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1 Introduction

In this report we present some new properties of shifted variable metric (VM) line search
methods, see [9], for unconstrained minimization. We recall that these methods are
iterative. Starting with an initial point z; € RY, they generate a sequence zj, € RY,
k > 1, by the process x4y = 1, + sp, s, = tpdy, where d, € RV is a direction vector
and the stepsize 1 is chosen in such a way that ¢, > 0 and

fear — fr < ertrgi dy, Gladyr > eagldy, (1.1)

k>1,with 0 <e <1/2and g1 < ey <1, where fi, = f(ag), gr = Vf(xp).
We assume that the problem function f : RN — R has continuous second-order
derivatives on the level set {x € RY : f(z) < f(x1)} and the direction vector satisfies

dk = —Hkgk, k Z 1, (12)

where Hj, is a symmetric positive definite matrix. We denote yi = gr11 — gi, k£ > 1.
We give some additional properties of shifted variable metric methods in Section 2
and numerical results in Section 3.

2 Supplements to shifted variable metric methods

In shifted VM methods, see [9], matrices Hj have the form

k > 1, where (;, > 0 and Aj are symmetric positive semidefinite matrices; usually
A1 =0 and Aj4q is obtained from 5 Ag (7% > 0 is a scaling parameter) by a rank-two
VM update to satisfy the shifted quasi-Newton condition (in generalized form)

Apt1Yr = 065k, Cog1 = OkO, (2.2)

where § = s — o)yr, Ok = xSt yr/yLys is a shift parameter, pp € (0,1) is a relative
shift parameter and p; > 0 is a nonquadratic correction parameter (see [5]). Obvi-
ously, relations (2.1)-(2.2) imply that matrix Hyyq satisfies the quasi-Newton condition
Hyi1yr = opsk. In the subsequent analysis we use the following notation

_ T _ T _ T _ -1 7 _ =T
ar = Y Hyyr,  br = S Yk, cr = Sj, Brsk, B, = Hy ", bk = 53 Yk,

ar, =y Ay, be = s{ BrAgyr, & = s{ BoAyBesy, 8 = arey — 0,k = yl s,

k > 1. Note that the Schwarz inequality implies 6, > 0, k > 1. To simplify the
notation we frequently omit index £ and replace index k£ + 1 by symbol +. Although
we use the unit values of 43 and p; in almost all cases, we will consider also non-unit
values in the subsequent analysis as it is usual in case of VM methods (see [5]).

Involving the scaling and the nonquadratic correction and using the same argumen-
tation as in standard VM methods, we can write the shifted analogy of the Broyden
class (see [2], [3]) for b > 0 (which implies 3 % 0, y # 0) and 5 > 0 in the form

1 3T AvuTA o a T
A=A 2T _LJFQ(ig—Ay) <3§—Ay) (2.3)
v v b a a \b b




(ifa=0,i.e Ay =0, we simply omit the last two terms, because they tend to zero for
Ay = limg_o €q, a = limg_o £y, ¢y # 0), where 7 is a free parameter (verification of
Aty = o8 for this update is straightforward). There are two important special cases.

For n = 0 we obtain the shifted DFP update, for n = 1 the shifted BFGS update

lAiDFP — A4 ngNT_ A?J%TA7 lAiBFGS = A+ <£_|_ i) ngT_ w (2.4)

gl 7 b a gl 76/ b b
In limited-memory VM methods, matrix A has the form A = UUT, where U =
(t1,...,Up) is a rectangular matrix with m columns, m > 1, and use the VM update
Ay =4VAVT, (2.5)

where transformation matrix V has the form I 4 pg’ for the type 1 methods, or
I 4 pyyT + pys™ B for the type 2 methods. Thus we need to store only matrix U/, which
can be updated using relation Uy = /4 VU.

2.1 General expression of limited-memory method for m < 2

Theorem 3.3 in [9] easily follows from the following theorem.
Theorem 2.1. Let A = wu”, uly #0. Then APFF = 0357 /b.
Proof. Since Ay = (uly)u, we obtain from (2.4)

This result can be generalized for rank-two matrix A:

Theorem 2.2. Let A = wyu? +ugul, vy = aABs — bAy, ad # 0. Then

1 38T vyl
—Aprp - 820 | B (2.6)
v v b ad

Proof. Denoting o; = uly, i = 1,2, we obtain Ay = ayu; + asuy, @ = o? + a2 and

similar relations for ABs, b and é. Thus for é = a¢ — b% and v, we obtain
6 = (o + ad)((ul Bs)* + (ul Bs)?) — (aqul Bs + aqul Bs)? = (aqul Bs — ayul Bs)?,
vy = (a? + a%)(uisz cuq + ung “Uy) — (ozluisz + ozgung)(ozlul + azus)
= (ozguirBs — ozlung)(ozzul — aqug).
Since A — (1/a)AyyT A = [(? + o2)(wiul + ugul)) — (ayuy + aguy)(arur + azug)t]/a,

we have by (2.4)

L opp 0357

v v b

vgva

ao

Q| =

2, T 2. T T T
[on uruy + o gty — ajag(uiuy + U )] =

Using (2.4), we can combine (2.6) with the general type 2 method expression (4.24)
in [9], which gives the general form of type 1 or type 2 update for limited memory

methods with m < 2
1 035" qqg
—AL = —— + ==
Ty a6

VAR

(2.7)



Especially, the choice g = 0 or g; = vy gives the shifted DFP update for m = 1 or
m = 2. This interesting formula needs not store any VM matrix, similarly as conjugate
gradient methods, but can be much more efficient.

