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Šidlofová, Terezie
2004
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Abstract:

We express the problem of approximating a data set z = {(xi, yi); i = 1, . . . , N} ⊆ Rd ×R in the form of
minimizing a functional that composes of an empirical error part and a Fourier-based stabilizer. We prove
existence and uniqueness of the solution. We also describe the shape of the minimizing function and show
that it is in the form of a one-hidden layer feed-forward neural network with activation functions derived
from the regularization part.
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1 Introduction

Learning from data usually means to fit a function to a set of data z = {(xi, yi); i = 1, . . . , N} ⊆ Rd×R.
The problem is what type of functions will we use for the fitting, because there are infinitely many
ways to go through the given points. And even if we have a reasonable set of functions (admissible
set) to pick from, there is no guarantee that the problem will have a solution and that the solution
will be unique.

Typically it is not necessary that the function fits the data exactly, we approximate. Thus nice
functions (smooth, continuous) come into question and we also gain generalization (see [GiJoPo95]).
Some of these properties are easily expressed by the set of admissible functions, but we might have
more complicated (global) external information (a-priori knowledge) about the problem and want to
add it, too.

Mathematical expression of these ideas lies in formulating a functional that would among admissible
functions pick the one, that is reasonably close to the data and also agrees with global property
assumptions ([CuSm01], [Gi97], [PoSm03], [SchSm02], [Wa90]). Existence and uniqueness of such a
solution can be secured by minimizing a functional over a corresponding set of functions.

The article deals with a stabilizer based on Fourier transform proposed in [GiJoPo95]. In [Gi97]
it was stated that our problem is closely connected with Reproducing Kernel Hilbert Spaces. Taking
advantage of these ideas we present construction of the admissible set (RKHS) and derive existence,
uniqueness and the form of the solution of our minimization problem.

2 Preliminaries

A real or complex Banach space (X, ‖.‖) is a vector space over real or complex numbers which is
complete in the topology generated by the norm ‖.‖, defined on X . A Hilbert space is a Banach space

in which the norm is given by an inner product 〈., .〉, that is ‖x‖ = 〈x, x〉
1/2

. Sequences of elements
of spaces are denoted by {xn} meaning n ∈ N+, where N+ is the set of positive integers.

The Banach space X∗ of bounded (real-valued) linear functionals on X is called the dual space.
It defines weak convergence on X . A sequence {xn} ∈ X converges weakly to x (xn ⇀ x) if and only
if limn→∞ |f(xn) − f(x)| = 0 for each fixed f ∈ X∗. Let X, Y be Banach spaces and F : X → Y
a mapping from X to Y . We define the Gateaux derivative of F in f in direction h as DfF(h) =

limt→0
F(f+th)−F(f)

t . If the limit is uniform in h, we call the derivative the Fréchet derivative (which
will be our case). We can analogously define the second and so on derivatives.

Let d, k be positive integers, Ω ⊆ Rd. We denote by (C(Ω), ‖.‖C) the space of continuous functions
on Ω with the maximum norm. Ck will denote all functions with continuous Fréchet derivative up
to order k. We say that an infinitely differentiable function f ∈ C∞ belongs to the Schwartz space
S(Rn) if pDαf is a bounded function for any multiindex α and any polynomial p on Rn, (where

pDαf =
∑

cαDα(f) and Dα(f) =
(

∂
∂x1

)α1

. . .
(

∂
∂xn

)αn

). For the sake of this article let us define the

normalized Lebesgue measure md on Rd as dmd(x) = (2π)−d/2dx (see [Ru91]). The Lebesgue space

(Lp(Ω), ‖.‖p) of p-times integrable functions on Ω will be renormed: ‖f‖p =
{∫

Ω |f |pdmd

}1/p
. This

will simplify the use of Fourier transform f̂ of the function f ∈ L1(Rd): f̂(t) =
∫

Rd f(x)e−it.xdmd,

where t ∈ Rd and t.x = t1x1 + · · · + tdxd.
Let F be a functional F : X → (−∞, +∞]. The set domF = {f ∈ X : F(f) < +∞} is called

the domain of F . Continuity of F in f ∈ domF is defined as usual. A functional is sequentially
lower semicontinuous if and only if the convergence of {fn} to f implies F(f) ≤ lim infn→∞ F(fn).
Functional F is weakly sequentially lower semicontinuous if and only if fn ⇀ f implies F(f) ≤
lim infn→∞ F(fn).

