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Abstract

The principal advantage of iterative methods over direct methods is in a possibility
of stopping the iteration when the desired accuracy is reached. This requires, how-
ever, incorporating a proper measure of achieved accuracy as a part of computation.
In practical problems iterative methods can not be used without some acceleration
of convergence, commonly called preconditioning, which is typically achieved by
incorporation of some (incomplete) direct algorithm as a part of the iteration.

A goal of this paper is to describe a simple and numerically reliable estimation
of the A-norm of the error in the preconditioned conjugate gradient method. In
this way this paper mediates the analytic results from [37] to practical users of the
preconditioned conjugate gradient method.

Key words: preconditioned conjugate gradient method, error bounds, stopping
criteria, evaluation of convergence, finite precision arithmetic, rounding errors.

1 Introduction

Discretization of mathematical models of real-world problems often leads to
large and sparse (possibly structured) systems of linear algebraic equations.

? This work was supported by the Grant Agency of the Czech Republic under grant
No. 201/02/0595 and by the Grant Agency of Academy of Sciences of the Czech
Republic under grant No. IAB1030306.

Email addresses: strakos@cs.cas.cz (Zdeněk Strakoš), tichy@cs.cas.cz
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1 This work was performed during the academic year 2002/2003 while this coauthor
was on leave at the Institute of Mathematics, TU-Berlin.

ICS Technical Report 4 September 2003



All steps of mathematical modeling (mathematical description of reality in the
form of a mathematical model, its discretization and numerical solution of the
discretized problem) are subject to errors (errors of the model, discretization
errors and computational errors, the last being often composed of two parts –
truncation errors and errors due to roundoff). An output of the solution pro-
cess must therefore be confronted with its possible errors through verification
and validation. While verification addresses the question – whether and how
accurately the obtained (approximate) solution conforms to the mathematical
model, validation deals with the more general question – to which extent the
whole modeling process represents the modeled reality (for a recent discussion
of these fundamental topics we refer to [7]). It is desirable that the errors of
the model, discretization errors and computational errors are in some balance.
They do not need to be of the same order; the discretization and computa-
tional errors should not significantly contribute to the total error and affect
negatively the validation process [7].

When the linear algebraic systems arising from mathematical modeling are
very large (of orders of hundreds of thousands or millions of unknowns), pre-
conditioned iterative methods are taking ground over the purely direct meth-
ods. Iterative methods can in very large scale computations exploit a funda-
mental advantage – they can gain significantly over direct methods by stopping
the iteration when the desired accuracy (as compared to the discretization
error) is reached (cf. [1,4]). This requires, however, a cheap and reliable eval-
uation of convergence, which is the essential ingredience for choosing proper
stopping criteria.

In this paper we consider a system of linear algebraic equations

Ax = b (1)

where A is a symmetric positive definite n by n matrix and b is n-dimensional
vector (for simplicity of notation we consider A, b real; all results presented
here can trivially be extended to the complex case). For such systems the
preconditioned conjugate gradient method [23,21] represents in most large
scale cases a good choice. A goal of this paper is to summarize and discuss
evaluation of convergence in the preconditioned conjugate gradient method.
In particular, we will focus on estimating the A-norm of the error.

Estimating the A-norm of the error in the conjugate gradient method was
subject of many papers, reports and subsections in the books. History and
various aspects of estimating the A-norm of the error in the unpreconditioned
conjugate gradient method were thoroughly described in [37]. Though the
formulas emphasized in [37] were published (in some form) previously, e.g.
in [23,12,13] and [6], that paper is, to our opinion, novel and important in
providing theoretical justification for practical use of the error estimates and
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in putting different estimates in the proper context. Our present paper ex-
tends the results from [37] to the preconditioned conjugate gradient method.
A need for such paper can be seen from [6, Section 6], which thoroughly and
extensively examines estimating error norms in the preconditioned conjugate
gradients. However, all derivations in [6, Section 6] assume exact arithmetic,
no loss of orthogonality is considered there and the results are based on ex-
ploiting the finite termination property, i.e., on getting the exact solution in a
finite number of steps (which does not exceed the dimension of the problem).
These assumptions are, in general, clearly not valid in practical computations.
In order to be widely used, practical error estimators need to be properly
justified including a thorough analysis of rounding error effects (for detailed
discussion, see [37] and also [17]).

Section 2 summarizes fundamentals of the conjugate gradient method and
briefly recalls several possible ways of convergence evaluation. Section 3 pre-
sents a simple estimate for the A-norm of the error in the preconditioned conju-
gate gradient method. Section 4 deals with numerical stability of the proposed
estimate and section 5 contains numerical experiments which demonstrate its
effectivity and possible drawbacks. The paper ends with concluding remarks.

2 Fundamentals of the conjugate gradient method and evaluation
of convergence

The conjugate gradient method (CG) [23] belongs to the class of the so-called
Krylov subspace methods. Starting with an initial approximation x0, it con-
structs the subsequent approximations xj, j = 1, 2, . . . to the solution x on
the linear manifolds

xj ∈ x0 +Kj(A, r0) (2)

where

Kj(A, r0) = span {r0, Ar0, . . . , A
j−1r0}

represents the jth Krylov subspace, r0 = b − Ax0. CG determines its ap-
proximations by orthogonal projections, i.e., the residual rj = b− Axj of the
jth approximate solution is orthogonal to the jth Krylov subspace Kj(A, r0).
This means that xj = x0 + yj can be obtained from the solution yj of the
j-dimensional problem

Pj{r0 − Ay} = 0 , (3)

3



where Pj stands for the orthogonal projection ontoKj(A, r0), and y ∈ Kj(A, r0)
(the operator A is in (3) restricted to Kj(A, r0)). It is well known [23] that, un-
til xj converges to the exact solution x (which must in the absence of roundoff
happen in at most n steps), xj is uniquely determined by (3).

In practical problems we hope that the acceptable approximate solution is
attained for j much smaller than the dimension of the problem n. Thus, CG
represents a typical model-reduction approach, in which the original problem
(represented by the large discretized model) is reduced (here by restriction
and orthogonal projection onto the Krylov subspace) to the problem of much
smaller dimension. The resulting reduced problem determines the approxi-
mate solution. Quality of the approximate solution depends on the amount
of significant information about the original problem passed to the reduced
problem.

The condition (3) is equivalent to the minimization of the A-norm of the
error over the manifold (2). The jth CG approximation is therefore uniquely
determined by the minimizing condition

‖x− xj‖A = min
u∈x0+Kj(A,r0)

‖x− u‖A , (4)

where

‖x− u‖A = (x− u,A(x− u))
1
2 . (5)

The A-norm of the error on the algebraic level (5) typically has a counterpart
in the original real-world problem. In some applications it can be interpreted
as the discretized measure of energy which is to be minimized see, e.g. [1,4].
Then CG with stopping criterion based on the A-norm of the error consistently
reduces large discretized models to small ones. In other applications (such as in
image processing) the Euclidean norm of the error ‖x−xj‖ plays an important
role. As mentioned above, in this paper we focus in particular on estimating
the A-norm of the error.