Good results were also obtained with the choice qo = & 2 \/ﬁ((&/?}ﬁ — Ay)
(method SSBC in [9]), similar as with the shifted DFP method.

2.2 Variationally-derived limited-memory methods

Standard VM methods can be obtained by solving a certain variational problem - we
find an update with the smallest correction of VM matrix in the sense of some norm
(see [5]). Using the product form of the update, we can extend this approach to limited-
memory methods to derive a very efficient class of methods. First we give the following
general theorem, where the shifted quasi-Newton condition U_|_U_{y = A,y = p35 1s
equivalently replaced by (the first two conditions imply the third one)

Uly =7z Ur(VAz) =05, =Tz =(e/1)b. (2.8)

Theorem 2.3. Let T be a symmelric positive definite matriz, = € RN and denote U
the set of N x m matrices. Then the unique solution to

min{p(Uy) : Uy €U} sit. (2.8), @(Uy) =y Ty T2 (U = AU)E,  (29)

(Frobenius matrix norm) is

Uy =U yTU + (25— Uz + y Uzp )ZT (2.10)
— — §—Uz — :
\ﬁ e TTy Y y Ty ="z
and for this solution the value of o(UL )/~ is

1 T b—y”

—p(Uy) = Uy — 2> + yT—vaT_lv, v="25_U:— (e/3) - i UZTy. (2.11)

gl zhz gl y Ty
Proof. Setting Uy = (uf,...,u}), define Lagrangian function £ = L(Uy, ey, e3) as

L = 5 (U+) el (Uy —vaz) + e (Vilez —03) = —/efz
Z = V) T = A + eyt el + ziepuf

A local minimizer U, satisfies the equations dL/dul = 0, ¢ = 1,...,m, which gives
y ' TyTH(uf — \Aui) + ey + /yzie2=0,7=1,...,m, yielding

Ty Te,
U, = /U — r_ T 2.12
+ =V T, ﬁyTTyz (2.12)

Using the first condition in (2.8), we have e; = \/AUTy — /7(1 + y Tes/y" Ty)z.
Substituing this e; to (2.12), we obtain (1/\/7)Us = U — Tyy"U/y" Ty + ez with

some vector e. The second condition in (2.8) yields

1 y Uz
€ = — T 2.1
€ T (7 — Uz + Ty y) ( 3)




and (2.10) follows. Matrix U} obtained in this way minimizes ¢ in view of convexity
of Frobenius norm. Furthermore, we get

Ty 1 (QN Ay —yTUz ) v

by (2.8) and (2.11), thus by (2.10) and vly =0

Lp(Uy) g Ty A e Ty v 7\|’
- _ T /2 9 TU . T — |7 /2 *J UT . A &
vyt Ty yTTy" ~ » yTTy( R F
T (UTy — 2)(UTy — 2)T N vTT_leZT _ ULy — 2|2 N vy -
yI'Ty (z72)? yI'Ty 2Tz

The choice of matrix T, when vectors Ty, (9/7)$ — Uz, are linearly dependent,
represents an important special case, since then v = 0 (thus the value of ©(U,) reaches
its minimum on the set of symmetric positive definite matrices T'), which implies € =
Ty/yTTy = ((0/7)3 — UZ)/((Q/’)/)?) — yTUz2) by (2.14) and in view of (2.13), update

(2.10) can be written in the form

1 s—U

—U; =U— (9/7)8 TZ (UTy—Z)T.
val (e/7)b—y"Uz

The first term in (2.11), i.e. |UTy — z|%, can also be easily minimized subject to

2Tz = (g/’y)?} The solution is z = + (g/’y)z)/d UTy, which gives the shifted DFP

method in view of the following lemma.

Lemma 2.1. Every update of the form (1/,/7)Uy = U+py™U, p € RN, which satisfies
the shifted quasi-Newton condition (2.8), is the shifted DFP method.

Proof. From (2.8) we have z = (1+pTy)UTy = :I:\/(g/’y)?)/d UTy. Furthermore, using

again (2.8), we obtain (o/v)s = + (g/’y)?)/d (Ay + a)p, thus p = (£ (g/’y)d/?x% —
Ay)/a, which is the shifted DFP method (see [5] or [9]). O

(2.15)

Using this lemma, we can also see that the only limited-memory type 2 method
satisfying 7 = ply = 0 (see [9]), which can be written in the form (2.10), is the shifted
DFP method, since ey = 1 by (2.13) and (2.8). It may explain the less efficiency
of methods with 7 = 0 (all type 2 methods in our report [9]) in comparison with
variationally-derived methods.

