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1 Introduction

In contrast to rule-based methods of classical artificial intelligence, connectionism employs
learning based on examples. The goal of supervised learning is to adjust parameters of a
connectionistic model so that it approximates with a desired accuracy a functional relationship
between inputs and outputs by learning from a set of examples, i.e., a sample z = {(xi, yi) ∈
Rd ×R, i = 1, . . . ,m} of m input/output pairs of empirical data. In statistical learning theory
[3, 41], learning based on empirical data has been modelled as minimization of a functional,
called empirical error. For a sample z and a loss function V : R2 → R, the empirical error Ez,V

is defined as Ez,V (f) = 1
m

∑m
i=1 V (f(xi), yi) for all f from an ambient function space (called a

hypothesis space), over which such a minimization is performed. The loss function V measures
how much it is lost if to an input x an output f(x) is associated instead of an output y.

Endowing a connectionistic model with a generalization capability requires some conceptual
data, i.e., some global knowledge of the desired input/output functional relationship such as
smoothness or lack of high frequency oscillations. Conceptual data can be formalized either by
specifying a subset of the hypothesis space containing only functions with a desired behavior,
to which minimization of the empirical error is restricted, or by adding to the empirical error a
term penalizing undesired properties, or by combining these two approaches. The first method
is an application to learning from data of Ivanov’s or Miller’s regularization, the second one of
Tikhonov’s, and the third one of Phillips’ [6, pp. 68-78].

Tikhonov’s regularization [39, 40], which was introduced into learning theory by Poggio and
Girosi [18, 32, 33], leads to minimization over the whole hypothesis space of the regularized
empirical error functional, defined as the sum of two functionals Ez,V + γΨ. The first one,
the empirical error Ez,V , enforces closeness to the sample z of empirical data, while Ψ, called
stabilizer expresses requirements on the global behavior of the desired input/output functional
relationship. The regularization parameter γ controls the trade-off between fitting to the em-
pirical and the conceptual data.

A large class of hypothesis spaces can be studied in the framework of the theory of Hilbert
spaces of a special type, called reproducing kernel Hilbert spaces (RKHSs). Norms on such
spaces can play a role of measures of various types of oscillations of input/output mapping.
RKHSs were formally defined by Aronszajn [2], but their theory employs work of Schönberg
[38] as well as many classical results on kernels and positive definite functions. RKHS were
introduced into applications closely related to learning by Parzen [30] and Wahba [43], and they
were employed explicitly in learning theory by Vapnik [8] and Girosi [17].

The Representer Theorem [9, p. 42], [16, 18, 32, 34, 36] shows that for Tikhonov’s regu-
larization with a stabilizer defined as a strictly increasing function of the norm on a RKHS,
the problem of minimization of the regularized empirical error over such a space has a unique
solution of the form of a linear combination of the m-tuple of the kernel functions, which are
parameterized by the input data x1, . . . , xm. For a stabilizer equal to the square of the norm
on a RKHS, the vector c of the coefficients of the linear combination is given by the solution
of the well-posed linear system of equations (γmI + K[x])c = y, where y = (y1, . . . , ym) is the
output data vector, I is the m×m identity matrix, and K[x] is the Gram matrix of the kernel
K with respect to the input data vector x = (x1, . . . , xm).

A paradigmatic example of a kernel is the Gaussian kernel, for which the solution given by
the Representer Theorem has the form of an input/output function of a Gaussian radial-basis-
function network with m units centered at the input data x1, . . . , xm [16]. The coefficients of
the linear combination play the role of output weights of such a network. This interpretation of
the Representer Theorem was used in [18, p. 219] to argue that “the regularization principles
lead to approximation schemes that are equivalent to networks with one layer of hidden units”.

The Representer Theorem was employed to design a learning algorithm (see, e.g., [9, p.
42], [34, pp. 538-539]) that requires to solve the linear system of equations (γmI + K[x])c =
y (examples of various pattern recognition and binary classification tasks solved using this
algorithm are quoted in [34]). An advantage of this algorithm is that it gives the best possible
solution of the task of fitting a function to a given sample of empirical data and satisfying
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a global property, which can be described in terms of a condition on oscillations that can
be modelled using a kernel. However, its practical applications are limited by the speed of
convergence of iterative algorithms solving the linear system of equations and by the size of the
condition number of the matrix γmI+K[x]. For some methods, the computational complexity
of solving such a system grows polynomially with the size m of the sample (e.g., when the
Gaussian elimination is used, it grows for m large enough as m3/3 [29, p. 175]). For some data
and kernels, keeping the condition number of γmI +K[x] small requires a large regularization
parameter γ, which causes poor fit to the empirical data.

The learning algorithm based on the Representer Theorem uses a model of complexity equal
to the size m of the sample of data and it does not allow any flexibility in choosing the inner
parameters of the computational units (as they are set equal to the input data). Typical neural-
network learning algorithms differ from this algorithm in two aspects: (1) model complexity
determined by the number of network units is either set in advance (typically, it is much smaller
than the size of the training set) or it is adjusted dynamically and (2) inner parameters of the
units are searched for during learning.

Motivated by the model complexity constrains typical for neural network approaches, in
this paper we investigate suboptimal solutions of the problem of minimization of a regularized
empirical error over hypothesis sets corresponding to kernel models with limited complexity
and flexible choice of parameters. We derive upper bounds on the speed of convergence of
sequences of suboptimal solutions achievable by minimization over hypothesis sets formed by
linear combinations of at most n kernel functions with arbitrary parameters to the optimal
solution given by the Representer Theorem. The upper bounds are of the form 1/

√
n multiplied

by a term that depends on the size m of the sample, the l1- and l2-norms of the vector y =
(y1, . . . , ym) of output data, the minimum and maximum eigenvalues of the Gram matrix K[x]
of the kernel with respect to the input data, and the regularization parameter γ.

We state conditions on the sample, the kernel and the regularization parameter, under
which the term multiplying 1/

√
n is “small” and so such suboptimal solutions converge quickly

to the optimal one. In such cases, kernel methods with a bounded model complexity give a
good approximation of the best possible solution of the learning task. As our estimates are not
merely asymptotic, they can be applied to any bound on model complexity smaller than the
size of the training set. In particular for the Gaussian kernel, we derive an upper bound of the
form 3(1+γ)y2

max
nγ2 , where ymax denotes the maximum of the absolute values of output data.