Hestenes and Stiefel [23] considered the A-norm of the error a possible can-
didate for measuring the “goodness” of xj as an estimate of x. They showed
that though it was impossible to compute the A-norm of the jth error without
knowing the solution x, it was possible to estimate it. Later, and independently
of [23], the idea of estimating errors in CG was promoted by Golub in relation
to the problem of moments, Gauss quadrature and its modifications [10,11]. A
comprehensive summary of this approach was given in his papers coauthored
with Meurant [15,16].
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In [37] it was shown that the lower bound for the A-norm of the error based
on the Gauss quadrature is mathematically equivalent to the lower bound
derived from the identity given by Hestenes and Stiefel in [23]. The estimate
by Hestenes and Stiefel can be computed at a negligible cost of several floating
point operations per iteration. We have proved in [37] that until the A-norm
of the error reaches its ultimate level of accuracy, this estimate is numerically
stable.

Instead of using the estimates of the A-norm or the Euclidean norm of the
error (for the information about the later case we refer the reader to [37] and
to the papers referred to there), many authors measure the quality of the
approximate solution by the residual information only. In [32,3], backward
error perturbation theory (see e.g. [30,34,2]) was used to derive a family of
stopping criteria for iterative methods. In particular, given xj, the relative
norms ‖∆A‖/‖A‖ = ‖∆b‖/‖b‖ of the smallest perturbations ∆A and ∆b such
that the approximate solution xj represents the exact solution of the perturbed
system

(A + ∆A) xj = b + ∆b

can be computed by the normwise backward error

‖rj‖
‖A‖‖xj‖+ ‖b‖ . (6)

This approach can be generalized in order to quantify levels of confidence in A
and b, see [32,3]. Normwise backward error is, as a base for stopping criteria,
frequently recommended in the numerical analysis literature, see, e.g. [8,24],
and it is used and popularized by numerical analysts [29,14]. Despite this
effort, evaluating convergence is in most of scientific computations still sticked
to the relative residual norm

‖rj‖
‖r0‖ . (7)

With x0 = 0, it measures the relative norm ‖∆b‖/‖b‖ of the smallest perturba-
tion ∆b in the right-hand side b only (A is considered unperturbed) such that
xj is the exact solution of the perturbed system Axj = b + ∆b. For x0 6= 0 (7)
strongly depends on the initial approximation x0 and can give a misleading
information about convergence, see, e.g. [33]. For some additional information
see also [5,21].

Mathematically (ignoring effects of rounding errors), extension of the ap-
proaches mentioned above to preconditioned methods does not represent a
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problem, see, e.g., [29,14]. The extension of the Gauss-quadrature-based for-
mulas for estimating the A-norm of the error in CG (algorithm CGQL [16]) to
the preconditioned conjugate gradient method (PCG) was published in [27,28]
(algorithm PCGQL). In the following section we show how the Hestenes and
Stiefel formula, which is the simplest of all known mathematically equivalent
estimates, can easily be extended for estimation of the A-norm of the error in
PCG, and, following [37], we justify the resulting estimates for use in practical
finite precision computations.

3 Estimation of the A-norm of the error in the preconditioned
conjugate gradient method

In the standard view to preconditioning the CG method is thought of being
applied to a “preconditioned” system

Âx̂ = b̂, (8)

Â = L−1AL−T , b̂ = L−1b, (9)

where L represents a proper nonsingular (lower triangular) matrix, giving

Algorithm 1 (CG for Âx̂ = b̂)

given x̂0, r̂0 = b̂− Âx̂0,
for j = 0, 1, . . .

γ̂j =
(r̂j, r̂j)

(p̂j, Âp̂j)

x̂j+1 = x̂j + γ̂j p̂j

r̂j+1 = r̂j − γ̂j Âp̂j

δ̂j+1 =
(r̂j+1, r̂j+1)

(r̂j, r̂j)

p̂j+1 = r̂j+1 + δ̂j+1 p̂j

end for.

Defining

γj ≡ γ̂j, δj ≡ δ̂j, (10)

xj ≡ L−T x̂j, rj ≡ L r̂j, pj ≡ L−T p̂j, sj ≡ L−T L−1rj ≡ M−1rj,
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(here xj and rj represent the approximate solution and residual for the original
problem Ax = b), we obtain the standard version of the PCG method

Algorithm 2 (PCG for Ax = b)

given x0, r0 = b− Ax0, s0 = M−1r0, p0 = s0,
for j = 0, 1, . . .

γj =
(rj, sj)

(pj, Apj)

xj+1 = xj + γj pj

rj+1 = rj − γj Apj

sj+1 = M−1rj+1

δj+1 =
(rj+1, sj+1)

(rj, sj)

pj+1 = sj+1 + δj+1 pj

end for.

The preconditioner

M = LLT (11)

is chosen so that a linear system with the matrix M is easy to solve, while
the matrix L−1AL−T ensures fast convergence of CG. The last goal is fulfilled,
e.g., when L−1AL−T is well conditioned (approximates the identity matrix)
or has properly clustered eigenvalues (location as well as diameter of the clus-
ters are important; improperly located clusters of very small diameter do not
necessarily ensure fast convergence, see [22,36]).

In PCG, the A-norm of the error can be estimated similarly as in ordinary
CG. For a given d, the approximate solutions x̂j of the system (8) satisfy

‖x̂− x̂j‖2
Â

=
j+d−1∑

i=j

γ̂i‖r̂i‖2 + ‖x̂− x̂j+d‖2
Â
, (12)

see [37, (4.4)]. Using (10),

‖r̂j‖2 = rT
j L−T L−1rj = rT

j M−1rj = (rj, sj) ,

and

‖x̂− x̂j‖2
Â

= (LT x− LT xj)
T L−1AL−T (LT x− LT xj) = ‖x− xj‖2

A.
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The identity (12) can therefore be written in the form

‖x− xj‖2
A =

j+d−1∑

i=j

γi (ri, si) + ‖x− xj+d‖2
A. (13)

Assuming a reasonable decrease of the A-norm of the error in the steps j + 1
through j + d, the square root of the value

νj,d ≡
j+d−1∑

i=j

γi (ri, si) (14)

gives a tight lower bound for the A-norm of the jth error of PCG applied to
the system Ax = b. Please notice that (similarly as in the ordinary CG) the
quantities γi and (ri, si) are at our disposal during the PCG iterations.

Moreover, the estimate (14) offers a possibility of estimating the relative A-
norm of the error

‖x− xj‖A

‖x− x0‖A

. (15)

Indeed, replacing the squared initial A-norm of the error ‖x − x0‖2
A by the

lower bound ν0,j+d and the squared jth A-norm of the error ‖x− xj‖2
A by the

lower bound νj,d, we obtain the estimate %j,d for the squared relative A-norm
of the error

%j,d ≡ νj,d

ν0,j+d

. (16)

Since

νj,d

ν0,j+d

=
‖x− xj‖2

A − ‖x− xj+d‖2
A

‖x− x0‖2
A − ‖x− xj+d‖2

A

≤ ‖x− xj‖2
A

‖x− x0‖2
A

,

%1/2

j,d is a lower bound for the jth relative A-norm of the error. Please note that
%1/2

j,d can be close to the relative A-norm of the error even when ν1/2

j,d is far from
‖x− xj‖A.