The advantage of variationally-derived update formulas (2.10), (2.15) consists in
possibility of parameters choice (z and in (2.10) also T'y). By comparison with the
standard Broyden class (see [5]), we get meaning of these parameters. To use Theo-
rem 2.3 for the standard Broyden class, we set I/ = 557 and replace U, 5 and b by 9,
s and b. Then update (2.10) will be replaced by
yl Sz 2T

Ty r 0
T, S‘|‘(;S—SZ+ yTTyTy)E (2.16)

1
5, =5—
val

and the following assertion holds. Note that scaling of T'y has no influence on vector

Ty/y'Ty.



Lemma 2.2. Every update (2.16) with z = a1 STy + 8T Bs, Ty = Bi1s + B Hy,
satisfying 2Tz = (o/7)b and b3y + aBy > 0 (i.e. y'Ty > 0), belongs to the Broyden
class with

0B —a(y/o) (a1 — az )’ ;o blag —o/y)* —ale/y)e]
1="b (b + ath)? T e — o) Tac

where n' in the second formula corresponds to n in the special case, when vectors Ty,
(o/7v)s — Sz are linearly dependent. Then we obtain n = 1 (the BFGS update) for

a; =0, az = £/(0/7v)b/e, n =0 (the DFP update) for as =0, oy = +4/(0/7)b/a.

Proof. Since Sz = a; Hy + ays and yT Sz Ty —yTTy Sz = (ar1a + azb)(Bis + B Hy) —
(B1b+ paa)(a1Hy + azs) = w(as — bHy), where w = o151 — a2, we can write (2.16)

in the form

1 Pis+ Polly o s (v/ow (a T T

ﬁS-I— = Bib+ Baa v+ [b + Bib+ Baa (bS B Hy)] (qu s B) 5 (2.18)
by (2.8). This gives (1/v)Hy = H + AH, where matrix AH is expressed using only
vectors s, Hy. Every such update, which satisfies quasi-Newton condition, belongs to
the Broyden class. To determine 7, it suffices to compare the terms, which contain
HyyT H (this term has coefficient (5 — 1)/a for the Broyden class). Since (g/v)b =
2Tz = (a1yT+ aps’B)SST(ayy + ayBs) by (2.8), we obtain from (2.18)

n—1 _ —2B5 —2(7/0)way  aB3 4+ 2(v/o0)w(ara + azb)fay + b(y/0)w?
a Bib + Baa (b + Baa)? '

Observing that

(2.17)

— (ozla + Oégb)ﬂz B —Oél(ﬂlb + 62@) + 62(0[1@ + Oégb) —bw

Bibt Baa | (Bib 1 Baa)? (Bb+ Baa)? (Bib+ Baa)?’

we have (816 + Baa)*(n — 1) = a[=2b8132 — afB3 — b(y/0)w?] = —(Bib + fra)? + b* 37 —
ab(vy/o)w?, which gives the first equality in (2.17). Substituing e.g. 51 = (0/7) — az,
By =—ay, we get the second equality. The rest follows immediately by 27z =(p/v)b. O

Note that Lemma 2.2 gives simple possibility, how to derive the product form of
the Broyden-class update.

To choice parameters z, Ty by comparison with the standard Broyden class, we
concentrate on the BFGS method, which we obtain e.g. for z = 4/(9/7)b/c ST Bs,
Ty = s by Lemma 2.2. Now we turn back to the shifted VM methods. By analogy
with the BFGS method, we set

z =9U" Bs, =t/ (g/’y)?)/é. (2.19)

Then (2.15) gives the type 1 method

(y —9¥Bs) U, (2.20)



which gives the best results for the choice sgn 9 = —sgn b (compare with Theorem 2.11).
Similarly, (2.10) leads to type 2 methods. With the simple choice Ty = § we get

c

3 b\ sTBU
—U _U—TTU+ =~ — AB +:) , 2.21
N b (719 T (2.21)

where ¥ is given by (2.19). The more general case, when T'y is a linear combination of
vectors 5, ABs and Ay, we will investigate in Section 2.6.
Note that neither update (2.20) nor (2.21) need not calculate vector Ay.

