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Abstract 
 
 
The method proposed is very close to popular and often efficienct methods of the nearest neighbors. Standard 
methods of probability density estimate for classification which are based on the nearest neighbors approach solve 
the problem of classification by an estimate of the probability density in the point x of the data space by ratio i/V.  
i is the number points of a given class of the training set in a suitable ball of volume V with center at the point x. 
The new method is based on distances of all points of a given class of the training set from a given (unknown) 
point x. It is shown that the sum of reciprocals of (n-1)-st power of these distances is convergent and can be used 
as the probability density estimate. The speed of convergence is the better the higher dimensionality. The 
classification quality was tested and compared with other methods.  
 
 
Keywords:  
Bayes ratio estimation, multivariate data, classification, curse of dimensionality, classification speed, nearest 
neighbor 



 
 
 
 

Introduction 
 
The methods of classification based on the nearest neighbors estimate the probability density in the point x of the 
data space by ratio i/Vi .  i is anumber of points of a given class in a suitable ball of volume Vi with center in the 
point x [1]. These methods need to optimize the best size of the neighborhood, i.e. the number of points i in the 
neighborhood of the point x or size of volume Vi. The probability density in the feature (data) space is given by 
training data. Optimal neighborhood size depends on training data set, i.e. on character of data as well as on the 
number of samples of a given class in the training set.  
The method proposed is based on distances of the training set samples xi, i = 1, 2, … k from the point x. We will 
show its fast convergence, i.e. small influence of distant samples in multidimensional Euclidean space. 
Using distances, i.e. a simple transformation from En to E1, and no iterations the curse of dimensionality is 
straightforwardly eliminated. The method can be also considered as a variant of kernel method, based on a 
probability density estimator, but using a much simpler metric.  
Throughout this paper let us assume that we deal with standardized data, i.e. the individual coordinates of the 
samples of the learning set are standardized to zero mean and unit variance and the same standardization 
constants (empirical mean and empirical variance) are applied to all other (testing and of unknown class) data. 
 
 

All learning samples approach 
 
Let be given the learning set of total mT samples in form of a matrix XT with mT rows and n columns. Each 
sample xi = ( xi1, xi2, … xin) ∉ XT, i = 1, 2, ... mT corresponds to one row of XT and, at the same time, corresponds 
to a point in n-dimensional Euclidian space En. The learning set consists of points (rows) of two classes c ∈ 
{ 0, 1} , i.e. each row (point or sample) corresponds to one class. We use standardized data, i.e. each variable xij (j 
fixed, i = 1, 2, ... mT , corresponds to j-th column of the matrix XT) has zero mean and unit variance.  
Let there be a point x ∈ En different from samples (rows) of the learning set XT. In the learning set there exist 
points xTi, i = 1, 2, ... k,  k �  mT , xTi ∈ XT of class c nearest to the point xi . xT1 is the nearest point to x, xT2  is the 
second nearest point to x,  etc. The Euclidean distance of these points from the point x let be di = d(x, xTi ).  There 
is a ball with center at the point x and radius sufficiently large to contain just i points nearest to the point x. The 
volume of the ball is Vi = const. di

 n in En. For each ball with index i and having just i points inside it, the 
probability density estimate can be given by formula (C is a constant) 
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i
Cixp =),(  . 

For probability density estimation in the point x we take average values of i/Vi for several i´s. Let us use i = 2, 3, 
...k , excluding, in fact, the influence of the nearest neighbor because its influence is most unreliable. Having in 
mind no equidistant (no equivolumous) sizes of individual balls of volumes Vi, it seems more appropriate to use 
the true distance  di of the point i from the point x instead of some "weight" expressed by numerator i in each 
fraction i/Vi. Thus if C‘  is a constant independent of class the probability estimate that x belongs to the class c is 
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Under the assumption that the series 11 −n
id converges with size of di for n > 1 we have no reason to limit 