The paper is organized as follows. Section 2 introduces concepts concerning minimization
of functionals and Tikhonov’s regularization applied to learning with RKHSs as hypothesis
spaces. Section 3 states the Representer Theorem and discusses the condition number of the
matrix used in algorithms based on this theorem. Section 4 develops tools for investigating
approximate optimization over hypothesis sets corresponding to kernel methods with bounded
model complexity, and describes continuity and convexity properties of regularized empirical
error functionals with various types of loss functions. Section 5 contains our main results
estimating the speed of convergence of sequences of suboptimal solutions with increasing model
complexity. Section 6 is a brief discussion. We include an Appendix describing properties of
RKSHs and illustrating them on examples of kernels and types of oscillations measured by
norms defined by such kernels.

2 Tikhonov’s regularization in reproducing kernel Hilbert
spaces

By a normed linear space (X, ‖.‖) we mean a real normed linear space. R denotes the set of
real numbers.

Let M be a subset of X and Φ : X → R be a functional. Using standard notation (see, e.g.,
[13]), we denote by

(M,Φ)
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the problem of minimization of Φ over M . M is called the set of admissible solutions or
admissible set.

By argmin (M,Φ) = {g ∈M : Φ(g) = infg∈M Φ(g)} is denoted the set of argminima of the
problem (M,Φ) and for any ε > 0, argminε(M,Φ) = {g ∈M : Φ(g) < infg∈M Φ(g) + ε} is the
set of ε-near argminima of (M,Φ). An argminimum of (M,Φ) is called a solution (or a minimum
point of the problem (M,Φ). A sequence {gn} of elements of M is called Φ-minimizing over M
if limn→∞ Φ(gn) = infg∈M Φ(g). By the definition of infimum, for any problem (M,Φ) with M
non-empty there always exists a minimizing sequence.

Let z = {(xi, yi), i = 1, . . . ,m} be a finite set of input/output pairs of data. A standard
approach to learning from empirical data (see, e.g., [41]) is based on minimization of the
empirical error functional (also called the empirical risk functional), defined as

EV (f) = Ez,V (f) =
1
m

m∑
i=1

V (f(xi), yi),

where V : R×R → [0,∞) satisfying V (y, y) = 0 for all y ∈ R is called a loss function. When
z is clear from the context, we write EV instead of Ez,V .

The most common loss function is the square loss, defined as

V (f(x), y) = (f(x) − y)2.
In this paper we mostly focus on the empirical error defined using the square loss, for which we
write merely E . Other common loss functions are the absolute value loss V (f(x), y) = |f(x)−y|
and Vapnik’s ε-insensitive loss V (f(x), y) = max(|f(x) − y| − ε, 0).

Tikhonov’s regularization replaces the problem

(M, EV )

with the problem

(M, EV + γΨ),

where Ψ is a functional called stabilizer and γ > 0 is a regularization parameter [40].
An important class of stabilizers are squares of norms on reproducing kernel Hilbert spaces

(RKHSs). Such stabilizers enable one to penalize high oscillations of various types. For a set
Ω and a symmetric positive definite function K : Ω× Ω → R, called kernel, we denote by

(HK(Ω), ‖.‖K)

the RKHS defined by K (see the Appendix). The square ‖.‖2
K is used as a stabilizer instead

of the norm ‖.‖K for technical reasons, as the square of the norm on any Hilbert space is a
uniformly convex functional (see Proposition 4.1 (iii)), which implies uniqueness of the solution
of the regularized problem (see, e.g., [12, p. 10], [9, pp. 27, 42]) and convergence of minimizing
sequences to this solution [28]. The role of ‖.‖2

K as a stabilizer is illustrated in the Appendix
on two examples of classes of kernels playing the role of high-frequency filters.

Using ‖.‖2
K as a stabilizer, the regularized empirical error functional with a loss function V

and a regularization parameter γ has the form

EV,γ,K(f) =
1
m

m∑
i=1

V (f(xi), yi) + γ ‖f‖2
K.

As in the case of the empirical error, also for the regularized empirical error we use for the
square loss a simplified notation

Eγ,K(f) =
1
m

m∑
i=1

(f(xi) − yi)
2 + γ‖f‖2

K

instead of EV,γ,K(f).
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3 The Representer Theorem

Existence, uniqueness and an explicit formula describing the solution of the problem
(HK(Ω), Eγ,K) of the regularized empirical error with the square loss function over the whole
RKHS are given by the Representer Theorem. For a kernel K, a positive integer m, and a
vector x ∈ Ωm, we denote by K[x] the m×m matrix defined as

K[x]ij = K(xi, xj),

which is called the Gram matrix of the kernel Kwith respect to the vector x = (x1, . . . , xm). By
I is denoted the identity matrix.

Theorem 3.1 (Representer Theorem) Let Ω be a nonempty set, K : Ω×Ω → R a kernel,
m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , ym) ∈ Rm, z = (x, y) and γ > 0.
Then there exists a unique solution go of the problem (HK(Ω), Eγ,K) such that

go =
m∑

i=1

ciKxi , (3.1)

where c = (c1, . . . , cm) is the unique solution of the well-posed linear system

(γ m I +K[x])c = y. (3.2)

The Representer Theorem was originally proven in [21]. An elegant proof using directional
derivatives is given in [34, pp. 538-539], while a more sophisticated argument based on the
Mercer Theorem (which applies merely to Mercer kernels) is in [9, p. 42]. Inspection of
these proofs shows that for any differentiable loss function V , the solution is of the form
go =

∑m
i=1 ciKxi . However, when V is not a polynomial of degree 2, the equation to be solved

to compute the coefficients c1, . . . , cm is nonlinear [17, p. 1473]. A weaker form of Theorem
3.1 without a formula for computing the coefficients c1, . . . , cm even holds for an arbitrary loss
function V and a stabilizer of the form ψ(‖ · ‖K) with ψ : [0,+∞) → R strictly increasing [36].

The Representer Theorem was exploited to design an algorithm for learning from data.
Applications of this algorithm are quoted in [34]. However, feasibility of such applications is
limited by the speed of convergence of iterative algorithms solving the linear system of equations
(3.2) and by the size of the condition number of the matrix γmI +K[x].