A functional F is convex on a convex set E ⊆ domF if for all f, g ∈ E and all λ ∈ [0, 1],
F(λf+(1−λ)g) ≤ λF(f)+(1−λ)F(g). Functional F is (strongly) quasi-convex if for all f, g ∈ E, f 6= g
it holds: F

(
1
2f + 1

2g
)

(<) ≤ max{F(f),F(g)}. Set E is weakly sequentially compact if any sequence
in E has a weakly converging subsequence.

A symmetric real valued function K(x, y) on X is (strictly) positive definite if for any a1, . . . ad, ai ∈

1



R, ∃ai 6= 0, and x1, . . . xd ∈ X the sum
∑d

i,j=1 aiajK(xi, xj)(>) ≥ 0. A Reproducing Kernel Hilbert
Space (RKHS) H(X) is a Hilbert space of functions f : X → R (X is a nonempty set), where for all
x ∈ X the evaluation functionals Fx : f 7→ f(x), are linear and bounded (i.e. continuous). Thus by
Fréchet-Riesz Theorem [Lu02, p. 19] we can define a unique kernel K(., .) corresponding to our RKHS
as follows: Fx(f) = f(x) = 〈K(x, .), f(.)〉 ∀f ∈ H, (〈., .〉 is scalar product on H). K is symmetric
positive definite and defines a dot product (and norm) on H. For any positive definite symmetric K
we can construct an RKHS with K as a kernel ([Wa90, p.1-3]).

3 Regularized Empirical Error Functional

The task to find an optimal solution to the setting of approximating a data set z = {(xi, yi)}
N
i=1 ⊆

Rd × R by a function from a general function space X is ill-posed. A standard method to cope with
ill-posed problems is to impose additional (regularization) conditions on the solution ([GiJoPo95]).
These are typically things like a-priori knowledge, or some smoothness constraints. The solution f0

has to minimize a functional F : E → R that is composed of the error part and the “smoothness”
part:

F(f) = Ez(f) + γΦ(f),

where Ez is the error functional depending on the data z = {(xi, yi)}
N
i=1 ⊆ Rd ×R, Φ is the regulariza-

tion part — the so called stabilizer and γ is the regularization parameter giving the trade-off between
the two terms of the functional to be minimized.

An error functional is usually of the form Ez(f) =
∑N

i=1 V (f(xi), yi). A typical example of the
empirical error functional is the classical mean square error:

Ez(f) =
1

N

N∑

i=1

(f(xi) − yi)
2.

In [GiJoPo95] a special stabilizer based on the Fourier Transform was proposed:

ΦG(f) =

∫

Rd

|f̂(s)|2

Ĝ(s)
dmd(s),

where Ĝ is some symmetric positive function tending to zero as ‖s‖ → ∞ (the last holds for any
G ∈ L1). That means 1/Ĝ is a high-pass filter.

Now we can define the functional FG that is to be minimized:

FG(f) = Ez(f) + ΦG(f) =
1

N

N∑

i=1

(f(xi) − yi)
2 + γ

∫

Rd

|f̂(s)|2

Ĝ(s)
dmd(s).

4 Existence and Uniqueness of the Solution

To minimize the functional FG above we need to specify the set X (of admissible functions) over which
we are minimizing and thus construct a minimization problem (FG, X). We will build a special set of
admissible functions H (RKHS) and obtain existence and uniqueness of solution to the minimization
problem (FG,H).

Let us first suppose existence and show uniqueness. For this purpose we will employ Reproducing
Kernel Hilbert Spaces. We build an RKHS corresponding to the regularization part of our functional
(so far the only conditions on G were G ∈ L1, Ĝ symmetric, positive):

Let us define

G†(x, y) = G(x − y) =

∫

Rd

Ĝ(t)eit.xe−it.ydmd(t).