ourselves to nearest k points and we can use all points in the learning set using k = mT. At the same time the 
ordering of individual components is not essential and we need not sort the samples of XT with respect to their di 
as when using nearest neighbor approach. 
In practical procedure we simply sum up all components 11 −n

id and at the same time we store the largest 

component which corresponds to the nearest neighbor of the point x which has the smallest 1−n
id . In the end we 

subtract it thus excluding the nearest point. This is made for both classes simultaneously getting numbers A0 and 
A1 for both classes. Their ratio gives value of discriminant function, here the Bayes ratio or the probability 
estimation that the point x∈En  is of the class 1  
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Then for a threshold (cut) θ chosen, if θ>)(xR  or θ>)(1 xp  then x belongs to class 1 else to class 0.  



 
 
 
 

Using distances, i.e. a simple transformation En → E1  and no iterations the curse of dimensionality is 
straightforwardly eliminated. The method needs no tuning parameters: No neighborhood size, no convergence 
coefficients etc. need to be set up in advance to assure convergence. The speed is high. In the learning phase only 
standardization constants are computed. In the recall phase for each sample to be classified the learning set is 
searched once and for each sample of the learning set one element of sum (1) is computed. The amount of 
computation is thus proportional to learning set size, i.e. the dimensionality times the number of learning 
samples.  
The method is very close to the nearest neighbor as well as kernel methods. The procedure described in the text 
above Eq. (1) is nothing else than the nearest neighbor method. Simply an average of several neighborhoods is 
taken, but the number of points inside ball is changed to distances. From the point of view of kernel methods, the 
kernel is or would be )1(||||)( −−−= n

ixxxK  with Euclidean norm ||.|| in En. There is no smoothing (bandwidth) 

parameter. The problem is that this kernel is difficult to consider as a probability function according to the 

definition of a kernel [1]. Taking  ||x-xi|| = r we have )1()( −−= nrrK  and integrals � ∞

∞−
drrK )(  or � ∞

0
)( drrK  are not 

convergent; they should be equal to 1 or at least finite.  
 
 

Probability Density Estimation 
 
Let us look at the problem what is the relation of the part Dk of the space En which falls on k nearest neighbors of 
the given point x. We will assume the following: 
Assumption 1 
Let there be points in the Euclidian space En distributed randomly and homogenously in the sense that the 
distribution of each of n coordinates is uniform. Let k be the order number of the k-th nearest neighbor to the 
point x.  Let rk be the distance of the k-th nearest neighbor of the given point x∈En from the point xk. Let D  be a 
constant, and kD  be the mean value of the variable 1−n

kr , and let it holds 

                                                              kDDk =  .  

 
Comment 
„The part Dk of the space En“   is not a volume of a ball with the center in the point x and radius rk but, in fact 
(except for a multiplicative constant), the ball of the same center and radius but in the space of dimension by one 
lower, i.e. in the En-1. By simulation one can find that the relation kVVk =  where V is a constant does not hold 

but it holds kDrD n
kk == −1  where k is the number of the k-th nearest neighbor of the point x∈En and D is a 

constant. It can be found that the mean value of the n-th power of rk grows faster than linearly and the (n-2)-nd 
power grows slower than linearly. It is demonstrated in Fig. 1.  

 
Fig. 1. Dependence of three different powers of the distance of ten nearest neighbors on the order of the nearest 
neighbor (left) and corresponding differences (right) in E10. Each point of the left hand graph is the average of 
3390 entries. The straight line shows true linear dependence. 
 