Recall that the condition number of a nonsingular m×m matrix A with respect to a norm
‖.‖ on Rm is defined as

cond(A) = ‖A‖ ‖A−1‖,
where ‖A‖ denotes the norm of A as a linear operator A on (Rm, ‖.‖).

Let λmax(A), λmin(A), resp., denote maximal and minimal eigenvalues of the matrix A. To
simplify our notation, we write λmax instead of λmax(K[x]) and similarly for λmin. As K[x] is
positive semidefinite, all its eigenvalues are nonnegative [29, p. 7].

It is easy to check that for any norm and any nonsingular matrix A, cond(A) ≥ |λmax(A)|
|λmin(A)|

and for any symmetric nonsingular matrix A, cond2(A) = |λmax(A)|
|λmin(A)| , where cond2(A) denotes

the condition number of A with respect to the l2-norm.
As λ is an eigenvalue of K[x] if and only if γm+ λ is an eigenvalue of γmI +K[x], we have

cond2(γmI +K[x]) =
γ m+ λmax

γ m+ λmin
≤ λmax

λmin
= cond2(K[x]) (3.3)

and

cond2(γmI +K[x]) =
γ m+ λmax

γ m+ λmin
≤ 1 +

λmax

γ m
. (3.4)
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So (3.3) shows that when cond2(K[x]) is sufficiently small, good conditioning of γmI+K[x]
is guaranteed for any γ. However for large samples, K[x] might be ill-conditioned. For example,
when the data are uniformly distributed on an interval, then the probability that K[x] is ill-
conditioned increases with m (see [10, Theorem 2.2] and [11, Theorem 5.1]).

As by (3.4) limγ→∞ cond2(γmI + K[x]) = 1, a regularization parameter γ can be always
chosen so that cond2(γmI + K[x]) is close to 1. But good conditioning of γmI + K[x] is not
the only requirement on γ, its size must also allow good fit to the empirical data and thus it
cannot be too large. Existence of γ guaranteeing a good fit to data as well as good conditioning
depends on the speed of convergence of the condition number of γmI +K[x] to 1. The smaller
λmax

m , the faster is this convergence.
When γ guaranteeing both small condition number and a good fit to the empirical data

cannot be found, other algorithms for learning from data than the one based on the Representer
Theorem have to be applied. A rich variety of learning algorithms have been developed in the
field of neurocomputing. Typically, such algorithms operate on networks of a smaller model
complexity than the algorithm based on the Representer Theorem. The number of hidden
units in such networks is either set in advance or allocated during learning, but typically it is
much smaller than the size m of the sample used as a training set. Moreover, the hidden-unit
parameters (which are called centroids in the case of RBF networks) are not set equal to the
input vectors from the data sample but are adjusted during learning. In the next section we
derive tools for estimating speed of convergence of suboptimal solutions obtained by neural-
network algorithms to the optimal one given by the Representer Theorem.

4 Minimization of regularized empirical errors over hy-

pothesis sets with bounded model complexity

Suboptimal solutions obtainable by neural-network algorithms can be studied in the framework
of optimization over nested families of subsets of RKHSs formed by linear combinations of all
n-tuples of kernel functions {Kx : x ∈ Ω}. For a subset G of a linear space, let spannG =
{∑n

i=1 wigi : wi ∈ R, gi ∈ G} denote the set of linear combinations of all n-tuples of elements
of G. Then the optimal solution described by the Representer Theorem is an element of
spanmGK , where GK = {Kx : x ∈ Ω}. The set spanmGK can be interpreted as the set of all
input/output functions of a neural network with one hidden layer with m computational units
computing functions from GK . In particular for the Gaussian kernel, the solution has the form
of an input/output function of a Gaussian radial-basis function (RBF) network with m hidden
units [18].

To compare the optimal solution given by the Representer Theorem with suboptimal ones
that can be obtained by minimization of Eγ,K over restricted hypothesis sets containing only
linear combinations of all n-tuples of elements of the set GK , we shall employ a version of the
Maurey-Jones-Barron Theorem [4, 20, 31] reformulated in [22, 23] in terms of a norm called
G-variation.

Recall that the Minkowski functional of a subset M of a linear space X , denoted by pM , is
defined for every f ∈ X as pM (f) = inf{λ ∈ R+ : f/λ ∈ M}. For M a subset of a normed
linear space (X, ‖ · ‖) we denote by clM its closure with respect to the topology generated by
‖ · ‖, i.e., clM = {f ∈ X : (∀ε > 0) (∃g ∈M) ‖f − g‖ < ε)}.

G-variation is defined for a subset G of a normed linear space (X, ‖.‖) as the Minkowski
functional of the closure of the convex hull of the set G ∪ −G. So denoting G-variation by
‖ · ‖G, for every f ∈ X we have ‖f‖G = {c > 0 : f/c ∈ cl conv (G ∪ −G)} . For properties of
G-variation, see [23, 24, 25, 27].

Maurey-Jones-Barron’s theorem reformulated in terms of G-variation [23] gives for a Hilbert
space (X, ‖.‖), its bounded subset G with sG = supg∈G ‖g‖ and every f ∈ X the following upper
bound on rate of approximation by spannG.

5



‖f − spannG‖ ≤
√

(sG ‖f‖G)2 − ‖f‖2

n
. (4.1)

Taking advantage of this upper bound, the next theorem estimates rates of convergence
of suboptimal solutions of the problems of minimizations of a continuous functional Φ over
hypothesis sets of the form spannG with n increasing. The estimates are formulated in terms
of moduli of continuity and convexity of the functional to be minimized.

A functional Φ : X → R is continuous at f ∈ X if for any ε > 0 there exists η > 0 such
that ‖f − g‖ < η implies |Φ(f) − Φ(g)| < ε. A modulus of continuity of Φ at f is a function
ω : [0,+∞) → [0,+∞) defined as ω(a) = sup{|Φ(f)− Φ(g)| : ‖f − g‖ ≤ a}.

Φ is convex on a convex set M ⊆ X if for all h, g ∈ M and all λ ∈ [0, 1], we have Φ(λh +
(1 − λ)g) ≤ λΦ(h) + (1− λ)Φ(g).

