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Abstract

The method proposed is very close to popular and often efficienct methods of the nearest neighbors. Standard
methods of probability density estimate for classification which are based on the nearest neighbors approach solve
the problem of classification by an estimate of the probability density in the point x of the data space by ratio i/V.

i isthe number points of a given class of thetraining set in a suitable ball of volume V with center at the point x.
The new method is based on distances of al points of a given class of the training set from a given (unknown)
point x. It is shown that the sum of reciprocals of (n-1)-st power of these distancesis convergent and can be used
as the probability density estimate. The speed of convergence is the better the higher dimensionality. The
classification quality was tested and compared with other methods.

Keywords:
Bayes ratio estimation, multivariate data, classification, curse of dimensionality, classification speed, nearest
neighbor



Introduction

The methods of classification based on the nearest neighbors estimate the probability density in the point x of the
data space by ratio i/V; . i isanumber of points of a given classin asuitable ball of volume V; with center in the
point x [1]. These methods need to optimize the best size of the neighborhood, i.e. the number of pointsi in the
neighborhood of the point x or size of volume V;. The probability density in the feature (data) space is given by
training data. Optimal neighborhood size depends on training data set, i.e. on character of data aswell ason the
number of samples of a given classin the training set.

The method proposed is based on distances of the training set samplesx;, i =1, 2, ... kfrom the point x. We will
show its fast convergence, i.e. small influence of distant samplesin multidimensional Euclidean space.

Using distances, i.e. a smple transformation from E, to E;, and no iterations the curse of dimensionality is
straightforwardly eliminated. The method can be also considered as a variant of kernel method, based on a
probability density estimator, but using a much simpler metric.

Throughout this paper let us assume that we deal with standardized data, i.e. the individual coordinates of the
samples of the learning set are standardized to zero mean and unit variance and the same standardization
constants (empirical mean and empirical variance) are applied to al other (testing and of unknown class) data.

All learning samples approach

Let be given the learning set of total my samplesin form of a matrix Xy with my rows and n columns. Each
sample X = ( X1, Xi2, ... Xin) O Xg, i =1, 2, ... my corresponds to one row of X and, at the sametime, corresponds
to apoint in n-dimensional Euclidian space E,. The learning set consists of points (rows) of two classes ¢ O

{0, 1}, i.e. each row (point or sample) corresponds to one class. We use standardized data, i.e. each variable x; (j
fixed, i =1, 2, ... mp, corresponds to j-th column of the matrix X;) has zero mean and unit variance.

Let there be a point x 0 E, different from samples (rows) of the learning set Xt. In the learning set there exist
pointsxti, i =1, 2, ...k, k=myr, xy 0 Xy of classc nearest to the point X; . X1 isthe nearest point to x, Xy, isthe
second nearest point to x, etc. The Euclidean distance of these points from the point x let bed, = d(X, X7;). There
isaball with center at the point x and radius sufficiently large to contain just i points nearest to the point x. The
volume of the ball isV; = congt. d; "in E,. For each ball with index i and having just i pointsinsideit, the
probability density estimate can be given by formula (C is a constant)

. i
p(x,i) CVi
For probability density estimation in the point x we take average values of i/V, for several i’s. Let ususei = 2, 3,
...k, excluding, in fact, the influence of the nearest neighbor because its influence is most unreliable. Having in
mind no equidistant (no egquivolumous) sizes of individual balls of volumes V;, it seems more appropriate to use
the true distance d; of the point i from the point x instead of some "weight" expressed by numerator i in each
fraction i/V;. Thusif C' isa constant independent of class the probability estimate that x belongsto the classcis
_C' kdi_C' < n-1 . 1

P00= T2 v (D

Under the assumption that the series 1/d"* converges with size of d; for n > 1 we have no reason to limit

ourselves to nearest k points and we can use al pointsin the learning set using k = myr. At the sametime the
ordering of individual componentsis not essential and we need not sort the samples of Xt with respect to their d;
as when using nearest neighbor approach.