One can look at the problem also differently. There is a space of a series of nearest neighbors for some arbitrary 
point x. The space where the nearest neighbors lie is the En but their placement is limited by the position of the 
point x and their distances from this point. The mean value of the k-th nearest neighbor distance from the point x 



 
 
 
 

is fixed and depends on the point x and the probability density of the presence of the points of the given class in 
corresponding neighborhood of the point x. If the point x and the mean distance 1−n

kr  are given then the position 

of the k-th nearest neighbor has n-1 degrees of freedom. It is, really, a point of a ball surface of radius 1−n
kr  and 

with center in the point x. Then the space of nearest neighbors has the dimension n-1, not n. 
The Assumption 1 is supported by the following lemma: 
Lemma [6] 
The sum of k independent exponentially distributed random variables with parameter �  is equal to an Erlang 
(gamma) distributed random variable with parameters �  and k, i.e. let Yi ~ exp( � ) then  X ~ Erl( � , k) where 
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Theorem 1 

Let iD  be mean value of 1
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where c is a constant, and the Assumption 1 be valid. Moreover let exist a constant C such that 
i
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Proof 
Under the assumption p(k) is probability density and at the same time due to Assumption 1 

kD1 is proportional 

to p(k). Then there is a constant C that )()( kpDp k = . Under the Assumption 1 there is 
ik DkD =  and then 

)()( ik DpDp = . �  

 
 

The Proof of Convergence 
 
Let be given n dimensional data, each sample in form of a row vector x = (x1, x2, ... xn) ∈ Rn. All these data form 
the feature space. These data come from two sources, then these data are of two classes. The class c = 1 is 
usually denoted as the signal (s) and class = 0 (sometimes -1) is usually denoted the background (b). The part of 
data where the relation of each sample to the class is known and is used as a basis for probability density 
estimation is called the learning set. The other data where the relation of each sample to the class is known can 
be used as the testing set for evaluation of behavior of the classifier. These notions are commonly used; 
sometimes the learning set is called the training set.  
Notation 
Let the learning set U=U1∪U2 , U1∩U2 =∅ , Uc = { xci} , i=1, 2, … Nc, c={ 0,1}   be given. Nc  is the number of 
samples of the class c, xci={  xci1, xci2,… xcin}  is the data sample, where n is the sample space dimension. Let point 
x = { x1, x2, … xn} ∉ U be given and let points xci  of each class U1, U2 be sorted so, that index  i = 1 corresponds 
to the nearest neighbor, the index i = 2 to the second nearest neighbor, etc. In the Euclidian metrics, ri  = ||x, xci || 
is the distance of the i-th nearest neighbor of the class c from the point x.  
Theorem 2 
Let exist a mapping of probability density distribution of points of the class c in En, En → E1: )()( 1−= n

cici rpxp  
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where K is a fixed constant that has the same value for both classes.  
Let exist a constant ε > 0 and index k >2 so that for each j > k it holds  
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where K and Cc are finite constants.  
 
Proof. 
First we arrange (4) in form 
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For individual elements 

cjc pp /2
 in denominators of fractions in the sum it holds 
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Using the condition (3) the summed elements Pk, Pk+1, … in (5) since the k-th have form 
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Then according to d’Alembert’s criterion  
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Notes 
a) In the statement of the theorem the sum need not start just by index j = 2. One can start with the nearest 
neighbor (j = 1) or other neighbor (j > 2). The value j = 2 is given by compromise between the error caused by 
small value and large variability of 

11 cc r=∆  and inaccuracy caused by larger distance from the point x for j > 2. 

b) The last condition (3) defines the speed of diminishing of the tail of the distribution; probably a condition that 
the distribution should have the mean would suffice. 
 
 

Discussions 
 
From the formula (5) it is seen that for „smooth“ form of distribution function around the point x and for large 
density of points for both classes the ratios 

cjc pp 2
are very close to 1 for rather large values of  j (e.g. 100, but 

let us take 11 here). For both classes are the elements of sum in (5)  
11

1
,

3
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1 Κ  and their sum is 2.01987 

here and the other elements have form 
)1)(11(11

1

δ+−+ j
, where since the index k it is δ ≥ ε. (The index k can be 

different for both classes.) It is then probable that values of sums in (5) will be very close for both classes and 
ratio of (5) for one and the other class will be close to Bayes ratio 

012021 )()( SSxpxp cc = . In such a case one can 

also estimate the probability that the sample x belongs among signals: 
                                              

01

1
211 )()(

SS

S
xpxp c +

≈≈  . 