Φ is uniformly convex on a convex set M ⊆ X if there exists a non-negative function
δ : R+ → R+, such that δ(0) = 0, for all t > 0, δ(t) > 0, and for all h, g ∈M and all λ ∈ [0, 1],
Φ(λh+ (1 − λ)g) ≤ λΦ(h) + (1 − λ)Φ(g) − λ(1 − λ)δ(‖h− g‖). Any such function δ is called a
modulus of convexity of Φ [28] 4.

Before proving the theorem, we state elementary properties of moduli of convexity.

Proposition 4.1 Let (X, ‖.‖) be a normed linear space, M ⊆ X convex and Φ be a uniformly
convex functional on M with a modulus of convexity δ. Then the following hold:
(i) if Ψ is convex on M and γ > 0, then Φ + γΨ is uniformly convex on M with a modulus of
convexity γ δ;
(ii) if go ∈ argmin(M,Φ), then for every g ∈M δ(‖g − go‖) ≤ Φ(g)− Φ(go);
(iii) if (X, ‖.‖) is a Hilbert space, then the functional ‖.‖2 : X → R is uniformly convex with a
modulus of convexity δ(t) = t2.

Proof. (i) and (ii) follow directly from the definitions.
(ii) By the definition of uniformly convex convex functional, for every λ ∈ [0, 1] we have λ(1 −
λ)δ(‖g−go‖) ≤ λΦ(g)+(1−λ)Φ(go)−Φ(λg+(1−λ)go). As Φ(go) ≤ Φ(λg+(1−λ)go), we get
λ(1−λ)δ(‖g−go‖) ≤ λΦ(g)+(1−λ)Φ(go)−Φ(go) = λ (Φ(g)− Φ(go)). Hence (1−λ)δ(‖g−go‖) ≤
Φ(g) − Φ(go). Taking the infimum over λ, we obtain δ(‖g − go‖) ≤ Φ(g) − Φ(go).
(iii) It is easy to check that for every h, g ∈ X and λ ∈ [0, 1], we have ‖λh + (1 − λ)g‖2 ≤
λ‖h‖2 + (1 − λ)‖g‖2 − λ(1 − λ)‖h− g‖2. ✷

Theorem 4.2 Let (X, ‖.‖) be a Hilbert space, G its bounded subset, sG = supg∈G ‖g‖, Φ : X →
(−∞,+∞] a functional, go ∈ argmin (X,Φ), Φ continuous at go with a modulus of continuity
α, {εn} a sequence of positive reals, gn ∈ argminεn

(spannG,Φ), and let

a = (sG‖go‖G)2 − ‖go‖2.

Then for every integer n the following estimates hold:
(i) infg∈spann G Φ(g)− Φ(go) ≤ α

(√
a
n

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is a Φ-minimizing sequence and Φ(gn) −
Φ(go) ≤ α

(√
a
n

)
+ εn;

(iii) if Φ is uniformly convex with a modulus of convexity δ, then
δ(‖gn − go‖) ≤ α

(√
a
n

)
+ εn.

Proof. (i) For every n and every ε > 0, choose an ε-near best approximation fε
n of go in spannG.

So ‖go−fε
n‖ < ‖go−spannG‖+ε. As fε

n ∈ spannG, we have infg∈spann G Φ(g)−Φ(go) ≤ Φ(fε
n)−

Φ(go). Estimating the right-hand side of this inequality in terms of the modulus of continuity
α of Φ at go, we obtain infg∈spann G Φ(g)−Φ(go) ≤ α

(‖fε
n − go‖) ≤ α

(‖go − spannG‖+ ε
)
. By

(4.1) we get
4The terminology is not unified: some authors use the term strictly uniformly convex instead of uniformly

convex, while they reserve the term uniformly convex for the case when δ : [0,+∞) → [0, +∞) merely satisfies
δ(0) = 0 and for some t0 > 0, δ(t0) > 0 (see, e.g., [42] and [12, p. 10]).
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inf
g∈spann G

Φ(g)− Φ(go) ≤ α

(√
a

n
+ ε

)
. (4.2)

Infimizing (4.2) over ε we obtain (i).
(ii) By the definition of εn-argminimum, we have

Φ(gn) − Φ(go) ≤ infg∈spann G Φ(g) − Φ(go) + εn. So by the item (i) we get

Φ(gn) − Φ(go) ≤ α

(√
a

n

)
+ εn. (4.3)

If limn→∞ εn = 0 and ‖go‖G is finite, then the right-hand side of (4.3) converges to zero and
so {gn} is Φ-minimizing.

(iii) By the item (i), the definition of εn-argmin, and Proposition 4.1 (iii), we have δ(‖gn −
go‖) ≤ Φ(gn) − Φ(go) < infg∈spann G Φ(g) − Φ(go) + εn ≤ α

(√
a
n

)
+ εn. ✷

Theorem 4.2 can be derived as a corollary of a more general theorem from [26], which has
consequences also for other types of regularization including the Ivanov’s one. However, the
direct argument stated here in the proof of Theorem 4.2 is much simpler than the proof of the
more general result from [26].

To employ Theorem 4.2 for deriving rates of approximate minimization of regularized em-
pirical error functionals with kernel stabilizers, we need to estimate moduli of continuity and
convexity of these functionals. The next proposition describes convexity and continuity prop-
erties of regularized empirical error functionals with various loss functions.

Proposition 4.3 Let Ω be a nonempty set, K : Ω × Ω a kernel, γ > 0, m a positive integer,
x = (x1, . . . , xm) ⊆ Ωm, y = (y1, . . . , ym) ∈ Rm, z = (x, y), ymin = min{|yi| : i = 1, . . . ,m},
and V : Ω×R → R a loss function. Then the following hold:
(i) if for every i = 1, . . . ,m the functions V (·, yi) : R → R are convex, then EV,γ,K is uniformly
convex on HK(Ω) with a modulus of convexity δ(t) = γt2;
(ii) if V is either the square or the absolute value loss function, then at every f ∈ HK(Ω) the
functional EV,γ,K is continuous with a modulus of continuity bounded from above by the quadratic
function β(t) = b2t

2 + b1t, where for the square loss b2 = s2K + γ and b1 = 2
(‖f‖K (s2K + γ) +

ymin s
2
K

)
, while for the absolute value loss b2 = γ and b1 = sK + 2γ‖f‖K;

(iii) if V is the square loss function, then there exists a unique argminimum go of the problem
(HK(Ω), EV,γ,K) and for every f ∈ HK(Ω)

‖f − go‖2
K ≤ EV,γ,K(f) − EV,γ,K(go)

γ
.