2.3 General expression of variationally-derived methods

General form of variationally-derived update (2.10) can be easily rewritten, using (2.8)

1 32T Tyy™ 22T
AT ( yITy Tz (222)
Since 2T(I — zz7/2T2) = 0 and (I — 227 /272)2 = T — 227 /2T 2 this yields
o 357 Tyy" 22\ yy' T
—A = I — U\l ———|U"[I—- 2.23
VT ( yTTy) ( ZTZ) y'Ty (2.23)

by Ay = Uy U_{. This expression shows the meaning of parameters z, T'y.
In case Ty = (\/ﬁ/?))§ +(1/a—\/n/a)Ay we can easily compare update (2.23) with
the shifted Broyden class update (2.3) in the following quasi-product form, see [9]

lAch_%%_|_ (] — (éﬁé—l— #Ay)yT)A(] — y(éﬁg + #Ay)T). (2.24)

~y

Denoting V= I —Tyy" /yT Ty and observing that U (I —z2T/:T2)UT = A—UzTUT/:T~
and yITy =1, (2.23) and (2.24) give
VUz(VUz)T

1 1 sBC
SAr =AY - 2Tz

v v

(2.25)

For z chosen after (2.19) and 5 = 1, which represents method (2.21), update (2.23)
can be easily rewritten in the form (2.38). We have V = I — sy7 /b, Uz = 9ABs and

VU2 = ABs — 2:ABS—éAy—é<g§—Ay):l(vg—iﬁ)),
2T~ b a a \ b a \/5

where we denoted v, = aABs — bAy and W = \/ﬁ((&/?}ﬁ — Ay) as in [9]. Thus it
follows from (2.3) and (2.25) that

1 3T AyyTA ot — wu” b2 b
A=A 2 AW T T el e Sy . (2.26)
~y v b a abd ac ac




The term ww! — uu? can be rewritten
A AT T o .7 V6 AT | oA T b? T T
ww —uu = —ww + — (vgw + wvz) + —vav5 — Vv,
ac ac ac

which finally gives by (2.26)

1 0337 AyyTA  quql — vy0l b? b
ZAL = A4 22 _ =1/1 - — . 2.27
A=A i T @ o em oot g (22D

2.4 Balanced variationally-derived shifted VM methods

Efficiency of the variationally-derived shifted VM methods can be significantly im-
proved by using the modified quasi-Newton condition

Ayy =003, (4 = oo, (2.28)

where ¢ > 0 is a correction parameter. Very good results were obtained with the

following choices of g: v 2 p/(l—p), e 2 v/Ca/a and /ve, where p = oa/b € (0,1)
is a relative shift parameter and ¢ is the damping factor of u, see [9]. The first choice
might be explained by the following assertion.

Lemma 2.3. For the choice o = u/(1 — p), equality yT A y/yTy = ¢, holds, i.e. this
value of ¢ balances the both parts of y" Hoy = (L yTy + yT Ayy.

Proof. By b= 5Ty = b—0a = b(1 — y1), we have from (2.28)

T ~7

y Ayy  o00b  oub
T = = = 00 = (. O

y y a a

2.5 Global convergence of the shifted Broyden class methods

Global convergence is defined by the relation

First we recall the basic assumptions and assertions from [9] (Assumption 2.3 is new).

Theorem 2.4. Let the objective function f : RN — R be bounded from below and have
bounded second derivatives. Consider the line search method satisfying (1.1)-(1.2). If

o] o] TH 2
> cos*Oy 2 M = 00, (2.30)
1 =1 9k 9k 9 Hi gk

then (2.29) holds.

Assumption 2.1. The objective function f : RN — R is uniformly convex and has
bounded second-order derivatives (i.e. 0 < G < MG(z)) < MG(2)) < G < oo,
€ RN, where \(G(x)) and MX(G(z)) are the lowest and the greatest eigenvalues of the
Hessian matriz G(x)).



Assumption 2.2. Parameters gy and uy, of the shifted VM method are uniformly pos-
itive and bounded, in the sense that 0 < p < o, <pand 0 < p < pp < <1, k>1.

Assumption 2.3. Parameters v, and py. of the shifted VM method satisfy 0 < v <
Y <7, 4 < Gagfay, k> 1.

Lemma 2.4. Let s # 0, the objective function satisfy Assumption 2.1 and parameter p
satisfy Assumption 2.2. Theny #0,5#0,b>0,b6>0, a/bc[G,G] and b/|s]* > G.

Theorem 2.5. Consider any shifted variable metric method satisfying (2.1)-(2.2) and
Assumption 2.2, with the line search method fulfilling (1.1)-(1.2). Let the objective
function satisfy Assumption 2.1. If there is a constant 0 < C' < oo such that

TI’Ak_H S TI’Ak + C, k Z 1, (231)
then (2.29) holds.

Theorem 2.6. Consider the shifted variable metric method (2.3) satisfying Assump-
tion 2.2 and v, < 1, k > 1, with the line search method fulfilling (1.1)-(1.2). Let the
objective function satisfy Assumption 2.1. If there is a constant 0 < C < oo such that

Ni| =5k — AkYs

.
< C%|§k|2 +Awnl®, k=1 (2.32)
K

R

|
S

then (2.29) holds.

In this section, we extend the set of methods from the shifted Broyden class (2.3),
for which global convergence can be established. First result is based on the following
lemma.