In practical procedure we simply sum up all components 1/¢"* and at the same time we store the largest

component which corresponds to the nearest neighbor of the point x which has the smallest ¢"*. In the end we

subtract it thus excluding the nearest point. Thisis made for both classes simultaneoudy getting numbers A, and
A; for both classes. Their ratio gives value of discriminant function, here the Bayesratio or the probability
estimation that the point xCOE, isof theclass 1

— Ai or - Ai
R(x) =+ p.(x) = '
A TOAA
Then for athreshold (cut) &chosen, if R(x) >6 or p,(x) > @ then x belongsto class 1 elseto class 0.




Using distances, i.e. asimpletransformation E, - E; and noiterationsthe curse of dimensionality is
straightforwardly eliminated. The method needs no tuning parameters: No neighborhood size, no convergence
coefficients etc. need to be set up in advance to assure convergence. The speed ishigh. In thelearning phase only
standardization constants are computed. In the recall phase for each sample to be classified the learning set is
searched once and for each sample of the learning set one dement of sum (1) is computed. The amount of
computation is thus proportional to learning set size, i.e. the dimensionality times the number of learning
samples.

The method is very close to the nearest neighbor as well as kernel methods. The procedure described in the text
above Eq. (1) is nothing else than the nearest neighbor method. Simply an average of several neighborhoodsis
taken, but the number of pointsinside ball is changed to distances. From the point of view of kernel methods, the
kernel isor would be K (x) =||x-x [ *"® with Euclidean norm ||.|| in E,. There is no smoothing (bandwidth)

parameter. The problem isthat thiskernel is difficult to consider as a probability function according to the
definition of akernel [1]. Taking |[x-x|| = r wehave K(r)=r ™% and integrals [° K(r)dr or EK(r)dr are not

convergent; they should be equal to 1 or at least finite.

Probability Density Estimation

Let uslook at the problem what isthe relation of the part Dy of the space E, which falls on k nearest neighbors of
the given point x. We will assume the following:

Assumption 1

Let there be pointsin the Euclidian space E, distributed randomly and homogenously in the sense that the
distribution of each of n coordinatesis uniform. Let k be the order number of the k-th nearest neighbor to the
point x. Let r bethe distance of the k-th nearest neighbor of the given point xOE, from the point x.. Let D bea

constant, and D, be the mean value of thevariable "™, and let it holds
D, =kD .

Comment

» The part Dy of the space E,* isnot avolume of aball with the center in the point x and radius ry but, in fact
(except for amultiplicative constant), the ball of the same center and radius but in the space of dimension by one
lower, i.e. in the En.;. By smulation one can find that the relation V, =kv where V is a constant does not hold

butit holds D, =r,"* =kD where k is the number of the k-th nearest neighbor of the point xJE, and D isa

constant. It can be found that the mean value of the n-th power of ry grows faster than linearly and the (n-2)-nd
power grows slower than linearly. It isdemonstrated in Fig. 1.
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Fig. 1. Dependence of three different powers of the distance of ten nearest neighbors on the order of the nearest
neighbor (left) and corresponding differences (right) in Eyo. Each point of the left hand graph is the average of
3390 entries. The straight line shows true linear dependence.

One can look at the problem also differently. There is a space of a series of nearest neighbors for some arbitrary
point x. The space where the nearest neighbors lieis the E,, but their placement is limited by the position of the
point x and their distances from this point. The mean value of the k-th nearest neighbor distance from the point x



isfixed and depends on the point x and the probability density of the presence of the points of the given classin
corresponding neighborhood of the point x. If the point x and the mean distance r,"™ are given then the position

of the k-th nearest neighbor has n-1 degrees of freedom. It is, really, a point of a ball surface of radius r"* and

with center in the point x. Then the space of nearest neighbors has the dimension n-1, not n.