Proof. (i) It is easy to show that for such loss functions the empirical error functional EV =
1/m

∑m
i=1 V (f(xi), yi) is convex and so the statement follows from Proposition 4.1 (i) and (iii).

(ii) For the square loss, by the inequality (7.1) we obtain |EV,γ,K(f) − EV,γ,K(g)| =∣∣∣ 1
m

∑m
i=1

(
(f(xi)−yi)2−(g(xi)−yi)2

)
+ γ

(‖f‖2
K−‖g‖2

K

) ∣∣∣ ≤ ∣∣∣ 1
m

∑m
i=1

(
f(xi)−g(xi)

) (
f(xi)+

g(xi)−2yi

) ∣∣∣+γ∣∣ ‖f‖K −‖g‖K

∣∣(‖f‖K +‖g‖K) ≤ supx∈Ω |f(x)−g(x)|∣∣supx∈Ω |f+g|−2ymin

∣∣+
γ ‖f − g‖K (‖f‖K + ‖g‖K) ≤ t sK

∣∣sK‖f + g‖K − 2ymin

∣∣ + t γ (‖f‖K + ‖g‖K).
Let t > 0 and f, g be such that ‖f − g‖K ≤ t. Then |EV,γ,K(f) − EV,γ,K(g)| ≤

t sK
∣∣2‖f‖K sK + t sK −2ymin

∣∣+γt (2‖f‖K + t) ≤ t2 (s2K +γ)+2t
(‖f‖K s

2
K +ymin sK +γ‖f‖K

)
.

Thus, ‖f − g‖K < t implies |EV,γ,K(f)−EV,γ,K(g)| ≤ β(t) = b2t
2 + b1t, where b2 = s2K + γ and

b1 = 2
(‖f‖K (sK + γ) + ymin s

2
K

)
.

Similarly, for the absolute value loss we have |EV,γ,K(f) − EV,γ,K(g)| =∣∣ 1
m

∑m
i=1

∣∣f(xi) − g(xi)
∣∣ + γ

(‖f‖2
K − ‖g‖2

K

) ∣∣ ≤ supx∈Ω |f(x)−g(x)|+γ ∣∣ ‖f‖K−‖g‖K

∣∣(‖f‖K+
‖g‖K) ≤ sK ‖f − g‖K +γ ‖f − g‖K (‖f‖K + ‖g‖K) ≤ sK t + t γ (‖f‖K +‖g‖K) ≤ sK t+ t γ (t+
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2 ‖f‖K). Thus, ‖f − g‖K < t implies |EV,γ,K(f)− EV,γ,K(g)| ≤ β(t) = b2t
2 + b1t, where b2 = γ

and b1 = sK + 2γ‖f‖K.
(iii) The existence of a unique argminimum go follows from the Representer Theorem. By

Proposition 4.1(i), (iii), and (iv) for every f ∈ HK(Ω), we have γ‖f − go‖2
K ≤ |EV,γ,K(f) −

EV,γ,K(go)|. ✷

The assumptions of Proposition 4.3 (i) are satisfied by both the square and the absolute
value loss. So these two loss functions determine uniformly convex functionals EV,γ,K with
quadratic moduli of convexity. Their moduli of continuity at any f ∈ HK(Ω) are also bounded
from above by a quadratic function, which has the form β(t) = b2t

2 + b1t , where in both cases
b2 depends on γ and, for the square loss, on sK , while b1 depends on γ, sK , ‖f‖K and, for the
square loss, on ymin. The larger the regularization parameter γ, the larger the coefficients of
the quadratic function bounding the moduli of continuity. Generally, the modulus of continuity
of EV,γ,K depends on the moduli of continuity of the functions V (·, yi), i = 1, . . . ,m.

5 Suboptimal solutions over kernel models with bounded

complexity

In this section, we derive estimates of rates of convergence of suboptimal solutions of the
problems (spannGK , Eγ,K) to the optimal solution go of the problem (HK(Ω), Eγ,K) given by the
Representer Theorem. In contrast to the optimal solution go, which is a linear combinations of
the representers Kx1, . . . ,Kxm determined by the sample x1, . . . , xm of input data, suboptimal
solutions are formed by linear combinations of arbitrary n-tuples of elements of GK = {Kx :
x ∈ Ω}. In practical applications, a proper n-tuple together with coefficients of the linear
combination are adjusted during learning by some neural-network algorithm (see, e.g., [1, 7, 19]).

Without loss of generality we can assume that ymin = min{|yi| : i = 1, . . . ,m} = 0, as by
shifting the sample as well as the solution we can always reduce the problem to this case. Note
that although the next theorem holds for any integer n, it is useful only for n < m since by the
Representer Theorem, the minimum over spanmGK is equal to the minimum over the whole
space.

Theorem 5.1 Let Ω be a nonempty set, K : Ω × Ω → R a kernel, sK = supx∈Ω

√
K(x, x),

m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , ym) ∈ Rm, z = (x, y), ymin =
min{|yi| : i = 1, . . . ,m} = 0, go =

∑m
i=1 ciKxi the unique argminimum of (HK(Ω), Eγ,K), {εn}

a sequence of positive reals such that limn→∞ εn = 0, and {gn} a sequence of εn-argminima of
(spannGK , EK). Let u = (s2K + γ)a and v = 2(s2K + γ)‖go‖K

√
a, where a = (sK ‖go‖GK )2 −

‖go‖2
K . Then for every integer n the following estimates hold:

(i) infg∈spann GK Eγ,K(g) − Eγ,K(go) ≤ u
n + v√

n
;

(ii) Eγ,K(gn) − EK(go) ≤ u
n + v√

n
+ εn;

(iii) ‖gn − go‖2
K ≤ 1

γ

(
u
n + v√

n
+ εn

)
;

(iv) supx∈Ω |gn(x) − go(x)|2 ≤ s2
K

γ

(
u
n + v√

n
+ εn

)
.