Lemma 2.5. Let n < 1. Then

a 2 N a?
=5 — Ay| < —L——|3]* + |Ay|~ 2.33
n75 = Ay _1_n62|8|+|y| (2.33)
Proof. The desired inequality follows from the identity
Q. 2 " El2 i n Q. 2
=5 —Ay| — ———5 = |Ayl*=(n—-1 =5+ Ayl . O
b y 1_M)QII |Ay|* = (n )1—776 y

Theorem 2.7. Consider the shifted variable metric method (2.3) satisfying Assump-
tion 2.2 and 0 < v <y <1, k > 1, with the line search method fulfilling (1.1)-(1.2).

Let the objective function satisfy Assumption 2.1. If n/(1 —n) a/b < C with any con-
stant 0 < C < oo (e.g. n = (0/7)/(0/v+a/b), which corresponds to the shifted analogy
of Hoshino self-dual method, see[5]), (2.29) holds.

Proof. If n/(1 — n) a/b < C, we can use Lemma 2.5 and Theorem 2.6. In case
n = (e/7)/(e/7 + a/b) we obtain n/(1 —n)a/b=o/y <7/7. 0

Now, denoting Hy =~(I + A, , we establish global convergence of methods from
the shifted Broyden class for n <1 and p* <({a/a. The following lemma plays basic role.



Lemma 2.6. Consider the shifted variable metric method (2.3) with n < 1. Then

i) B (o, @)

4 2.34

det H — ~ b ( )
Proof. It suffices to prove the desired inequality for n =1 by (2.3) and the identity
det(Hy —uu’) = det Hy (1 —u” H'w). Since the shifted BFGS update can be written

in the form

L, = (] N B (w3 — Ay)(ws — Ay)"B'/? — B”?AnyAB”z) 0.

y bw
where w = o/ + a/b, and since
det(T 4 (u— v)(u— o) —wo®) = (1t Ju— o)L — o) + ((u— o) o)

= Jul + (1= u0)? — Juf’|v]?,

we obtain

det(LHy)  §TBs ., ( §TBAy)2  §7B3-yTABAy

= w— 1— - =
det H T 3 02

Observing that §7 BAy = b— (5TBy and yTABAy = a — Ca + 2y By, we find
det(1Hy)  §7B: L CTBy?  §TB3y"ABAy
dettl  — “T% iz =
_ (e N Q:_& §T~B§ e (3T By)? —~§TB§ -yT By < 0 N Q:_& §T~B§
v b b b? v b

b
by the Schwarz inequality. a

Lemma 2.7. Consider any shifted variable metric method satisfying (2.1)-(2.2). Then

det H b\
e7~+<(1+£ ) . (2.35)
det Hy v (a

Proof. We have H, = Hy + &I, where £ = (4 —~( = po — ~(. Denoting Moo Ay

the eigenvalues of H,, we can apply the geometric/aritmetic mean inequality to obtain

detH, (€Y (& S, .\
et i, (“xl) (”xN)S b (x s )]

N\ M AN
- 1—|—£Tr[:]_1 N< (1+§HEI‘1H)N< 142 AN
N + - + v (a
by ¢ < po=pub/a < pb/a and Hﬁ;lﬂgl/(’yf) in view of Hy = ~(I + Ay . O

Lemma 2.8. Consider any shifted variable metric method satisfying (2.1)-(2.2), with
u? < (afa. Then
5T Bs < 4e. (2.36)



Proof. Assumption p? < (a/a implies o = p*(b/a)* < (b?*/(aa) < (c/a by the
Schwarz inequality. Observing that (y? By/yTy < (||B|| < 1 by (2.1), we obtain
2yTBy < cCy'By/a < c. Since § = s — oy, we get

s'Bs = ¢—20sT By+o*yT By < ¢+ 20+/cyTBy+o?y? By < ¢+ 2¢c+c¢ = 4e. a

Theorem 2.8. Consider the shifted variable metric method (2.3) satisfying Assump-
tion 2.2 and Assumption 2.3, with the line search method fulfilling (1.1)-(1.2). Let the
objective function satisfy Assumption 2.1. Then for everyn € [0,1] (2.29) holds.

Proof. Since a/b € [G,G] by Lemma 2.4 and (, = po = pub/a by (2.2), we deduce
(+ € [¢. (], where { = ppo /G, ¢ = pp/G. Combining Lemma 2.6, Lemma 2.7 and

Lemma 2.8, we find

detH_|_ de (o C_
det H b ~ ?)

Observing that det H > (N C by (2.1), we get by (2.37)

[

C det Hk_|_2 kil det HZ-l—l L
< =
det H, = det H, 1;[ det H; <G Hb’

2

Cr =

k > 1, which yields Zk"'l ¢i/bi > k(Hf;l ci/bi)l/k > kCll/k/Cg with C7 > 0, Cy > 0.
Now we show that (2.30) holds. From (1.2) and ¢* Hg > (g% g by (2.1) we obtain

E+1 E+1 TH ) E+1 TH'g e E+1 C Gcl/k
20 _ igi _ 92 1Y 2 1 G
> o't = 3 By N

=2 90 919 = glgi sls;

k> 1, by Lemma 2.4. Thus 322, cos?§; = co and (2.29) follows from Theorem 2.4. O

Note that assumption u? < (a/a gives reasons for the choice of damping coefficient

= y/Ca/a for the shift parameter p (see [9], recall that we require ¢ = 1 for a = 0).
All assertions here can also be proved, if we use the modified quasi-Newton condition
(2.28) with correction parameter p satisfying 0o < 0.