The Assumption 1 is supported by the following lemma:

Lemma[6]

The sum of k independent exponentially distributed random variables with parameter . is equal to an Erlang
(gamma) distributed random variable with parametersL and k, i.e. let Y; ~ exp(&) then X ~ Erl(Z, k) where

X :ﬁvk o
i1

Theorem 1

Let D, bemean valueof D. =r"* -r"*, D, bemeanvaueof D_=r"*, V, bemean vaueof V, =cr,

where c is a constant, and the Assumption 1 be valid. Moreover let exist a constant C such that p(D,) = c

D

Then for the probability density p(k) =C'k/V, of pointsin the neighborhood of point x it holds

p(D,) = p(Dy) = p(k) , Where pp )= %C .

Proof
Under the assumption p(K) is probability density and at the same time due to Assumption 1 /D, is proportional

to p(k). Then thereisa constant C that p(D, ) = p(k) - Under the Assumption 1 thereis D, =kD, and then
(D) =p(D) B

The Proof of Convergence

Let be given n dimensional data, each samplein form of arow vector X = (X, Xz, ... X,) O R,. All these dataform
the feature space. These data come from two sources, then these data are of two classes. Theclassc=1is
usually denoted asthe signal (s) and class = 0 (sometimes -1) is usually denoted the background (b). The part of
data where the relation of each sampleto the classis known and is used as a basis for probability density
estimation is called the learning set. The other data where the relation of each sample to the class is known can
be used as the testing set for evaluation of behavior of the classifier. These notions are commonly used;
sometimes the learning set is called the training set.
Notation
Let thelearning set U=U;00U, , UinU, =0, Uc= {Xq}, =1, 2, ... N, c={0,1} begiven. N, isthe number of
samples of the class ¢, X ={ X1, X2 .- Xain} iSthe data sample, where n isthe sample space dimension. Let point
X ={Xg, X2, ... %o} 0 U be given and let points X, of each class Uy, U, be sorted so, that index i = 1 corresponds
to the nearest neighbor, theindex i = 2 to the second nearest neighbor, etc. In the Euclidian metrics, r; = ||X, Xq ||
is the distance of thei-th nearest neighbor of the class ¢ from the point x.
Theorem 2
Let exist amapping of probability density distribution of points of theclasscin E,, Eq - Ex: p(x,) = p(rj™)
so that
K/ = p(%a) » K/EH =15 = p0a) -+ K/ (1 = ey) = P(Xene) (2)
where K is afixed constant that has the same value for both classes.
Let exist a constant € > 0 and index k >2 so that for each j > k it holds
P(Xe) . ©)
PU)= e (- 0e

Then



S= 32 = p(x)K(L+C,): @

n-1
I

where K and C. are finite constants.

Proof.

First we arrange (4) in form

e O . 1

S= = + .
FEZ rc?_l rcnz_l é rcnz_l +Ar:3 + Ac4 +K +Ach

Then using the mapping (2) introduced we get

Nc l Nc l _ Nc
S=Kp tKZ 1 =Pkt T — = ) =poKU+ LP)
—+ +K + 1914+ T2 4K + 2 )
pc2 pc3 chc pc3 pq'
©)
For individual elements p_, / Py in denominators of fractionsin the sum it holds
N ik
&: p02(1+(] k)E) :(1+(j—|()€)j7k'
pcj Pe2
Using the condition (3) the summed el ements Py, Py.1, ... in (5) since the k-th have form
P :i P, :; :; )
KTCT Y CHlte’ P CHlve+(+e)?]

P =V[C+(1+6) +(1+26)* +..+(1+ig)] -
Then according to d’ Alembert’s criterion
P C+@A+e)+(L+2e)% +...+(L+ig)
P CH+e)+1+28)2 +. .+ (L+ig) +(1+(+De)™
and after alittle algebra

Pesist o ClL+ig) +i . Cla+ie) +i
P, Cl+ie) +i+@+(i+De) ™ /(L+ig)" ClL+ig) +i+(L+ie)

0i > 0and Oe > 0. Then the seriesis convergent.