For G† ∈ S(R2d) symmetric positive definite we obtain an RKHS H (using the classical construction,

see [Gi97], [SchSm02],[Wa90]). H = span{G†(x, .), x ∈ Rd}, we put 〈f, g〉H =
∫

Rd

f̂(s)ĝ∗(s)

Ĝ(s)
dmn(s) and
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obtain the norm ‖f‖2
H =

∫
Rd

|f̂(s)|2

Ĝ(s)
dmn(s), where {. . . } denotes closure of the set {. . . } and a∗ means

complex adjoint of a.
Now we will take advantage of a theorem mentioned for example in [Da71, p. 15]:

Lemma 4.1 A strongly quasi-convex functional G can achieve its minimum over a convex set C at
no more than one point.

Proof: If G(f1) = G(f2) = inff∈C f(x), then 1/2f1 + 1/2f2 ∈ C, but G(1/2f1 + 1/2f2) <
max{G(f1),G(f2)} = inff∈C G(f), which is a contradiction. 2

Now we will show strong quasi-convexity for the functional FG:

Lemma 4.2 With the notation from section 3, functional Ez is convex and functional ΦG is strongly
quasi convex on RKHS H. Hence, also FG is strongly quasi convex on H.

Proof: For the first part, Ez(f) is a sum of N elements, each of which is a convex functional, as
(real) function z 7→ 1

N (z − yi)
2 is convex.

To deal with the other functional, we observe that ΦG(f) = ‖f‖2
H. We will prove that in any

Hilbert space the norm ‖.‖ satisfies strong quasi convexity:

‖
1

2
x +

1

2
y‖2 < max{‖x‖2, ‖y‖2} ∀x, y ∈ H.

We will use the parallelogram law to show the fact. In any Hilbert space it holds, that ‖x + y‖2 +
‖x− y‖2 = 2(‖x‖2 + ‖y‖2)∀x, y ∈ H, and so we get: 1

4‖x + y‖2 = 2
4 (‖x‖2 + ‖y‖2)− 1

4‖x− y‖2. Hence
‖ 1

2x + 1
2y‖2 ≤ 1

2 (2 max{‖x‖2, ‖y‖2}) − 1
4‖x − y‖2. Since for x 6= y we have ‖x − y‖2 > 0 and we get:

‖ 1
2x + 1

2y‖2 < max{‖x‖2, ‖y‖2} as proposed.
So we have FG a sum of a convex and a strongly quasi convex functional and so clearly FG is

strongly quasi convex as claimed. 2

Theorem 4.3 If the problem (FG,H) has a solution then it is unique for any G† ∈ S(Rd) symmetric
positive definite.

Proof: By Lemma 4.2 we have strong quasi convexity of the problem and by Lemma 4.1 (since any
space is convex) we obtain uniqueness.

2

So we have proven uniqueness of the solution to the minimization problem (FG,H). To prove
existence we use two basic results of approximation theory, see [Da71, p. 7-13]:

Theorem 4.4 A weakly sequentially lower semicontinuous functional F defined on a weakly sequen-
tially compact set E has an infimum f0 such that F(f0) = inff∈E F(f) = minf∈E F(f).

Weak lower sequential semicontinuity of a functional can be secured by several means, as for
example by:

Theorem 4.5 A convex functional F that has first and second derivatives at all points of an open
convex set E is weakly sequentially lower semicontinuous in E.

To apply Theorem 4.5 we have to prove the derivatives of FG to exist.

Theorem 4.6 Functional FG is weakly sequentially lower semicontinuous on H.
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Proof: Let us have a look at the regularization part. We compute the first derivative:

DfΦG(h) = lim
t→0

∫

Rd

(∫
Rd [f(x) + th(x)]e−ixsdmd(x)

) (∫
Rd [f(x̌) + th(x̌)]e−ix̌sdmd(x̌)

)∗

tĜ(s)

−

(∫
Rd f(x)e−ixsdmd(x)

) (∫
Rd f(x̌)e−ix̌sdmd(x̌)

)∗

tĜ(s)
dmd(s)

=

∫

Rd

∫
Rd

∫
Rd

(
f(x)h(x̌)

∗
+ h(x)f(x̌)

∗)
e−ixseix̌sdmd(x)dmd(x̌)

Ĝ(s)
dmd(s)

=

∫

Rd

2Re
(
f̂(s)ĥ(s)∗

)

Ĝ(s)
dmd(s)

where DfΦG(h) means the first derivative of ΦG in f in direction h.
Now we compute the second derivative:

DDfΦG(h, k) = lim
t→0

∫

Rd

2Re
(
f̂ + tk(s)ĥ∗(s)