2.6 Global convergence of limited-memory methods

In this section we denote v1 = eAy—bABs, vs = aABs—bAy, ¢1 = ép14v1, g2 = 6pa+v,
and 1 = \/né ((d/?))g — Ay) as in [9]. First we recall the following general forms of
type 2 update formula (4.24) and (4.25) in [9] for § # 0 (which implies ac # 0 by the

Schwarz inequality)

53T B AnyA N ngzT — vgva

1 4
5T T T T
0 S8 ABss"BA  qiq7 — vivy T
= A _— — = 0
RN c T w  a
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(note that in case § = 0 the choice of ¢, or ¢; is irrelevant, see [9], and we can use e.g.
the shifted DFP method, which does not violate global convergence by Theorem 2.7).
Using identity a(vivf +8ABssT BA) = ¢(vovl + 6 AyyT A), the last form can be written

D AwA L an vy

a cé ad '

0 85

4y =0, (2.39)

1
—A+:A—|—
~

which is (2.38) with go¢l /a replaced by ¢i¢i /¢. First we prove the following basic
assertion.

Theorem 2.9. Let 6, # 0, k > 1. Consider the shifted variable metric method (2.38)
with ¢z = aw + [y (or (2.39) with ql\/% = aw + Pvy), satisfying Assumption 2.2
and Assumption 2.3, with the line search method fulfilling (1.1)-(1.2). Let the objective
Junction satisfy Assumption 2.1. If o® + 3> < 1 and n € [0,1], then (2.29) holds.

Proof. Obviously, we can restrict to update (2.38). Assumption ¢; = aw 4 Sov, yields

G20) — vl = 20T + apiv! + aBvyd’ 4 (8% — Dyl (2.40)
If 5% =1, condition o* + 3 < 1 implies @ = 0 and (2.38) represents the shifted DFP
method, which is globally convergent by Theorem 2.8. If 3% < 1, we can write by (2.40)

G297 —702va _ (gé — Ay) (gé — Ay)T —uul, = (1- ﬂf)vz —apd
b (1 — )

where ' = na?/(1 — 3?) < n < 1. Thus (2.38) represents update (2.3) with adding
term —uu?. Without this adding term, this update satisfies assumptions of Lemma 2.6.

Therefore, in view of identity det(fﬂ. —uul) = det [~{_|_(1 — uT[:]_lflu), inequality (2.34)
holds and the desired result follows as in the proof of Theorem 2.8. O

ad a

Corollary 2.1. Let the objective function satisfy Assumption 2.1. For the shifted vari-
able metric methods SSBC, NSBC and DSBC described in [9] (method DSBC' is denoted
DVSBC in [9]), satisfying Assumption 2.2 and Assumption 2.3, with n € [0, 1] and with
the line search method fulfilling (1.1)-(1.2), (2.29) holds.

Proof. It follows from Theorem 4.2 in [9] that o + 3? =1 for all three these methods
and we use Theorem 2.9. O

Now we concentrate on update (2.10) with the choice (2.19), which is type 2 method
with py = —Ty/y"Ty. Thus pl'y = —1, yielding ¢y = —6 + vIy = 0. Therefore we
can express this update in the form (2.39) (see [9]) and the following theorem enables
us to derive its global convergence from update (2.3).

Theorem 2.10. Let n > 0. Consider update (2.10) with the choice (2.19) and with
Ty =5+ 1 ABs + B, Ay. (2.41)

If
(aps +b)* > acB + b* (2.42)
holds, then the assumption o* + 3% < 1 of Theorem 2.9 is satisfied.

11



Proof. From p; = —Ty/y?Ty and (2.41) we obtain

§—(b/a)Ay + p1ABs + (B2 + b/a)Ay \ Ay — bABs

¢ =0p1+uv=—6

b+ b3y + af,
_ —dbja a. —&B ) ( 8(fy+b/a) )
=—" [(=5—A — b |ABs—|——— L —¢|A
b+ﬂlb+ﬂ2a<b y)+(b+bﬁ1+aﬂz b+ bp1 + aps g
a/m(b+ 0B + afs) b+ bp1 + ap a ’

using identities
501+ b(b+ b8y +apy) = (bb/a+cp +bp)a,
—6(By+b/a) +c(b+ 0By +ap) = (Bb/a+chi+08)0.
Thus we have

58/ + [b(aBs + b) + acB]”

Oé2 _I_ 62 — _ ~
ac(afy + b+ bp1)?
_ 0/ + 0(aBs + b)* + 2abcpi(aBs + b) + @SB
B ac(afy + b)? + 2abeBy (afy + b) + ab*cB?
— N2 =22 12
_ g _glabh bt —aes — by
ac(afy + b+ bp1)?
by (2.42) and é > 0. m

Corollary 2.2. Consider the shifted variable metric method (2.21) satisfying Assump-
tion 2.2 and Assumption 2.3, with the line search method fulfilling (1.1)-(1.2). Let the
objective function satisfy Assumption 2.1. Then (2.29) holds.