Proof. (i) Combining Theorem 4.2 (i) with Proposition 4.3 (ii), we get infg∈spann GK Eγ,K(g)−
Eγ,K(go) ≤ β

(√
a
n

)
, where β(t) = (s2K + γ) (t2 + 2 ‖go‖K t), which gives the upper bound

(s2K + γ)
(

a
n + 2‖go‖K

√
a
n

)
.

Similarly, the item (ii) follows from Theorem 4.2 (ii) and Proposition 4.3 (ii), the item (iii)
from (ii) and Proposition 4.3 (iii), and the item (iv) from (iii) and the inequality (7.1). ✷

So when u and v are not too large, it is possible to choose n small enough so that net-
works with n hidden units are implementable and a suboptimal solution over sets of functions
computable by such networks is a good approximation of the optimal solution given by the
Representer Theorem.
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The only terms in the above formulas defining u and v, which cannot be derived directly
from the data sample z, the kernel K and the regularization parameter γ, are the values of the
two norms of the optimal solution go: its GK-variation and its K-norm. The next proposition
estimates these two values in terms of the size m of the sample, the regularization parameter
γ, the l2-norm of the output vector y, and the maximum and the minimum eigenvalues, λmax

and λmin, of the Gram matrix K[x] of the kernel K with respect to the input data vector x.
By ‖ · ‖1 and ‖ · ‖2 are denoted the l1 and l2-norm, resp., on Rm.

Proposition 5.2 Let Ω be a nonempty set, K : Ω×Ω → R a kernel, sK = supx∈Ω

√
K(x, x),

γ > 0, m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , ym) ∈ Rm, go =
∑m

i=1 ciKxi

the unique solution of the problem (HK(Ω), Eγ,K). Then the following estimates hold:
(i) ‖go‖GK ≤

√
m‖y‖2

γm+λmin
;

(ii) ‖go‖K ≤
√

λmax‖y‖2
γm+λmin

;

(iii) s2K ‖go‖2
GK

− ‖go‖2
K ≤ (s2

K m−λmin) ‖y‖2
2

(γm+λmin)2 .

Proof. (i) It follows from the Representer Theorem, the definition of GK -variation, and the
Cauchy-Schwartz inequality that

‖go‖GK ≤
m∑

i=1

|ci| = ‖c‖1 ≤ √
m ‖c‖2, (5.1)

where c = (γ m I + K[x])−1y. By the definition of the norm of an operator, ‖c‖2 ≤ ‖(γ m I +
K[x])−1‖2 ‖y‖2. As (γmI +K[x])−1 is symmetric and positive definite, its l2-norm is equal to
its maximal eigenvalue, which is 1

γm+λmin
. So we have

‖c‖2 ≤ ‖y‖2

γm+ λmin
(5.2)

and thus ‖go‖GK ≤
√

m‖y‖2
γm+λmin

.

(ii) By the Representer Theorem, ‖go‖2
K =

〈∑m
i=1 ciKxi ,

∑m
j=1 cjKxj

〉
K

=∑m
i,j=1 ci cjK(xi, xj) = cT K[x]c, where cT denotes the transpose of the vector c. Hence [29, p.

21]

λmin‖c‖2
2 ≤ ‖go‖2

K ≤ λmax‖c‖2
2 . (5.3)

Thus by (5.2), ‖go‖K ≤
√

λmax‖y‖2
γ m+λmin

.
(iii) By (5.1) and (5.3),

s2K‖go‖2
GK

− ‖go‖2
K ≤ s2K

√
m‖c‖2

2 − λmin‖c‖2
2 ≤ (

s2Km− λmin

) ‖c‖2
2 ≤ (s2K m− λmin) ‖y‖2

2

(γm+ λmin)2
.

✷

As both λmin and λmax are nonnegative, we can farther simplify the upper bounds from
Proposition 5.2:
(i) ‖go‖GK ≤ ‖y‖2

γ
√

m
,

(ii) ‖go‖K ≤
√

λmax‖y‖2
γm ,

(iii) s2K ‖go‖2
GK

− ‖go‖2
K ≤ s2

K‖y‖2
2

γ2m .

Combining Proposition 5.2 with Theorem 5.1, we derive upper bounds on rates of conver-
gence of approximate solutions of the problems (spannGK , Eγ,K) to the solution of the problem
(HK(Ω), Eγ,K) in terms of sK , m, γ, ‖y‖2, λmin and λmax.

9



Corollary 5.3 Let Ω be a nonempty set, K : Ω × Ω → R a kernel, sK = supx∈Ω

√
K(x, x),

γ > 0, m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , ym) ∈ Rm, min{|yi| :
i = 1, . . . ,m} = 0, go =

∑m
i=1 ciKxi the unique solution of (HK(Ω), EK), {εn} a sequence of

positive reals, {gn} a sequence of εn-argminima of (spannGK , Eγ,K). Let

ū =
(
s2K + γ

) (s2K m− λmin) ‖y‖2
2

(γm+ λmin)2
≤ (

s2K + γ
) s2K ‖y‖2

2

γ2m
and

v̄ = 2
(
s2K + γ

) √
λmax‖y‖2

(γ m+ λmin)2

√
(s2K m− λmin) ‖y‖2

2 ≤ 2
(
s2K + γ

) √
λmaxsK‖y‖2

2

γ2m2
.

Then for every positive integer n the following estimates hold:
(i) infg∈spann GK Eγ,K(g) − Eγ,K(go) ≤ ū

n + v̄√
n
;

(ii) Eγ,K(gn) − EK(go) ≤ ū
n + v̄√

n
+ εn;

(iii) ‖gn − go‖2
K ≤ 1

γ

(
ū
n + v̄√

n
+ εn

)
;

(iv) supx∈Ω |gn(x) − go(x)|2 ≤ s2
K

γ

(
ū
n + v̄√

n
+ εn

)
.

Thus to obtain a good approximation of the optimal solution given by the Representer
Theorem by a suboptimal solution computable by a neural network, both û

n and v̂√
n

have to
be sufficiently small for some n, for which networks with n hidden units computing functions
from GK are implementable.

