Let A,B, C run on subsets of 2n−1 and U, V, W on subsets of
2n. Define

ext(A){〈ε1, . . . , εn〉|〈ε1, . . . , εn−1〉 ∈ A, εn ∈ {0, 1}},
proj(U){〈ε1, . . . , εn−1〉| for some εn, 〈ε1, . . . , εn−1εn〉 ∈ U},

(extension and projection). Clearly, bel′(A) = bel(ext(A)). If m is the b.b.a. of bel, put

m′(A) =
∑

proj(U)=A

m(U);

this is the b.b.a. of bel′. Indeed, clearly
∑

A⊆2n m′(A) = 1; moreover,

bel′(A) = bel(ext(A)) =
∑

U⊆ext(A)

m(U) =
∑

proj(U)⊆A

m(U) =

=
∑

B⊆A

∑

proj(U)=B

m(U) =
∑

B⊆A

m′(B).

Lemma
(1) Under the above notation, proj(U ∩ V ) ⊆ proj(U) ∩ proj(V ); but there are U, V for which this
inclusion is proper.
(2) For each A ⊆ 2n−1, proj(U) ⊆ A iff U ⊆ ext(A).

Proof.
(1) Evidently (U ∩ V ) ⊆ U and hence proj(U ∩ V ) ⊆ proj(U), similarly proj(U ∩ V ) ⊆ proj(V ) and
hence proj(U ∩V ) ⊆ proj(U)∩proj(V ). For a counterexample take n = 2, U = {(1, 0)}, V = {(1, 1)};
then U ∩ V = ∅ = proj(U ∩ V ), but proj(U) = proj(V ) = {(1)} = proj(U) ∩ proj(V ).
(2) is obvious. 2

Theorem 1. Let, for i = 1,2 beli be a belief function on Bn and bel′i its restriction to Bn−1. Let
bel = bel1 ⊕ bel2, bel

′ = bel′1 ⊕ bel′2. Then, for each ϕ ∈ Bn−1,

bel′(ϕ) ≤ bel(ϕ)

.

Proof. Let A be the set of (n− 1)-tuples satisfying ϕ; we claim bel′(A) ≤ bel(ext(A)).
We compute:

(bel′1 ⊕ bel′2)(A) =
∑

B∩C⊆A

m′
1(B).m′

2(C) =

=
∑

B∩C⊆A

(
∑

proj(U)=B

m1(U).
∑

proj(V )=C

m2(V )) =

=
∑

proj(U)∩proj(V )⊆A

m1(U) ·m2(V ) ≤
∑

proj(U∩V )⊂A

m1(U) ·m2(V ) =

2



=
∑

U∩V⊆ext(A)

m1(U) ·m2(V ) =

= bel1 ⊕ bel2(ext(A))

. 2

*
So far so good; but now consider another (and more usual) definition of the belief function given

by a possibly singular b.b.a. m, namely Bel(A) =
∑
∅6=B⊆A m(B) (this works for A 6= ∅; one puts

Bel(∅) = 0). This may be not-normalized (Bel(true) may be < 1). A normalized belief function is
then nBel(A) = (

∑
∅6=B⊆A m(B))/ (

∑
B 6=∅m(B)). Dempster rule for (normalized) belief functions

Bel1, Bel2 is then defined for A 6= ∅ as

(Bel1 ⊕Bel2)(A) =
∑

∅6=B∩C⊆A

m1(B) ·m2(C),

(non-empty subsets!), (Bel1 ⊕ Bel2)(∅) = 0. This may give a non-normalized belief function; it can
be normalized by dividing by 1 − ∑

B∩C=∅m1(B) · m2(C) (if this is non-zero). Even if reasonably
motivated, it has the following (unwanted?) property:

Observation. Let mi, Beli, Bel′i, Bel, Bel′ be as above but belief functions in the new meaning just
defined; Dempster rule either normalized or not. Then no inequality can be proved for Bel(A), Bel′(A);
all three possibilities

Bel′(A) < Bel(A), Bel′(A) = Bel(A), Bel′(A) > Bel(A)

may occur (and similarly for nBel′, nBel).