Proof. Choosing 31 = 2 = 0 in (2.41), (2.42) gives n > 1 and it suffices to use
Theorem 2.9 with n = 1. O

This approach cannot be used for method (2.20), which uses 3y = 0 and ] =
(v/0)b/c by (2.19). Then condition (2.42) has the form avy/p < b(1 — 1/n), which
cannot be satisfied in general. Fortunately, similar assertion as Lemma 2.6 holds.
Denote again Hy =~(I 4+ A .

Lemma 2.9. Consider the shifted variable metric method (2.20) in the form
(1/vNUy =U—=pg"U, p=5—19(y/e)ABs, q=(y—9Bs)/p'y,  (243)

with 9> < (p/~)b/é and 9b < 0. Then

1 7] ~
det H — b

(2.44)
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Proof. Update (2.43) can be written (1/v)A; = A — Agp? — pg? A + ¢T Aqpp?, or

1

—H, = HY? (1 + H'Y?,
5

BY*(q"Aqp — Aq)(q"Aqp — Aq)"B'? — B'/*Aqq"AB'/?
q"Aq

Since det(I + (u — v)(u — v)T —voT) = |u? + (1 — uTv)? — |u|?|v|? (see the proof of
Lemma 2.6), we obtain

det(LML,)/ det H = ¢"Aq - p" Bp+ (1 — p" BAq)* — p" Bp - " ABAq.

Observing that ¢? ABAq = ¢" Aq—(qTq+(*¢"Bgand 1 —p"BAq=1—pTq+(p'Bq =
(9/pTy)pT Bs + (p! Bq, we find by the Schwarz inequality

det(LH 2
% p" By [Cq"q— ¢ B + [p" B((9/p"y)s + )]
< " Bp |Cq"q — CCq"Ba+ ((9/p"y)s +Ca) B((0/py)s + Cq)]
= (};}5; [C|y —19B3|2—|—1920—|—2C193TB(yT— 1935)]
_ P Bp 4 2 2\Bsl?) = P Bp g 2,
= (g (0 e QRIBE) = S (G )
p" Bp 2y _ P’ Bp
< T (Cat ) < P (c +75)
and by assumptions. a

Lemma 2.10. Consider the shifted variable metric method (2.43), satisfying Assump-
tion 2.2 and Assumption 2.3, with |9| < C for some 0 < C' < oo. Then

p"Bp <2c[4+(C7/0)). (2.45)

Proof. Observing that (sTB3s/sTB%*s < (||B|| < 1, we get sI BABABs = ¢ —
2057 B%s 4 (?sTB%s < ¢ — (sT B?s < ¢. Using Lemma 2.8, we obtain

P"Bp = |BY(3 — (97/0)ABs)|* < 2037 B+ (97/0)c) < 2[4+ (CF/ ). ©

Theorem 2.11. Consider the shifted variable metric method (2.20) satisfying Assump-
tion 2.2 and Assumption 2.3, with the line search method fulfilling (1.1)-(1.2) and with

ng = —sgn?)k min [é, (gk/’yk)?)k/ck] 5 k Z 1, (246)

for some 0< C' < oo. If the objective function satisfy Assumption 2.1, then (2.29) holds.

Proof. Using Lemma 2.9, Lemma 2.7 and Lemma 2.10, we can proceed in the same
way as in the proof of Theorem 2.8. O

Note that all assertions here can also be proved, if we use the modified quasi-Newton
condition (2.28) with correction parameter g satisfying po < .
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3 Computational experiments

Our new limited-memory VM methods were thoroughly tested, using the collection of
relatively difficult problems with optional dimension chosen from [7] (Test 28, many of
problems are dense), collection of problems for large-scale nonlinear least squares from
[6] (Test 15, sparse but usually ill-conditioned problems) and collection of problems for
general sparse and partially separable unconstrained optimization from [6] (Test 14,
usually well-conditioned problems). We have used m = 10, 20 for N = 1000 and
m =5, 10 for N = 5000, the final precision |g(z*)] <107¢ 5 = 1 for the corresponding
shifted Broyden class (methods SSBC, NSBC and DSBC, see [9]) and the choice of the
shift parameter p after [9]. For starting iterates we use the shifted BFGS method.