In our paper [37] we described an estimate of the Euclidean norm of the error
in CG based on a formula from the Hestenes and Stiefel paper [23]. For CG
applied to Âx̂ = b̂, Algorithm 1, the estimate is based on the identity
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‖x̂− x̂j‖2 =
j+d−1∑

i=j

‖p̂i‖2

(p̂i, Âp̂i)
(‖x̂− x̂i‖2

Â
+ ‖x̂− x̂i+1‖2

Â
) (17)

+ ‖x̂− x̂j+d‖2.

Using the definition (10), (17) can be rewritten as

‖x− xj‖2
M =

j+d−1∑

i=j

‖pi‖2
M

(pi, Api)
(‖x− xi‖2

A + ‖x− xi+1‖2
A) (18)

+ ‖x− xj+d‖2
M

where xj represents the PCG approximate solution for the original problem
Ax = b. Replacing the unknown ‖x−xi‖2

A for i = j, . . . , j +d by the estimates
νi,2d−i+j (see [37]) we obtain

‖x− xj‖2
M ≥ τj,d + ‖x− xj+d‖2

M (19)

where

τj,d ≡
j+d−1∑

i=j

‖pi‖2
M

(pi, Api)

(
γi (ri, si) + 2

j+2d−1∑

k=i+1

γk (rk, sk)
)

(20)

represents a lower bound for the squared M -norm of the error.

4 Numerical stability of the A-norm of the error estimate

In [37] we showed that the Hestenes and Stiefel estimate is numerically stable
(i.e. it is in finite precision CG computations not substantially affected by
rounding errors) until the A-norm of the error approaches its ultimate level of
accuracy. A similar result can be shown for the estimate (14) of the A-norm
of the error in PCG.

PCG computes at each step an additional vector sj+1 as a solution of the
linear system

Msj+1 = rj+1 , (21)

and uses

(rj+1, sj+1) (22)
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for computation of the coefficients γj+1 and δj+1 needed for determining of the
new direction vector pj+1. This is the difference which must be addressed in
extension of the results from CG [37] to PCG.

From now on xj+1, xj, γj, pj, rj+1, rj, sj+1, δj+1 and pj+1 will represent numer-
ically computed quantities. Numerical stability analysis of the estimate (14)
must answer a question to which extent the identity (13) holds for quantities
computed in finite precision arithmetic. Please note that this question is fun-
damentally different from its trivial part examining the error in computing νj,d

from γi and fl[(ri, si)], where fl[·] denotes the result of the operation performed
in finite precision arithmetic, using (14). In order to justify the estimate (14),
we have to derive the identity for the computed quantities analogous to (13)
without using any assumption which does not hold in finite precision compu-
tations. In particular, we can not use any assumption about orthogonality or
finite termination.

The key step considers the exact identity for numerically computed quantities

‖x− xj‖2
A = ‖x− xj+1 + xj+1 − xj‖2

A

= ‖x− xj+1‖2
A + 2(x− xj+1)T A(xj+1 − xj) + ‖xj − xj+1‖2

A

which gives the desired one-step difference

‖x− xj‖2
A − ‖x− xj+1‖2

A = ‖xj − xj+1‖2
A (23)

+ 2(x− xj+1)T A(xj+1 − xj).

The technically complicated and quite tedious analysis which must follow can
be summarized in several logically simple steps:

• First, the difference xj+1−xj is equal to γjpj perturbed by inaccuracies due
to rounding errors. Consequently, ‖xj+1−xj‖2

A can be expressed as γj(rj, sj)
plus some additional terms depending on machine precision ε characterizing
the finite precision arithmetic. These additional terms are small (this is not
obvious; the proof requires a careful work).

• Second, considering the approximation of A(x−xj+1) by the residual vector
rj+1 computed in the (j + 1)th iteration, the term 2(x−xj+1)T A(xj+1−xj)
can be seen as 2γj(rj+1, pj) plus additional small terms depending on ε
(again, bounding the size of these terms needs nontrivial work).

The whole problem of justification of the estimate (14) in finite precision
arithmetic is in this way reduced to proving that local orthogonality between
the computed (j + 1)th residual rj+1 and the computed jth direction vector
pj is in PCG maintained proportionally to machine precision. This represents
the technically most complicated part of the whole analysis.

10



In following four subsections we present a detailed rounding error analysis of
the identity (13). Subsection 4.1 describes the rounding errors arising in PCG
iterates due to finite precision arithmetic. In subsection 4.2 we develop a finite
precision analogy of the identity (13) for d = 1. Subsection 4.3 shows that the
local orthogonality between the vectors ri+1 and pj is preserved, up to a term
proportional to machine precision, in finite precision PCG computation. We
finalize the rounding error analysis in subsection 4.4.

4.1 Finite precision PCG computations

In the analysis we assume the standard model of floating point arithmetic
with machine precision ε, see, e.g. [24, (2.4)],

fl[a ◦ b] = (a ◦ b)(1 + δ), |δ| ≤ ε, (24)

where a and b stands for floating-point numbers and the symbol ◦ stands for
the operations addition, subtraction, multiplication and division. We assume
that this model holds also for the square root operation. Under this model,
we have for operations involving vectors v, w, a scalar α and the matrix A the
following standard results [18], see also [20], [31]

‖α v − fl[α v]‖≤ ε ‖α v‖, (25)
‖v + w − fl[v + w]‖≤ ε (‖v‖+ ‖w‖), (26)
|(v, w)− fl[(v, w)]| ≤ ε n (1 +O(ε)) ‖v‖ ‖w‖, (27)

‖Av − fl[Av]‖≤ ε c ‖A‖‖v‖. (28)

When A is a matrix with at most h nonzeros in any row and if the matrix-
vector product is computed in the standard way, c = hn1/2. In the following
analysis we count only for the terms linear in the machine precision ε and
express the higher order terms as O(ε2). By O(const) where const is different
from ε2 we denote const multiplied by a bounded positive term of an insignif-
icant size which is independent of the const and of any other variables present
in the bounds.

Numerically, the PCG iterates satisfy

xj+1 = xj + γjpj + εzx
j , (29)

rj+1 = rj − γjApj + εzr
j , (30)

pj+1 = sj+1 + δj+1pj + εzp
j , (31)

where εzx
j , εzr

j and εzp
j account for the local roundoff (r0 = b − Ax0 − εf0,

ε‖f0‖ ≤ ε{‖b‖ + ‖Ax0‖ + c‖A‖‖x0‖} + O(ε2)). The local roundoff can be
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bounded according to the standard results (25)–(28) in the following way

ε ‖zx
j ‖≤ ε {‖xj‖+ 2 ‖γjpj‖}+O(ε2)

≤ ε {3‖xj‖+ 2‖xj+1‖}+O(ε2), (32)

ε ‖zr
j‖≤ ε {‖rj‖+ 2 ‖γjApj‖+ c ‖A‖‖γjpj‖}+O(ε2), (33)

ε ‖zp
j ‖≤ ε {‖sj+1‖+ 2 ‖δj+1pj‖}+O(ε2)

≤ ε {3‖sj+1‖+ 2‖pj+1‖}+O(ε2). (34)

Similarly, the computed coefficients γj and δj satisfy

γj =
(rj, sj)

(pj, Apj)
+ εζγ

j , δj =
(rj, sj)

(rj−1, sj−1)
+ εζδ

j . (35)

In order to bound the local terms |εζγ
j | and |εζδ

j | we need following two lemmas.