For Bel′(p) > Bel(p) consider the example above: (Bel1 ⊕ Bel1)(p) = .08 + .63 = .71 (normalized:
71/72) but (Bel′1 ⊕Bel′2)(p) = .99 (normal).

Now Bel′(ϕ) = Bel(ϕ) as well as bel′(ϕ) = bel(ϕ)) holds for all ϕ ∈ Bn−1 if all focal elements have
the form ext(A) for some A ⊆ 2n (verify!), In general, if m is a b.b.a. and bel is the corresponding belief
function in our former sense then Bel(ϕ) = bel(ϕ)− bel(false) is the (possibly non-normalized) belief
function in the latter sense and nBel(ϕ) = (bel(ϕ)− bel(false)/(1− bel(false)) is its normalisation.
Now if bel = bel1⊕bel2 and bel′ = bel′1⊕bel′2 in the former sense then Dempster sum in the latter sense
of Bel1, Bel2 is bel−bel(false) and its normalized nBel is (bel−bel(false))/(1−bel(false)); similarly
for bel′i, bel

′. Put x = bel′(ϕ), y = bel(ϕ), c = bel′(false), d = bel(false). Then x ≤ y and c ≤ d (by
Theorem 1) and Bel′(ϕ) ≤ Bel(ϕ) iff x− c ≤ y − d iff (d− c) ≤ (y − x) and nBel′(ϕ) ≤ nBel(ϕ) iff
x−c
1−c ≤ y−d

1−d iff (d− c) ≤ y(1− c)−x(1− d) (by elementary computations). In particular, the following
is an example for Bel′(ϕ) < Bel(ϕ) and for nBel′(ϕ) < nBel(ϕ):

m1(q) = 0.5 m1(true) = 0.5 m′
1(p) = m′

2(p) = 0
m2(p ≡ q) = 0.5 m2(true) = 0.5 m′

1(true) = m′
2(true) = 0

then

bel(p) = 0.25 = Bel(p) = nBel(p) bel′(p) = 0 = Bel′(p) = nBel′(p)

1 Conclusion.

As commonly known, the set BEL(Bn) all belief functions on algebra Bn endowed with the operation
⊕ makes BEL to a commutative semigroup with a unit element. The natural projection of Bn onto
Bn−1 (or to Bk, k < m) induces a natural projection of BEL(Bn) onto BEL(Bn−1). The fact that
this projection does not commute with the operation ⊕ (i.e. it is not a semigroup homomorphism)
may be disappointing; but, to take it positively, contributes to our understanding of Dempster rule,
which has proven to be useful in many situation. From possible variants of the definition of Dempster
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rule, our first variant shows to have smoother properties than the other ones; but on the other hand,
the fact that bel(ϕ)+ bel(¬ϕ) may be more than 1 may be felt to be counter-intuitive (if not carefully
interpreted). One can ask if there is still other natural variant of Dempster-style combination of belief
functions that would commute with taking subalgebra. This remains as an interesting open problem.

Remark. In this context let us mention that in [5] (section 2.4) the authors consider a related but
different problem that can be formulated using our framework as follows: Let Bn be given and let
Bn1 , Bn2 be subalgebra of formulas built from propositional variables p1, ...pi and pi+1, ...pn respec-
tively. Let Bel be a normalized belief function on Bn and let Bel1, Bel2 be projections to Bn1 , Bn2

respectively; let Bel1
′
, Bel2

′
be their extensions to Bn and let Bel∗ = Bel1

′ ⊕ Bel2
′
. Can ones con-

clude Bel(A) ≤ Bel∗(A) or Bel∗(A) ≤ Bel(A)? They give examples showing that the answer is no.
(Thanks are due to D. Dubois for calling our attention to [5].)
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