The next corollary illustrates behavior of û
n and v̂√

n
in the case of convolution kernels

K(u, v) = ψ(‖u− v‖) with ψ : R → [0, 1] monotonically decreasing and satisfying ψ(0) = 1 (so
it applies to the Gaussian kernel). The corollary estimates rates of convergence of suboptimal
solutions for input/output pairs of data (x1, y1), . . . , (xm, ym), for which the inputs are suffi-
ciently separated so that there exists some a ∈ [0, 1] such that for all distinct i, j ∈ {1, . . . ,m},
ψ(‖xi − xj‖) ≤ a.

Corollary 5.4 Let K : Rd × Rd → R be a kernel such that K(u, v) = ψ(‖u − v‖) with
ψ : R → [0, 1] monotonically decreasing, satisfying ψ(0) = 1, and such that for all distinct
i, j ∈ {1, . . . ,m}, ψ(‖xi − xj‖) ≤ a. Let γ > 0, m be a positive integer, x = (x1, . . . , xm) ∈
Rm, y = (y1, . . . , ym) ∈ Rm, ymin = min{|yi| : i = 1, . . . ,m} = 0, go =

∑m
i=1 ciKxi the

unique solution of (HK(Rd), EK), {εn} a sequence of positive reals, and {gn} a sequence of
εn-argminima of (spannGK , Eγ,K). Let

û = (1 + γ)
‖y‖2

2

γ2m
and

v̂ = 2 (1 + γ)

√
1 + (m− 1)a‖y‖2

2

γ2m2
.

Then for every positive integer n the following estimates hold:
(i) infg∈spann GK Eγ,K(g) − Eγ,K(go) ≤ û

n + v̂√
n
;

(ii) Eγ,K(gn) − EK(go) ≤ û
n + v̂√

n
+ εn;

(iii) ‖gn − go‖2
K ≤ 1

γ

(
û
n + v̂√

n
+ εn

)
;

(iv) supx∈Ω |gn(x) − go(x)|2 ≤ 1
γ

(
û
n + v̂√

n
+ εn

)
.

Proof. The estimates follow from Corollary 5.3 combined with the following upper bounds on
ū and v̄:
As sK = 1 and λmax ≤ ‖K[x]‖1 = maxj=1,...,m

∑m
i=1 |K[x]i,j | [29, pp. 6, 21-23], we have

λmax ≤ 1 + (m− 1)a and so we get

ū = (1 + γ)
‖y‖2

2

γ2m
= û
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v̄ ≤ 2 (1 + γ)

√
1 + (m− 1)a‖y‖2

2

γ2m2
= v̂.

✷

Estimating from above formulas from Corollary 5.4 in terms of the maximum of the absolute
values of output data, we get the following corollary.

Corollary 5.5 Let K : Rd × Rd → R be a kernel such that K(u, v) = ψ(‖u − v‖) with
ψ : R → [0, 1] monotonically decreasing, satisfying ψ(0) = 1, and such that for all distinct
i, j ∈ {1, . . . ,m}, ψ(‖xi − xj‖) ≤ a. Let γ > 0, m be a positive integer, x = (x1, . . . , xm) ∈
Rm, y = (y1, . . . , ym) ∈ Rm, ymin = min{|yi| : i = 1, . . . ,m} = 0, ymax = max{|yi| : i =
1, . . . ,m}, go =

∑m
i=1 ciKxi the unique solution of (HK(Rd), EK), {εn;n = 1, . . . ,m} positive

real numbers, {gn : n = 1, . . . ,m} εn-argminima of (spannGK , Eγ,K), and let

c =
3(1 + γ)y2

max

γ2
.

Then for every positive integer n ≤ m the following estimates hold:
(i) infg∈spann GK Eγ,K(g) − Eγ,K(go) ≤ c

n ;
(ii) Eγ,K(gn) − EK(go) ≤ c

n + εn;
(iii) ‖gn − go‖2

K ≤ 1
γ

(
c
n + ε

)
;

(iv) supx∈Ω |gn(x) − go(x)|2 ≤ 1
γ

(
c
n + ε

)
.

Proof. As ‖y‖2
2 ≤ my2

max, by Corollary 5.4, we get
û
n + v̂√

n
≤ (1+γ)y2

max
γ2

(
1
n + 2

√
1+(m−1)a

m
√

n

)
, which for a ∈ [0, 1] and n ≤ m is bounded from above

by (1+γ)y2
max

γ2

(
1
n + 2√

mn

)
≤ 3(1+γ)y2

max
γ2 n . ✷

So when γ is not too small and ymax is not too large, Corollary 5.5 guarantees good approx-
imation of the optimal solution by the suboptimal ones.

In particular for the Gaussian kernel, the minimum of the regularized empirical error func-
tional over the set of functions computable by Gaussian radial-basis function networks with
n hidden units approximates the global minimum over the whole RKHS within c

n , where

c = 3(1+γ)y2
max

γ2 . For example, for γ = 0.5, we have c = 18y2
max as 1+γ

γ2 = 6.

6 Discussion

We have compared two approaches to learning from data with generalization capability, both
modelling learning as a minimization of an empirical error functional regularized by the square
of a norm on a RKHS, but differing in the hypothesis set over which minimization takes place.
The first approach, which is based on the Representer Theorem, considers minimization over
the whole RKHS, while the second one only over its subsets formed by functions computable
by neural networks with n hidden units computing functions defined by the kernel.

We have derived upper bounds on error of approximation of the optimal solution by the
suboptimal ones obtainable using such networks with n increasing. We have shown that when
absolute values of output data are not too large and the regularization parameter is not too
small, then suboptimal solutions approximate the optimal one within c

n with c moderate. In
such cases, neural network algorithms operating on networks with n hidden units can approxi-
mate the optimal solution quite well. As the upper bounds from corollaries 5.4 and 5.5 do not
depend on the number of variables d, approximation of the optimal solution by neural networks
does not exhibit the curse of dimensionality (which is a frequent cause of problems in the case
of linear approximators).
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So when the solution of the system of linear equations described in the Representer Theorem
is either not computationally feasible or when it is ill-conditioned, neural networks represent
a useful and quite accurate alternative to the learning algorithms built on the Representer
Theorem.

Minimization over sets of neural-network parameters is a nonlinear programming problem,
which can be solved, as discussed in [32, p. 1489], by iterative methods such as gradient descent
[7, pp. 103-106, 173-174] (possibly with additive stochastic terms to avoid local minima, due
to nonconvexity of EK as a function of the parameters), genetic algorithms [19], and simulated
annealing [1].
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7 Appendix

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space (X, 〈, 〉) formed by functions
defined on a nonempty set Ω such that for every u ∈ Ω the evaluation functional Fu, defined
for any f ∈ X as Fu(f) = f(u), is bounded [2, 5, 9].