 



 
 
 
 

Blessed Dimensionality - the Speed of Convergence Estimation 
 
Remind that the samples of the learning set are standardized to zero mean and unit variance for each variable. 
Assume that all thus arising marginal distributions are approximately normal. Assume also that our point x has 
an unknown class or unknown probabilities p1(x) and p0(x) and lies not too far from the point (0, 0, … 0). For the 
point x one can introduce different neighborhoods, now let us use three only: 
 - Till the distance of one sigma, 
 - From the distance of one sigma to the distance of two sigma, 
 - Since the distance of two sigmas further all in each dimension.  
Due to the standardization of all variables in each dimension approximately 68 % points of the learning set lie 
inside A, 95 % points lie inside A and B, i.e. 27 % in B, and 5 % in C. The results of some computations for 
dimensionality n = 2 to 50 shows the Table 1. 
 

layer→ A B C 
 �  1 sigma Between 1 and 2 sigma >2 sigma 
 Average distance in one dimension 

 0,5 1,5 3 
n  Total points inside layer  
2 46,24% 44,01% 9,75% 
3 31,44% 54,29% 14,26% 
4 21,38% 60,07% 18,55% 
5 14,54% 62,84% 22,62% 
7 6,72% 63,11% 30,17% 
10 2,11% 57,76% 40,13% 
20 0,044687% 35,80% 64,15% 
30 0,000945% 21,46% 78,54% 
50 4,22129E-09 7,69% 92,31% 
n  Benefits to the total sum  
2 73,94% 23,46% 2,60% 
3 83,02% 15,93% 1,05% 
4 90,25% 9,39% 0,36% 
5 94,83% 5,06% 0,11% 
7 98,72% 1,27% 0,0095% 
10 99,86% 0,14% 0,00019% 
20 99,999931% 0,000069% 2,35588E-12 
30 99,999999967% 0,000000033% 2,2564E-18 
50 99,9999999999% 7,61716E-17 1,62319E-30 
Table 1. Total number of points of the learning set inside layers A, B, C and their benefits to the total sum. 
The benefit to the total sum was estimated from average distance in each dimension in corresponding layer (A, B 
or C). These estimations show that due to the geometry of multidimensional Euclidian space the share of points 
corresponding to A with respect to total number of points lessens essentially with dimension. At the same time, 
their benefit to the total sum is closer to 100 %. This is because the parts A, B, C are, in fact, not cubes but n-
dimensional balls of radii computed from an average distance in one dimension as stated in the Table 1. From it 
also follows that the share of the part C to the total sum is negligible since the dimension 6. With growing 
dimension also the convergence of the sum is much faster as the points of the learning set near to point x gave 
practically whole value of the sum. The larger dimension, the lesser percentage of points from the learning set 
influences the result. On the other hand for low dimensionality, especially 2 and 3 even the farthest points 
influence the result.  
 
 

Testing the Convergence on Examples 
 
The course of convergence for dimensions 2, 3, and 10 show Figs. 2 till 9. For Figs. 2 till 7 artificial tasks were 
used. In these tasks the signal has distribution in form of diamond and the background in the form of top hat in 



 
 
 
 

all dimensions. We used 250 samples in each dimension in each class. Small number of samples causes not too 
smooth curves but on the other hand demonstrates usefulness of the method for small learning set. Figs. 8 and 9 
show results with practical data [2] and it is seen that this task converges faster than the artificial task of the same 
dimension.  
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Fig.2. Sample contribution to the total sum for signal and background sorted 
according to size, two-dimensional artificial data. 
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Fig. 3. Fig.2. Size of the total sum for signal and background sorted according to 
size of sample contribution, two-dimensional artificial data 
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Fig. 4.  Sample contribution to the total sum for signal and background sorted 
according to size, three-dimensional artificial data. 
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Fig. 5 Size of the total sum for signal and background sorted according to size of 
sample contribution, three-dimensional artificial data. 
 