Lemma 1 Consider the standard model of floating point arithmetic with ma-
chine precision ε [24,37], ε n ¿ 1. Let L be a nonsingular lower triangular
matrix and M = LLT . Then the numerically computed vector sj+1 is the exact
solution of the perturbed system

(M + ∆M) sj+1 = rj+1, ‖∆M‖ ≤ ε n2

1− ε n
‖M‖. (36)

PROOF. To prove (36) we use standard results of backward error analysis
[24]. Using the Theorem 9.4 [24, p. 175] and the fact that we have exact
Cholesky factorization of the matrix M = LLT we obtain

(M + ∆M) sj+1 = rj+1, |∆M | ≤ ε n

1− ε n
|L||LT |

where |L| denotes the matrix L with elements in absolute value. As shown in
the proof of the Theorem 10.4 in [24, p. 206],

‖ |L||LT | ‖ ≤ n ‖M‖.

Summarizing,

‖∆M‖ ≤ ‖ |∆M | ‖ ≤ ε n

1− ε n
‖ |L||LT | ‖ ≤ n

ε n

1− ε n
‖M‖

which completes the proof.
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Remark 2 The assumption M = LLT is not substantial. The result simi-
lar to (36) and the following analysis, will remain valid also if the Cholesky
decomposition of M is computed numerically, see e.g. [18].

Lemma 3 Consider the standard model of floating point arithmetic with ma-
chine precision ε [24,37], let ε n2 κ(M) ¿ 1. The numerically computed inner
product fl[(rj, sj)] satisfies

fl[(rj, sj)] = (rj, sj) + ε ζrs
j ,

ε|ζrs
j | ≤ ε κ(M)1/2(rj, sj)O(n) +O(ε2) , (37)

where κ(M) denotes the condition number of the matrix M . Moreover, (rj, sj)
is bounded from below by

(rj, sj) ≥ ‖rj‖ ‖sj‖
κ(M)1/2

O(1) . (38)

PROOF. Using (27), ε|ζrs
j | can be bounded as

ε|ζrs
j | ≤ ε n ‖rj‖ ‖sj‖ +O(ε2). (39)

To prove (37), we have to relate ‖rj‖ ‖sj‖ to (rj, sj). From (36) it follows

‖rj‖ ‖sj‖ ≤ ‖rj‖ ‖(M + ∆M)−1rj‖
= ‖rj‖ ‖(I + M−1∆M)−1M−1rj‖
≤ ‖rj‖ ‖M−1rj‖ ‖(I + M−1∆M)−1‖ . (40)

Assuming ε n2 κ(M) ¿ 1, it holds ‖M−1∆M‖ ¿ 1 and the inversed matrix
(I + M−1∆M)−1 can be approximated by two terms of the Neumann expan-
sion. Then, (40) changes to

‖rj‖ ‖sj‖ ≤ ‖rj‖ ‖M−1rj‖CM ( 1 +O(‖M−1∆M‖2)) , (41)

where

CM ≡ ‖ I −M−1∆M ‖

is a constant close to one. It remains to bound the product ‖rj‖ ‖M−1rj‖. A
simple manipulation gives
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‖rj‖ ‖M−1rj‖ =
‖rj‖ ‖M−1/2M−1/2rj‖
(M−1/2rj, M−1/2rj)

(rj,M
−1rj)

≤ ‖M−1/2‖ ‖rj‖
‖M−1/2rj‖ (rj,M

−1rj). (42)

Using Msj + ∆Msj = rj we get

(rj,M
−1rj) = (rj, sj) + (rj, M

−1∆Msj)

= (rj, sj) + (M−1/2rj,M
−1/2∆Msj)

and ‖rj‖ ‖M−1rj‖ can be bounded by

‖rj‖ ‖M−1rj‖ ≤ ‖M−1/2‖ ‖rj‖
‖M−1/2rj‖ (rj, sj)

+
‖M−1/2‖ ‖rj‖
‖M−1/2rj‖ (M−1/2rj,M

−1/2∆Msj)

≤ κ(M)1/2(rj, sj) +
ε n2

1− ε n
κ(M) ‖rj‖ ‖sj‖ . (43)

From (41) and (43) it follows

‖rj‖ ‖sj‖ ≤ ε κ(M)1/2(rj, sj) CM

+
ε n2

1− ε n
κ(M) ‖rj‖ ‖sj‖CM +O(‖M−1∆M‖2) . (44)

Defining

DM ≡ CM

(
1− ε n2

1− ε n
κ(M) CM

)−1

,

(44) can be written in the form

‖rj‖ ‖sj‖ ≤ κ(M)1/2(rj, sj) DM + O(‖M−1∆M‖2) . (45)

Since ε n2 κ(M) ¿ 1 and CM is close to one, the definition of DM implies that
DM is close to one also. The term O(‖M−1∆M‖2) is under our assumption
unimportant and will not be further explicitly considered. Finally, (45) gives

‖rj‖ ‖sj‖ ≤ κ(M)1/2(rj, sj)O(1) , (46)

14



where O(1) stands for a number close to one. (37) follows immediately from
(46) and (39). Dividing (46) by κ(M)1/2 gives (38), which finishes the proof.

Assuming ε n2 κ(M) ¿ 1, the local term εζδ
j is bounded, according to (24),

(27) and (37), by

ε|ζδ
j | ≤ ε

(rj, sj)
(rj−1, sj−1)

κ(M)1/2O(n) +O(ε2). (47)

Using (25)–(28) and ‖A‖‖pj‖2/(pj, Apj) ≤ κ(A),

fl[(pj, Apj)] = (pj, Apj) + ε ‖Apj‖‖pj‖O(n) + ε ‖A‖‖pj‖2O(c) +O(ε2)

= (pj, Apj)(1 + ε κ(A)O(n + c)) +O(ε2).

Assuming ε(n + c) κ(A) ¿ 1, the local roundoff εζγ
j is bounded by

ε|ζγ
j | ≤ ε (κ(A) + κ(M)1/2)

(rj, sj)
(pj, Apj)

O(n + c) +O(ε2). (48)

It is well known that in finite precision arithmetic the true residual b − Axj

differs from the recursively updated residual vector rj,

rj = b− Axj − εfj. (49)

This topic was studied in [35] and [20]. The results can be written in the
following form

‖εfj‖≤ ε ‖A‖ (‖x‖+ max
0≤i≤j

‖xi‖)O(jc), (50)

‖rj‖= ‖b− Axj‖ (1 + εFj), (51)

where εFj is bounded by

|εFj| =
|‖rj‖ − ‖b− Axj‖|

‖b− Axj‖ ≤ ‖rj − (b− Axj)‖
‖b− Axj‖ =

ε‖fj‖
‖b− Axj‖ . (52)

Rounding errors affect results of PCG computations in two main ways: they
delay convergence and limit the ultimate attainable accuracy. Here we are
primarily interested in estimating the convergence rate. We therefore assume
that the final accuracy level has not been reached yet and εfj is, in comparison
to the size of the true and iterative residuals, small. In the subsequent text we
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will relate the numerical inaccuracies to the A-norm of the error ‖x − xj‖A.
The following inequalities derived from (52) will prove useful,

λ
1/2
1 ‖x− xj‖A (1 + ε Fj) ≤ ‖rj‖ ≤ λ1/2

n ‖x− xj‖A (1 + ε Fj). (53)

Similarly as in the ordinary CG (see [19], [22]) we can argue that the mono-
tonicity of the A-norm is in PCG preserved (with small additional inaccuracy)
also in finite precision computations. Using this fact we get for j ≥ i

ε
‖rj‖
‖ri‖ ≤ ε

λ1/2
n

λ
1/2
1

· ‖x− xj‖A

‖x− xi‖A

· (1 + ε Fj)
(1 + ε Fi)

≤ ε κ(A)1/2 +O(ε2). (54)

This bound will be used later.