Notes

a) In the statement of the theorem the sum need not start just by index j = 2. One can start with the nearest
neighbor (j = 1) or other neighbor (j > 2). Thevaluej = 2 is given by compromise between the error caused by
small value and large variability of A =r_ and inaccuracy caused by larger distance from the point x for j > 2.
b) Thelast condition (3) defines the speed of diminishing of thetail of the distribution; probably a condition that
the distribution should have the mean would suffice.

Discussions

From the formula (5) it is seen that for ,,smooth* form of distribution function around the point x and for large
density of points for both classes the ratios P../ P, A€ VEry closeto 1 for rather large values of j (e.g. 100, but
let ustake 11 here). For both classesarethe dementsof sumin(5) 1 1 1 andtheir sumis2.01987
2" 3 11
here and the other elements have form 1 , Wheresincetheindex k itisd = €. (Theindex k can be
11+ (j 1)1+ J)

different for both classes.) It isthen probable that values of sumsin (5) will be very close for both classes and
ratio of (5) for one and the other class will be close to Bayes ratio P, (X)) Py (X%,) =S/S, - IN such acase onecan
also estimate the probability that the sample x belongs among signals:

S .
S+S

p(X) = (%) =



Blessed Dimensionality - the Speed of Convergence Estimation

Remind that the samples of the learning set are standardized to zero mean and unit variance for each variable.
Assumethat all thus arising marginal distributions are approximately normal. Assume also that our point x has
an unknown class or unknown probabilities pi(X) and po(X) and lies not too far from the point (0, O, ... 0). For the
point x one can introduce different neighborhoods, now let us use three only:

- Till the distance of one sigma,

- From the distance of one sigma to the distance of two sigma,

- Since the distance of two sigmas further all in each dimension.

Dueto the standardization of all variablesin each dimension approximately 68 % points of the learning set lie
inside A, 95 % pointslieinside A and B, i.e. 27 % in B, and 5 % in C. The results of some computations for
dimensionality n = 2 to 50 shows the Table 1.

layer— A B C
=1sigma Between 1 and 2sigma  >2 sigma
Average distance in one dimension
0,5 15 3

n Total pointsinside layer

2 46,24% 44,01% 9,75%

3 31,44% 54,29% 14,26%

4 21,38% 60,07% 18,55%

5 14,54% 62,84% 22,62%

7 6,72% 63,11% 30,17%

10 2,11% 57,76% 40,13%

20 0,044687% 35,80% 64,15%

30 0,000945% 21,46% 78,54%

50 4,22129E-09 7,69% 92,31%

n Benefits to the total sum

2 73,94% 23,46% 2,60%

3 83,02% 15,93% 1,05%

4 90,25% 9,39% 0,36%

5 94,83% 5,06% 0,11%

7 98,72% 1,27% 0,0095%

10 99,86% 0,14% 0,00019%

20 99,999931% 0,000069% 2,35588E-12

30 99,999999967%  0,000000033% 2,2564E-18

50 09,9999999999% 7,61716E-17 1,62319E-30

Table 1. Total number of points of the learning set inside layers A, B, C and their benefitsto the total sum.

The benefit to the total sum was estimated from average distance in each dimension in corresponding layer (A, B
or C). These estimations show that due to the geometry of multidimensional Euclidian space the share of points
corresponding to A with respect to total number of points lessens essentially with dimension. At the sametime,
their benefit to the total sum is closer to 100 %. Thisis because the parts A, B, C are, in fact, not cubes but n-
dimensional balls of radii computed from an average distance in one dimension as stated in the Table 1. From it
also follows that the share of the part C to the total sum is negligible since the dimension 6. With growing
dimension also the convergence of the sum is much faster as the points of the learning set near to point x gave
practically whole value of the sum. The larger dimension, the lesser percentage of points from the learning set
influences the result. On the other hand for low dimensionality, especially 2 and 3 even the farthest points
influence the resullt.