                     

0.00000001

0.0000001

0.000001

0.00001
0.0001

0.001

0.01

0.1

1
1 21 41 61 81 101 121 141 161 181 201 221 241

Sample number (sorted)

 
Fig. 6. Sample contribution to the total sum for signal and background sorted 
according to size, ten-dimensional artificial data. 
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Fig. 7. Size of the total sum for signal and background sorted according to size of 
sample contribution, ten-dimensional artificial data 
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Fig. 8. Sample contribution to the total sum for signal and background sorted 
according to size, ten-dimensional practical data [2]. There are different numbers of 
signal samples and background samples in the learning set. 



 
 
 
 

signal samples and background samples in the learning set. 
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Fig. 9. Size of the total sum for signal and background sorted according to size of 
sample contribution, ten-dimensional practical data [2].  
 
 

Classification Ability 
 
The metod was tested on the same data as was used in study [2]. Also, the third and next lines of the Table 2 are 
cited from this source and then we do not describe the different methods in detail.  

TABLE 2 
    Method       loacc   hiacc  σ{ 0.5}   σ{ max}    SigEff for  

σ{ max}  
    New method 0.452 0.778 8.40 9.35 0.364 
    C5.0  0.441 0.830 8.14 8.74 0.408 
    CART    0.414 0.810 7.94 8.03 0.538 
    NearestNeighb 0.443 0.816 8.03 9.12 0.317 
    Kernel 0.443 0.803 8.43 8.64 0.390 
    NNSU           0.472 0.731 9.74 9.82 0.483 
    NeuNet         0.445 0.839 8.73 8.75 0.483 
    MLP            0.300 0.767 6.93 7.22 0.576 
    GMDH           0.280 0.736 6.55 6.77 0.574 
 
The table gives the quality numbers loacc, hiacc, and significance σ with the following meaning: loacc is the 
average signal efficiency obtained by interpolating values of signal efficiency SigEff at the points 0.01, 0.02, and 
0.05 for background error BckErr; hiacc is obtained in a similar way by averaging signal efficiency at the points 
0.1 and 0.2 background error; significance σ is defined by SBS += 2σ , where S = SigEff.Ns and B = 
BckErr.Nb ; Ns  and Nb are the number of signal and background events that would be obtained by selecting 
events in samples with Nb = 10 000 and Ns = 500; we give the value of σ obtained at SigEff = 0.5, and the 
maximum value along with the value of SigEff where it is found. 
The results are also compared in Fig. 10.  
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Fig. 10. Dependence of Signal Efficiency vs. Background Error for new method (upper line) and for quadratic GMDH MIA 
method (bottom line). 
 
 

Conclusions 
 
The method presented is based on two ideas, a simple transformation En → E1 and differences of volumes of 
multidimensional cube and multidimensional ball in Euclidean space. 
Using distances, i.e. a simple transformation En → E1 and no iterations the curse of dimensionality is 
straightforwardly eliminated.  
The theorem on convergence was formulated and proved and convergence estimation was given. It was shown 
that the higher dimensionality, the better.  
The method needs no tuning parameters: No neighborhood size, no convergence coefficients etc. need to be set 
up in advance to assure convergence. The other advantage is the speed. In the learning phase only 
standardization constants are computed. In the recall phase for each sample to be classified the learning set is 
searched once and for each sample of the learning set one element of sum (1) is computed. The amount of 
computation is thus proportional to learning set size, i.e. the dimensionality times the number of learning 
samples. With approximately the same quality, the method gives results in orders of magnitude shorter time than 
much sophisticated approaches [2], [5].  
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