4.2 Finite precision analysis – basic identity

We show that the ideal (exact precision) identity (13) changes numerically to

‖x− xj‖2
A = νj,d + ‖x− xj+d‖2

A + ν̃j,d (55)

where ν̃j,d is as small as it can be. We once more emphasize that the difference
between (13) and (55) is not trivial. The ideal and numerical counterparts of
each individual term in these identities may be orders of magnitude different!
Due to the facts that rounding errors in computing νj,d numerically from
the quantities γi and fl[(ri, si)] are negligible and that ν̃j,d will be related to
ε ‖x−xj‖A, (55) will justify the estimate νj,d in finite precision computations.

In order to get the desired form leading to (55), we will develop the right hand
side of (23). In this derivation we will rely on local properties (29)–(31) and
(35)–(36) of the finite precision PCG recurrences.

Using (29), the first term on the right hand side of (23) can be written as

‖xj+1 − xj‖2
A = (γjpj + ε zx

j )T A(γjpj + ε zx
j )

= γ2
j (pj, Apj) + 2ε γj(pj, Azx

j ) +O(ε2)

= γj (pj, Apj) + 2ε (xj+1 − xj)
T Azx

j +O(ε2). (56)

Similarly, the second term on the right hand side of (23) transforms, using
(49), to the form
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2 (x− xj+1)T A(xj+1 − xj) = 2 (rj+1 + ε fj+1)T (xj+1 − xj)

= 2 rT
j+1(xj+1 − xj) + 2ε fT

j+1(xj+1 − xj). (57)

Combining (23), (56) and (57),

‖x− xj‖2
A − ‖x− xj+1‖2

A = γ2
j (pj, Apj) + 2 rT

j+1(xj+1 − xj) (58)

+ 2ε (fj+1 + Azx
j )T (xj+1 − xj)

+O(ε2).

Substituting for γj from (35), the first term in (58) can be written as

γ2
j (pj, Apj) = γj(rj, sj) + ε γj (pj, Apj) ζγ

j

= γj(rj, sj) + ε γj(rj, sj)
{
ζγ
j

(pj, Apj)
(rj, sj)

}
.

Consequently, the difference between the squared A-norms of the error in the
consecutive steps can be written in the form convenient for the further analysis

‖x− xj‖2
A − ‖x− xj+1‖2

A = γj(rj, sj) + ε γj(rj, sj)
{
ζγ
j

(pj, Apj)
(rj, sj)

}
(59)

+ 2 rT
j+1(xj+1 − xj)

+ 2ε (fj+1 + Azx
j )T (xj+1 − xj)

+O(ε2).

The goal of the following analysis is to show that until ‖x− xj‖A reaches its
ultimate attainable accuracy level, the terms on the right hand side of (59) are,
except for γj(rj, sj) insignificant. Bounding the second term will not represent
a problem. The norm of the difference xj+1 − xj = (x − xj) − (x − xj+1)
is bounded by 2‖x − xj‖A/λ1/2

1 , and therefore the size of the fourth term
is proportional to ε ‖x − xj‖A. The third term is related to the line-search
principle. Ideally (in exact arithmetic), the (j+1)-th residual r̂j+1 is orthogonal
to the difference between the (j+1)-th and j-th approximation x̂j+1−x̂j (which
is a multiple of the j-th direction vector p̂j). This is equivalent to the line-
search: ideally, in terms of the transformed quantities used in Algorithm 2,
the (j + 1)-th PCG approximation minimizes the A-norm of the error along
the line determined by the j-th approximation and the j-th direction vector.
Here the term rT

j+1(xj+1 − xj), with rj+1, xj and xj+1 computed numerically,
examines how closely the line-search holds in finite precision arithmetic. In
fact, bounding the local orthogonality rT

j+1(xj+1−xj) represents the technically
most difficult part of the remaining analysis.
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4.3 Local orthogonality

Since the classical work of Paige it is well known that in the three-term Lanczos
recurrence local orthogonality is preserved close to the machine epsilon (see
[31]). We will derive an analogy of this for the PCG algorithm, and state it as
an independent result.

The local orthogonality term rT
j+1(xj+1 − xj) can be written in the form

rT
j+1(xj+1 − xj) = rT

j+1(γjpj + ε zx
j ) = γj(rj+1, pj) + ε (rj+1, z

x
j ). (60)

Using the bound

‖rj+1‖ ≤ λ1/2
n ‖x− xj+1‖A(1 + ε Fj+1) ≤ λ1/2

n ‖x− xj‖A(1 + ε Fj+1) ,

see (53), the size of the second term in (60) is proportional to ε ‖x − xj‖A.
The main step consist of showing that the term (rj+1, pj) is sufficiently small.
Scalar multiplying the recurrence (30) for rj+1 by the vector pj gives (using
(31) and (35))

(pj, rj+1) = (pj, rj)− γj(pj, Apj) + ε (pj, z
r
j )

= (sj + δjpj−1 + ε zp
j−1)T rj

−
( (rj, sj)

(pj, Apj)
+ ε ζγ

j

)
(pj, Apj) + ε (pj, z

r
j )

= δj (pj−1, rj) + ε {(rj, z
p
j−1)− ζγ

j (pj, Apj) + (pj, z
r
j )}. (61)

Denoting

Gj ≡ (rj, z
p
j−1)− ζγ

j (pj, Apj) + (pj, z
r
j ), (62)

the identity (61) is

(pj, rj+1) = δj (pj−1, rj) + εGj. (63)

Recursive application of (63) for (pj−1, rj), . . . , (p1, r2) with (p0, r1) = (p0, r0)−
γ0 (p0, Ap0) + ε (p0, z

r
0) = ε {−ζγ

0 (s0, As0) + (s0, z
r
0)} ≡ εG0, gives

(pj, rj+1) = εGj + ε
j∑

i=1

( j∏

k=i

δk

)
Gi−1. (64)
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Since

ε
j∏

k=i

δk = ε
j∏

k=i

(rk, sk)
(rk−1, sk−1)

+O(ε2) = ε
(rj, sj)

(ri−1, si−1)
+O(ε2),

we can express (64) as

(pj, rj+1) = ε (rj, sj)
j∑

i=0

Gi

(ri, si)
+O(ε2). (65)

Using (62),

|Gi|
(ri, si)