)

tĜ(s)
dmd(s) −

2Re
(
f̂(s)ĥ∗(s)

)

tĜ(s)
dmd(s) =

∫

Rd

2Re
(
k̂(s)ĥ∗(s)

)

Ĝ(s)
dmd(s)

where DDfΦG(h, k) is the second derivative of ΦG in f in directions h, k.
Now we will need also the error part derivative (recall the error part is of the form Ez(f) =

1
N

∑N
i=1(f(xi) − yi)

2):

DfEz(h) =
1

N
lim
t→0

∑N
i=1(f(xi) + th(xi) − yi)

2 −
∑N

i=1(f(xi) − yi)
2

t
=

=
1

N

N∑

i=1

(2f(xi)h(xi) − 2h(xi)yi)

The second derivative is:

DDfEz(h, k) =
1

N
lim
t→0

∑N
i=1(2(f + tk)(xi)h(xi) − 2h(xi)yi)

t
−

∑N
i=1(2f(xi)h(xi) − 2h(xi)yi)

t
=

1

N

N∑

i=1

2k(xi)h(xi)

By Theorem 4.5 FG is weakly sequentially lower semicontinuous. 2

Theorem 4.7 The problem (FG, E) has a solution for any G† ∈ S(Rd) symmetric positive definite,
E ∈ H bounded weakly closed.

Proof: Every bounded weakly closed subset of a reflexive space is weakly sequentially compact (see
[LuMa95]). Since any Hilbert space is reflexive, we obtain the second condition of theorem 4.4 and
using 4.6 the first condition comes and we conclude. 2

5 The Form of the Solution

We can describe the shape of the solution using a well known fact from mathematical analysis, see for
example [GiJoPo95]:

Theorem 5.1 Let the functional F defined on a set E in a Banach space X be minimized at a point
f0 ∈ E, with f0 an interior point in the norm topology. If F has a derivative DFf0

at f0, then
DFf0

= 0.
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The existence and uniqueness of the solution have been proven, so we can use Theorem 5.1 to
derive the form of the solution. Similar results have been sketched in [GiJoPo95] but without taking
advantage of RKHS.

Theorem 5.2 Let G† : R2d → R be a positive definite symmetric function from L1 and let G : Rd →
R have symmetric positive Fourier transform (with the notation from section 3). Then the unique
minimizing function f0 ∈ H of the problem (FG,H) is of the form

f0(x) =

N∑

i=1

ciG(x − xi),

where xi are the data points.

Proof: We have existence and uniqueness of f0 from section 4. The derivative of FG in f in direction
h is:

DFGf (h) = 2
1

N

N∑

i=1

(
f(xi)h(xi) − h(xi)yi

)
+ γ

∫

Rd

f̂(s)ĥ(s)∗ + f̂∗(s)ĥ(s)

Ĝ(s)
dmd(s)

Now we put DFGf0
(h) = 0 (f0 is the minimizing function). This has to hold for all h. Let us take

h(s) = G(s − x). We obtain (using symmetricity of G and Ĝ):

0 = DFGf0
(h) = 2

1

N

N∑

i=1

(
f0(xi)G(xi − x) − G(xi − x)yi

)
+ 2γf0(x)

and thus we have

γf0(x) =
1

N

N∑

i=1

G(x − xi)(f0(xi) − yi).

So we see that the solution must be in the form:

f0(x) =

N∑

i=1

ciG(x − xi).

2

The solution derived is very nice, since it resembles a neural network with G as the activation
functions shifted to the data points xi. The problem of the number of hidden units being too large
to be implemented can be solved by variable basis approximation using the obtained shape of the
activation functions (see [KuSa03]).

6 Conclusion

We have derived existence and uniqueness of the solution to the problem of finding a function close to
the given data and simultaneously reasonably smooth (in terms of its Fourier transform). We showed
that the solution is in the form of a one-hidden-layer feedforward neural network with activation
functions depending on the form of the stabilizer.

The drawback of this approach is that the obtained neural network has too many hidden units (as
much as the number of data). This problem can be dealt with by variable basis approximation limiting
the number of hidden units. Nice approximation properties have been proven. This is unfortunately
out of the scope of this article, so we kindly ask the reader to refer for example to work [KuSa02].
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