Results of our experiments are given in four tables, where NIT is the total number
of iterations (over all problems), NFV the total number of function and also gradient
evaluations, ‘Fail” denotes the number of problems which were not solved successfully
(usually NFV reached its limit) and ‘Time’ is the total computational time.

m =10 m = 20
Method NIT NFV Fail Time NIT NFV Fail Time
SSBC 85211 91287 - 8:58.7 | 92589 95836 1 9:38.5
NSBC | 100550 104347 1 9:57.3 | 105011 122247 3 11:05.3
DSBC | 101139 103781 - 9:21.6 | 92285 94755 - 9:21.3
VARI1 91225 94406 - 10:26.1 | 95486 98252 1 10:26.1
VAR2 83047 86385 - 8:31.4 | 88540 91413 - 8:49.8
NS 85750 91533 - 7:45.3 | 84246 89349 - 8:15.2
BNS 87850 102109 - 7:11.9 | 89587 112245 2 9:40.9
RH 83232 101884 - 7:11.6 | 90466 110183 - 8:11.9
CGM | 108929 222722 - 15:51.2

Table 1 (Test 28, N = 1000, 80 problems)

m =10 m = 20
Method NIT NFV Fal Time NIT NFV Fail Time
SSBC | 40976 45574 - 50.86 | 39791 41254 - 60.67
NSBC | 52045 53736 1 70.06 | 53131 68160 2 87.27
DSBC | 48089 49222 - 61.45 | 47766 48698 - 72.99
VAR1 | 49120 50831 - 58.81 | 47591 48670 - 67.86
VAR2 | 48103 49746 - 55.47 | 45071 46106 - 61.05
NS 33765 36443 - 36.86 | 34994 37527 - 65.66
BNS 36485 Hb576 2 b4.68 | 44381 76519 4 121.30
RH 36122 42187 - 40.80 | 32649 41093 1 46.05
CGM | 36472 75466 - 46.45

Table 2 (Test 15, N = 1000, 22 problems)

The first three rows of tables give results for various methods described in [9]:
SSBC — the simple method based on the shifted Broyden class with ¢; = w, NSBC —
the method nearest to the shifted Broyden class and DSBC — the method with direction
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vector after the shifted Broyden class. Then results for the new variationally-derived
limited memory methods follows: VARI — method (2.20) and VAR 2 — method (2.21)
with ¢ = y/ve in Table 1 and Table 2 and g = v in Table 3 and Table 4, see Section 2.4.

For comparison, the last four rows contain results for the following limited-memory
methods: NS — the Nocedal method based on the Strang formula, see [8], BNS — the
method after [1], RH — the reduced-Hessian method described in [4] and CGM — the
conjugate gradient method (Hestenes and Stiefel version), see [3]. Note that methods
BNS and NS store m pairs of vectors and method CGM stores no additional vectors.

m = 10 m = 20
Method NIT NFV Fal Time NIT NFV Fal Time
SSBC | 20838 21070 - 16.64 | 17651 17872 - 17.74
NSBC | 22585 23059 - 19.91 | 20125 20531 - 21.99
DSBC | 21801 22041 - 18.05 | 18556 18765 - 19.19
VAR1 | 19658 19908 - 14.75 |1 17953 18174 - 16.41
VAR2 | 18880 19121 - 14.34 | 16784 17033 - 15.72
NS 20427 21456 - 15.17 | 19418 20392 - 23.05
BNS 20555 26003 1 16.55 | 18356 24554 1 35.06
RH 22385 33181 - 24.09 | 22644 35167 - 35.11
CGM | 20520 41049 - 17.91

Table 3 (Test 14, N = 1000, 22 problems)

m=2>5 m =10
Method NIT NFV Fail Time NIT NFV Fail Time
SSBC | 114600 115295 1 12:01.5 | 84671 85066 - 13:59.4
NSBC | 105694 108073 1 11:34.2 | 86069 87878 - 14:49.1
DSBC | 103796 104632 2 10:57.7 | 94639 95148 - 15:28.6
VARI1 96859 97941 - 8:37.9 | 72861 73539 - 10:17.2
VAR2 82456 83702 - 7:48.2 | 67372 68315 - 9:42.3
NS 108315 111456 2 9:33.8 | 82222 84426 - 11:02.2
BNS 102313 105828 1 10:32.6 | 73806 77803 - 11:38.1
RH 98046 154931 - 10:41.4 | 95430 150827 2 12:34.6
CGM 69805 168471 1 6:45.3

Table 4 (Test 14, N = 5000, 20 problems)

Results of computational experiments imply several conclusions. First, new varia-
tionally-derived methods VAR1 and especially VAR2 are usually better than methods
SSBC, NSBC and DSBC proposed in [9]. These new methods give best results for
sparse well-conditioned problems, but they can be outperformed by standard limited
memory methods (e.g., NS and RH) in the sparse ill-conditioned case. New methods
work also well for problems contained in Test 28, measured by the total number of
function evaluations. The worse computational time in Table 4 is caused by larger
number of function evaluations in case of several time consuming dense problems.
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