≤ ‖ri‖‖zp
i−1‖

(ri, si)
+ |ζγ

i |
(pi, Api)
(ri, si)

+
‖pi‖‖zr

i ‖
(ri, si)

. (66)

When bounding the first and the last terms on the right hand side of (66), we
will use the inequality (38) proved in Lemma 3. From (34) it follows

ε
‖ri‖‖zp

i−1‖
(ri, si)

≤ ε κ(M)1/2
{

3 + 2
‖pi‖
‖si‖

}
O(1) + O(ε2). (67)

Using (48),

ε |ζγ
i |

(pi, Api)
(ri, si)

≤ ε (κ(A) + κ(M)1/2)O(n + c) +O(ε2). (68)

The last part of (66) is bounded using (33) and (38)

ε
‖pi‖‖zr

i ‖
(ri, si)

≤ ε
{
κ(M)1/2‖pi‖‖ri‖

‖si‖‖ri‖ O(1)
}

+ ε
{

2 γi
‖pi‖‖Api‖

(ri, si)
+ c γi

‖pi‖‖A‖‖pi‖
(ri, si)

}
+O(ε2)

= ε
{
κ(M)1/2‖pi‖

‖si‖ O(1)
}

+ ε
{

2
‖pi‖‖Api‖
(pi, Api)

+ c
‖A‖‖pi‖2

(pi, Api)

}
+O(ε2)

≤ ε
{
κ(M)1/2‖pi‖

‖si‖ O(1) + (2 + c) κ(A)
}

+O(ε2), (69)

where
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ε
‖pi‖
‖si‖ ≤ ε

‖si‖+ δi‖pi−1‖
‖si‖ +O(ε2)

≤ ε
{

1 + δi
‖si−1‖
‖si‖

‖pi−1‖
‖si−1‖

}
+O(ε2). (70)

Recursive application of (70) for ‖pi−1‖/‖si−1‖, ‖pi−2‖/‖si−2‖, . . ., ‖p1‖/‖s1‖
with ‖p0‖/‖s0‖ = 1 gives

ε
‖pi‖
‖si‖ ≤ ε

{
1 +

(si, ri)
(si−1, ri−1)

‖si−1‖
‖si‖ + . . . +

(si, ri)
(s0, r0)

‖s0‖
‖si‖

}
+O(ε2) (71)

≤ ε
{

1 +
‖ri‖‖si−1‖
(si−1, ri−1)

+ . . . +
‖ri‖‖s0‖
(s0, r0)

}
+O(ε2)

≤ ε
{

1 + κ(M)1/2 ‖ri‖
‖ri−1‖ + . . . + κ(M)1/2 ‖ri‖

‖r0‖
}
O(1)

+O(ε2). (72)

The size of ε ‖ri‖/‖rk‖, i ≥ k is, according to (54), less or equal than the value
ε κ(A)1/2 +O(ε2). Consequently,

ε
‖pi‖
‖si‖ ≤ ε {1 + i κ(A)1/2κ(M)1/2}O(1) +O(ε2). (73)

Denote

κ(A,M) ≡ max(κ(A), κ(M)κ(A)1/2).

Summarizing (67), (68), (69) and (73), the ratio ε |Gi|/(ri, si) is bounded as

ε
|Gi|

(ri, si)
≤ ε κ(A,M)O(8 + 3c + 2n + 3i) +O(ε2). (74)

Combining this result with (65) proves the following theorem.

Theorem 4 Let ε (n + c) κ(A) ¿ 1, ε n2 κ(M) ¿ 1. Then the local orthog-
onality between the direction vectors and the iteratively computed residuals is
in the finite precision implementation of the preconditioned conjugate gradient
method (29)–(31) and (35)–(36) bounded by

|(pj, rj+1)| ≤ ε (rj, sj) κ(A,M)O((j + 1)(8 + 3c + 2n + 3j)) +O(ε2) (75)

where

κ(A,M) ≡ max (κ(A), κ(M)κ(A)1/2) .
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4.4 Final precision analysis – conclusions

We now return to (59) and finalize our discussion. Using (60) and (65),

‖x− xj‖2
A − ‖x− xj+1‖2

A = γj(rj, sj) (76)

+ ε γj(rj, sj)
{
ζγ
j

(pj, Apj)
(rj, sj)

+ 2
j∑

i=0

Gi

(rj, sj)

}

+ 2ε {(fj+1 + Azx
j )T (xj+1 − xj) + (rj+1, z

x
j )}

+O(ε2).

The term

E(1)

j ≡ ε
{
ζγ
j

(pj, Apj)
(rj, sj)

+ 2
j∑

i=0

Gi

(rj, sj)

}

is bounded using (48) and (74),

|E(1)

j | ≤ ε κ(A,M)O(2n + 2c + 2(j + 1)(8 + 3c + 2n + 3j))) (77)

+O(ε2).

We write the remaining term on the right hand side of (76) proportional to ε
as

2ε {(fj+1 + Azx
j )T (xj+1 − xj) + (rj+1, z

x
j )} ≡ ‖x− xj‖A E(2)

j (78)

where

|E(2)

j |= 2ε

∣∣∣∣(fj+1 + Azx
j )T

(
xj+1 − x + x− xj

‖x− xj‖A

)
+

(rj+1, z
x
j )

‖x− xj‖A

∣∣∣∣

≤ 2ε {2 (‖fj+1‖λ−1/2
1 + ‖A‖1/2‖zx

j ‖) + ‖A‖1/2‖zx
j ‖}. (79)

With (50) and (32),

|E(2)

j | ≤ 4ε‖A‖1/2κ(A)1/2(‖x‖+ max
0≤i≤j+1

‖xi‖)O(jc)

+ 5‖A‖1/2ε(3‖xj‖+ 2‖xj+1‖) +O(ε2)

≤ ε‖A‖1/2κ(A)1/2(‖x‖+ max
0≤i≤j+1

‖xi‖)O(4jc + 25) +O(ε2). (80)

Finally, using the fact that the monotonicity of the A-norm is with small
additional inaccuracy preserved also in finite precision PCG computations
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(see also the discussion following (53)), we obtain the finite precision analogy
of (13), which is formulated as a theorem.

Theorem 5 Let ε (n + c) κ(A) ¿ 1, ε n2 κ(M) ¿ 1. Then the PCG approxi-
mate solutions computed in finite precision arithmetic satisfy

‖x− xj‖2
A − ‖x− xj+d‖2

A = νj,d (81)

+ νj,d E(1)

j,d + ‖x− xj‖A E(2)

j,d + O(ε2),

where

νj,d =
j+d−1∑

i=j

γi (ri, si). (82)

The terms due to rounding errors are bounded by

|E(1)

j,d| ≤ ε κ(A,M) p(1)(n, d) + O(ε2), (83)

|E(2)

j,d| ≤ ε ‖A‖1/2κ(A)1/2 (‖x‖+ max
0≤i≤j+1

‖xi‖) p(2)(n, d) + O(ε2),

where

κ(A,M) ≡ max (κ(A), κ(M)κ(A)1/2),

p(1)(n, d) and p(2)(n, d) represent small degree polynomials in n and d indepen-
dent of any other variables.