Testing the Convergence on Examples

The course of convergence for dimensions 2, 3, and 10 show Figs. 2 till 9. For Figs. 2 till 7 artificial tasks were
used. In these tasks the signal has distribution in form of diamond and the background in the form of top hat in



all dimensions. We used 250 samples in each dimension in each class. Small number of samples causes not too
smooth curves but on the other hand demonstrates usefulness of the method for small learning set. Figs. 8 and 9
show resultswith practical data[2] and it is seen that thistask convergesfaster than the artificial task of the same
dimension.
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Fig.2. Sample contribution to the total sum for signal and background sorted
according to size, two-dimensional artificial data.
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Fig. 3. Fig.2. Size of the total sum for signal and background sorted according to
size of sample contribution, two-dimensional artificial data
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Fig. 4. Sample contribution to the total sum for signal and background sorted
according to size, three-dimensional artificial data.
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Fig. 5 Size of thetotal sum for signal and background sorted according to size of
sample contribution, three-dimensional artificial data.
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Fig. 6. Sample contribution to the total sum for signal and background sorted
according to size, ten-dimensiona artificial data.
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Fig. 7. Size of the total sum for signal and background sorted according to size of
sample contribution, ten-dimensional artificial data
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Fig. 8. Sample contribution to the total sum for signal and background sorted
according to size, ten-dimensional practical data[2]. There aredifferent numbers of



signal samples and background samplesin the learning set.
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Fig. 9. Size of the total sum for signal and background sorted according to size of
sample contribution, ten-dimensional practical data[2].

Classification Ability

The metod was tested on the same data as was used in study [2]. Also, the third and next lines of the Table 2 are
cited from this source and then we do not describe the different methodsin detail.

TABLE 2
Method loacc hiacc 0{0.5} o{max}  SigEff for
of max}
New method 0.452 0.778 8.40 9.35 0.364
C5.0 0.441 0.830 8.14 8.74 0.408
CART 0.414 0.810 7.94 8.03 0.538
NearestNeighb  0.443 0.816 8.03 9.12 0.317
Kernel 0.443 0.803 8.43 8.64 0.390
NNSU 0.472 0.731 9.74 9.82 0.483
NeuNet 0.445 0.839 8.73 8.75 0.483
MLP 0.300 0.767 6.93 7.22 0.576
GMDH 0.280 0.736 6.55 6.77 0.574

The table gives the quality numbers loacc, hiacc, and significance o with the following meaning: loacc is the
average signal efficiency obtained by interpolating values of signal efficiency Sigeff at the points 0.01, 0.02, and
0.05 for background error BckErr; hiacc is obtained in a similar way by averaging signal efficiency at the points
0.1 and 0.2 background error; significance o is defined by o= S/-/2B+S, where S= SigEff.Nsand B =
BckErr.Ny ; Ns and N, are the number of signal and background events that would be obtained by selecting
eventsin samples with N = 10 000 and Ng = 500; we give the value of o obtained at SigEff = 0.5, and the
maximum value along with the value of SIigEff whereit isfound.

Theresults are also compared in Fig. 10.
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Fig. 10. Dependence of Signal Efficiency vs. Background Error for new method (upper line) and for quadratic GMDH MIA
method (bottom line).

Conclusions

The method presented is based on two ideas, a smple transformation E, - E; and differences of volumes of
multidimensional cube and multidimensional ball in Euclidean space.

Using distances, i.e. asmpletransformation E, — E; and no iterations the curse of dimensionality is
straightforwardly eliminated.

The theorem on convergence was formulated and proved and convergence estimation was given. It was shown
that the higher dimensionality, the better.

The method needs no tuning parameters: No neighborhood size, no convergence coefficients etc. need to be set
up in advance to assure convergence. The other advantage is the speed. In the learning phase only
standardization constants are computed. In the recall phase for each sample to be classified thelearning set is
searched once and for each sample of the learning set one eement of sum (1) is computed. The amount of
computation is thus proportional to learning set size, i.e. the dimensionality times the number of learning
samples. With approximately the same quality, the method givesresultsin orders of magnitude shorter timethan
much sophisticated approaches[2], [5].
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