RKHSs can be elegantly characterized in terms of kernels, which are symmetric positive
semidefinite functions K : Ω × Ω → R, i.e., functions satisfying for all positive integers m, all
(w1, . . . , wm) ∈ Rm, and all (u1, . . . , um) ∈ Ωm,

m∑
i,j=1

wi wj K(ui, uj) ≥ 0.

By the Riesz Representation Theorem [15, p. 200], for every u ∈ Ω there exists a unique element
Ku ∈ X , called the representer of u, such that Fu(f) = 〈f,Ku〉 for all f ∈ X (this property is
called the reproducing property). It is easy to check that the function K : Ω×Ω defined for all
u, v ∈ Ω as K(u, v) = 〈u, v〉 is a kernel.

On the other hand, every kernel K : Ω × Ω → R generates a RKHS, which is denoted by
HK(Ω) with the norm ‖ · ‖K and the inner product 〈·, ·〉K . HK(Ω) is defined as the completion
of the linear span of the set {Ku : u ∈ Ω} with the inner product 〈Ku,Kv〉K = K(u, v) (see,
e.g., [2] and [5, p. 81]).

By the Cauchy-Schwartz inequality, for every f ∈ HK(Ω) and every u ∈ Ω we have |f(u)| =
|〈f,Ku〉K | ≤ ‖f‖K

√
K(u, u) ≤ sK ‖f‖K , where sK = supu∈Ω

√
K(u, u). Thus for every kernel

K, we have

sup
u∈Ω

|f(u)| ≤ sK‖f‖K . (7.1)

A paradigmatic example of a kernel is the Gaussian kernel K : Rd × Rd → R, defined as
K(u, v) = exp(−‖u− v‖2). Other examples of kernels are K(u, v) = exp(−‖u− v‖), K(u, v) =
〈u, v〉p (homogeneous polynomial of degree p), where 〈·, ·〉 is any inner product on Rd, K(u, v) =
(1 + 〈u, v〉)p (inhomogeneous polynomial of degree p), and K(u, v) = (a2 + ‖u − v‖2)−α with
α > 0 [9, p. 38].

The role of ‖.‖2
K as a stabilizer can be illustrated on two examples of classes of kernels. The

first one is formed by Mercer kernels, i.e., continuous kernels defined on compact Ω ⊂ Rd. For a
Mercer kernelK, ‖.‖2

K can be expressed using eigenvectors and eigenvalues of the compact linear
operator LK : L2(Ω) → C(Ω) defined for every f ∈ L2(Ω) as LK(f)(x) =

∫
Ω
K(x, u) f(u) du ,

where L2(Ω) and C(Ω) denote the spaces of square integrable and of continuous functions on
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Ω, resp. By the Mercer Theorem (see, e.g., [9, p.36])

‖f‖2
K =

∞∑
i=1

c2i
λi
,

where the λi’s are the eigenvalues of LK and the ci’s are the coefficients of the representation
f =

∑∞
i=1 ciφi, where {φi} is the orthonormal basis of HK(Ω) formed by the eigenvectors of

LK .
Note that the sequence {λi} is either finite or it converges to zero (for K smooth, the

convergence to zero is rather fast [14, p. 1119]). Thus the stabilizer ‖.‖2
K penalizes functions,

for which the sequence of coefficients {ci} does not converge to zero sufficiently quickly. So the
stabilizer ‖.‖2

K plays the role of a high-frequency filter.
The second class of kernels, on which we illustrate the role of ‖.‖2

K as a stabilizer, contains
convolution kernels, i.e., kernels K(x, y) = k(x − y), for which the Fourier transform k̃ is
positive. For such kernels, the stabilizer can be represented as

‖f‖2
K =

1
(2 π)d/2

∫
Rd

f̃(ω)
2

k̃(ω)
dω (7.2)

(see [17], [37, p. 97]). So the function 1
k̃

plays an analogous role as the sequence { 1
λi
} in the

case of a Mercer kernel.
For example, the Gaussian kernel is a convolution kernel with positive Fourier transform

(its Fourier transform is k̃(ω) = exp(−‖ω‖2/2)).
Another example of a convolution kernel with positive Fourier transform is K(u, v) =

k(u− v) = exp(−a ‖u− v‖), where k(t) = exp(−a ‖t‖), k̃(ω) =
2d/2 a π−1/2Γ(d/2 + 1) (a2 + ‖ω‖2)−(d+1)/2 [37, p. 107], and Γ denotes the gamma function
defined for a complex number s with Re(s) > 0, as Γ(s) =

∫ ∞
0 exp(−r) rs−1 d r (for all non-

negative integers n, Γ(n + 1) = n!). In this case, the rate of decay of k̃(ω) is of the order of
‖ω‖−(d+1) .

For d = 1 and a = 1, one gets as a special case a kernel K : R × R → R defined as
K(u, v) = k(u−v) = exp(−|u−v|). Since Γ(1) = 1, Γ(1/2) =

√
π, and Γ(s+1) = sΓ(s), k̃(ω) =(√

2π(1 + ω2)
)−1

. Thus ‖f‖2
K = 1/2π

∫
R f̃(ω)

2
(√

2π(1 + ω2)
)
dω = 1/

√
2π

∫
R f̃(ω)

2 dω +
1/

√
2π

∫
R ω

2 f̃(ω)2 dω . As f̃ ′ = ω f̃(ω) and
∫
R f(t)

2 dt = 1/2π
∫
R f̃(ω)

2 dω , by Parseval’s
formula [35, p. 172], ‖f‖2

K =
√

2π
(‖f‖2

L2
+ ‖f ′‖2

L2

)
. So as noticed in [17], in this case the

norm on the RKHS is equal to the Sobolev norm ‖.‖1,2.
For more information on kernels and their role in learning theory see, e.g., [37].
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[24] V. Kůrková and M. Sanguineti. Bounds on rates of variable-basis and neural-network
approximation. IEEE Trans. on Information Theory, 47:2659-2665, 2001.
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