Based on the assumptions we consider |E(1)

j,d| ¿ 1. Then, assuming that the
A-norm of the error reasonably decreases, the numerically computed value νj,d

gives a good estimate for the A-norm of the error ‖x− xj‖2
A until

‖x− xj‖A |E(2)

j,d| ¿ ‖x− xj‖2
A,

which is equivalent to

‖x− xj‖A À |E(2)

j,d|. (84)

The quantity E(2)

j,d represents various terms. Its upper bound is, apart from
κ(A)1/2, which comes into play as an effect of the worst-case rounding error
analysis, linearly dependent on an upper bound for ‖x − x0‖A. The value of
E(2)

j,d is (similar to terms or constants in any other rounding error analysis) not
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important. What is important is the following possible interpretation of (84):
until ‖x−xj‖A reaches a level close to ε‖x−x0‖A, the estimate νj,d must work.

Please note that νj,d represents here the exact value determined from the
computed inputs γi, ri and si. In fact, we should consider the computed value
fl[νj,d]. Additional rounding errors in evaluating the formula (82) are, however,
negligible in comparison to the other rounding error terms in (81), and need
not be considered here.

5 Numerical experiments

We test our theoretical results on three linear systems with a symmetric posi-
tive definite matrix A. The first two systems (by R. Kouhia) arise from cylin-
drical shell modeling. The matrices are large and sparse, and PCG represents
a natural choice for solving the systems in practical computations. The third
system (by P. Benner) appears in large-scale control problems. Though PCG
is in practical solution of the last (rather small) system not the method of
choice, we use it to illustrate how the estimate of the A-norm of the error
works for this type of problems. We describe the problems in more details.

The system s3dkt3m2. The collection Cylshell (by R. Kouhia) from the elec-
tronic library Matrix Market [26] contains matrices that represent low order
finite element discretization of a shell element test, the pinched cylinder. An
illustration of the mesh for this problem provided by R. Kouhia is given below.

In our experiments we use the matrix s3dkt3m2 of the order n = 90449. The
matrix has nnz(A) = 1921955 nonzero elements, and the condition number
κ(A) = 3.62e+11. Only the last element of the right-hand side vector b is
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nonzero, which corresponds to the given physical problem (for more details
see [25] and the references in [25]). The preconditioner was determined by
incomplete Cholesky decomposition with no fill-in.

The system tube. The second system is given at the R. Kouhia’s homepage
http://www.hut.fi/~kouhia/ (the system tube1-2). The tube is a cylindri-
cal shell with the constant wall thickness, loaded with an axial stress distribu-
tion at both ends. The mesh is refined at the center, and it is almost uniform
towards the ends.

The order of the matrix A is n = 21498, nnz(A) = 894490. The factor L of the
preconditioner M is determined by the incomplete Cholesky decomposition
with the drop tolerance 1e–5, nnz(L) = 4384369.

The system stahl. We consider the problem of optimal cooling of steel profile,
that arises, e.g. in a rolling mill when different steps in the production process
require different temperatures of the raw material. The problem is modeled
using a boundary control (given by the temperature of the cooling fluid) for
a heat-diffusion process described by the linearized heat equations. This leads
to the Lyapunov equations that are solved by the ADI iterations. For more
detail about this problem see [9]. We test the proposed estimates on the system
from the initial step of the ADI iteration. The matrix is of the order n =
5177, κ(A) = 1.56e+05, nnz(A) = 35241. The system is preconditioned by
incomplete Cholesky decomposition with no fill-in.

In all experiments we use the initial approximation x0 = 0. We do not tune
the preconditioner for the best performance; our aim is to demonstrate the
behaviour of the A-norm of the error estimate in practical computations. The
substitutes for the exact solutions x used in the figures are for each system
computed in two steps: 1. We apply PCG to the system and iterate until ul-
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timate level of accuracy is reached (the norm of true and recursive residuals
start to differ). 2. We apply PCG to the system for the second time, with the
initial approximation given by the approximate solution computed in the first
step. In comparison with the direct Cholesky decomposition solver the approx-
imate solutions computed in this way give in our examples smaller residual
norm. They represent for our purpose sufficiently accurate approximations to
the exact solutions x.

In experiments with the system s3dkt3m2 we use a Fortran program CG6
provided us by M. Tůma. The other two systems are solved using our im-
plementation of PCG in Matlab 6.5; we use the Matlab-function cholinc to
determine the incomplete Cholesky decomposition of the matrix A. All exper-
iments were performed on a AMD Athlon XP 2100+ personal computer with
machine precision ε ∼ 10−16.

5.1 Estimates for the A-norm of the error

In the first numerical experiment we test the estimate ν1/2

j,d of the A-norm of
the error and the estimate %1/2

j,d of the relative A-norm of the error in PCG
applied to the three systems described above. The results are presented in
the figures Fig. 1 (s3dkt3m2), Fig. 2 (tube) and Fig. 3 (stahl). All three
figures consist of two parts. The upper part includes various convergence
characteristics: the A-norm of the error ‖x − xj‖A (dashed line), its esti-
mate ν1/2

j,d for some particular value of the parameter d (bold solid line), the
residual norm ‖b−Axj‖ (dash-dotted line) and the normwise backward error
‖b − Axj‖/(‖A‖ ‖xj‖ + ‖b‖) (dotted line). In the lower part of the figure we
plot the relative A-norm of the error ‖x−xj‖A/‖x−x0‖A (dashed line) and its
estimates %1/2

j,d for different values of d (solid lines). The bold line corresponds
to the same value of d as the bold line in the upper part of the figure.

Figure 1 (s3dkt3m2), upper part. We start with the most difficult situation
when the A-norm of the error (dashed line) almost stagnates for many steps
(here up to the iteration ∼ 2400). Then the estimate ν1/2

j,d (bold solid line) can
give a poor information about the actual A-norm of the error. The values of
‖x−xj‖A and ν1/2

j,d , can significantly differ even for a considerably large value of
the parameter d (here d = 200). Please notice that the situation just described
is not frequent in practical computations. It corresponds to an extremely slow
convergence of PCG, i.e. to the case of very difficult problem which is hard to
precondition. We have chosen such problem on purpose to show the possible
drawback of the proposed error estimator. We emphasize that this situation
represents an extremal case. Typical situation is demonstrated below on Fig. 2
(tube) and Fig. 3 (stahl). As soon as the convergence takes place (around
the iteration 2400), we get a tight lower bound for the A-norm of the error.
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Fig. 1. The system s3dkt3m2. In an extremal case of very slow PCG convergence
the estimate ν1/2

j,d can significantly underestimate the actual A-norm of the error

(upper part). The estimate %1/2

j,d of the relative A-norm of the error (lower part) is
in general much tighter than the estimate of the A-norm of the error.
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In CG, we often observe a close correlation between the behaviour of the resid-
ual norm and the estimate ν1/2

j,d for small values of d. This is a consequence
of the fact that in ordinary CG the coefficients γj usually oscillate around
some value and, apart from this oscillations, the behaviour of ‖rj‖ determines
the behaviour of ν1/2

j,d . Similar phenomenon appears also in the PCG itera-
tions. Here νj,d and (rj,M

−1rj) (the squared M−1-norm of the residual rj) are
correlated for small values of d. The M−1-norm of the residual rj frequently
behaves in practical computation similarly as a constant multiple of the Eu-
clidean norm of the residual. Then the correlation between ‖rj‖ and ν1/2

j,d is
observed also in the PCG iterations. For larger values of d, however, there is,
in general, no correlation between the behaviour of ‖rj‖ and ν1/2

j,d . In the upper
part of Figure 1 (where d = 200) we clearly see periods of decrease of ‖rj‖
with simultaneous increase of ν1/2

j,d , and vice versa.

By the dotted line we plot the normwise backward error. After the convergence
becomes steady, the values of ‖xj‖ typically stabilize. The residual norm and
the normwise backward error are then in a strong correlation. Until then, how-
ever, both characteristics can behave differently. This fact is demonstrated by
the convergence curves in the first 500 iterations; the backward error decreases
while the residual norm stagnates.

Figure 1 (s3dkt3m2), lower part. In the lower part of the Fig. 1 we plot the
relative A-norm of the error (15) (dashed line) and its estimate %1/2

j,d for d = 1,
d = 10, d = 80 (solid lines) and d = 200 (bold solid line). The estimate %1/2

j,1 ,
and sometimes even %1/2

j,10, %1/2

j,80 and %1/2

j,200, are not tight when the A-norm of
the error almost stagnates. In the other cases %1/2

j,1 as well as the bounds for
the larger d are close to the considered convergence curve. By the bold solid
line we plot the estimate for d = 200. In comparison to the upper part of the
Fig. 1, the estimate of the relative A-norm of the error gives better results (it
is closer to the approximated curve) than the estimate of the absolute A-norm
of the error.

Figure 2 (tube), upper part. When the A-norm of the error (dashed line)
decreases rapidly (iterations 350 − 400), we can not visually distinguish this
quantity from its estimate ν1/2

j,d (bold solid line). On the other hand, when the
convergence is slow (iterations 1− 350), the difference between the actual A-
norm of the error and its estimate is observable but insignificant. The normwise
backward error (dotted line) behaves similarly, apart from the difference in
magnitude, as the residual norm (dash dotted line).

Figure 2 (tube), lower part. The lower part of the Fig. 2 contains the curve
of the relative A-norm of the error (dashed line) and its estimates for d = 1,
d = 4 (solid lines) and d = 20 (bold solid line). For d = 1, the curve of the
estimate is erratic. The irregularity of the curve is due to the oscillations of
the coefficients γj. The estimate %1/2

j,1 does not differ from the actual relative
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tube: estimates of the relative A−norm of the error for different d
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Fig. 2. The system tube. Even a slow decrease of the A-norm of the error is sufficient
for obtaining a satisfactory value of the estimate ν1/2

j,d of the A-norm of the error.
The erratic behaviour for d = 1 is caused by the oscillations of the coefficients γj

(lower part). By increasing the value of d, the curves are more smooth and closer
to the relative A-norm of the error.
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Fig. 3. The system stahl. The estimates for the absolute and relative A-norm of
the error are tight throughout the whole computation.

A-norm of the error for more than a single order of magnitude, although the
convergence is in iterations 1–350 slow. Increasing d provides a very good
estimate throughout the whole computation.
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Fig. 4. The system s3dkt3m2. The relative A-norm of the error (dashed line), the
estimate of the relative A-norm of the error with d = 100 (solid line) and the
curves reconstructed at iterations 1000 (dots), 1700 (x-marks), 2200 (pentagrams)
and 2500 (stars).

Figure 3 (stahl), upper part. The preconditioning by incomplete Cholesky
decomposition represents here a very good choice; the convergence of the A-
norm of the error (dashed line) is fast during the whole computation and the
estimate (bold solid line) for the parameter d = 20 describes very well the
convergence curve.

Figure 3 (stahl), lower part. The estimates of the relative A-norm of the error
give a satisfactory information about the convergence also for small values of
d (d = 1, d = 4).

5.2 Reconstruction of the convergence curve

Up to now we estimated the A-norm of the error at the iteration step j at the
price of running d extra steps, and we considered d to be fixed. The simple
form of the estimate νj,d, see (13), (14) enables at the given iteration step j
updating of the estimates of the A-norm of the error at the steps j−d, j−2d, . . .
at a negligible cost. Indeed, assuming, for simplicity of exposition, that j is a

30



multiple of the chosen d (j mod d = 0), the identity (13) gives

‖x− xj−id‖2
A =

i∑

l=0

νj−ld,d + ‖x− xj+d‖2
A, i = 0, 1, . . . . (85)

In this way,

ν1/2

j−id,(i+1)d =

(
i∑

l=0

νj−ld,d

)1/2

(86)

approximates ‖x− xj−id‖A with the inaccuracy at most ‖x− xj+d‖A. In prac-
tical computations we can simply store the values of ν0,d, νd,d, ν2d,d, . . . , νj−d,d,
and with the additional d steps update the estimates for the A-norm of the
error in the steps 0, d, 2d, . . . , j − d to

ν1/2

0,j+d, ν1/2

d,j , ν1/2

2d,j−d, . . . , ν1/2

j−d,2d .

Dividing by ν1/2

0,j+d we get the corresponding values of the estimates %1/2

d,j , %1/2

2d,j,
. . ., %1/2

j−d,2d for the relative A-norm of the error. We illustrate this “reconstruc-
tion” of the convergence curve in Figure 4, computed for the problem s3dkt3m2
with d = 100, where we plot the relative A-norm of the error (dashed line),
its estimate %1/2

j,d (solid line) and the updated estimates of the relative A-norm
of the error computed for j = 1000 (dots), j = 1700 (x-marks), j = 2200
(pentagrams) and j = 2500 (stars). Please notice that when ‖x−xj‖A almost
stagnates, the updated estimates can significantly differ from the original ones
represented by the solid line.

We point out that in this paper we deal with evaluation of convergence, and
we left heuristics for proper stopping criteria to further investigation. The
problem s3dkt3m2 illustrates that the last question is not trivial. Though,
e.g., the computed estimates (even those updated at the iteration j = 2200)
significantly decrease in the iterations 1800-2000, the actual value of the A-
norm of the error still almost stagnates. We emphasize that neither the residual
norm nor the normwise backward error reliably indicate the convergence of
the A-norm of the error (cf. Fig. 1, iterations 1800-2000).

5.3 Comparison of the convergence characteristics

In Fig. 5 we plot various convergence characteristics and error estimates for
the system tube. We have used d = 4 (upper part) and d = 40 (lower part).
The M -norm of the error ‖x − xj‖M (dash-dotted line), the Euclidean norm
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Fig. 5. The system tube. The norms of the errors show similar behaviour. For d = 4,
the estimates of ‖x − xj‖M and of ‖x − xj‖A behave erratically, similarly to the
residual norm (upper part). For d = 40, the estimates are smoother and closer to
the approximated curves (lower part).
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of the error ‖x− xj‖ (bold solid line) and the A-norm of the error ‖x− xj‖A

(dashed line) show, except for a few initial iterations, similar behaviour. The
estimates both of ‖x− xj‖M and ‖x− xj‖A are plotted by the solid lines (no
confusion is possible; the line that is always under the dashed curve is the
estimate of the A-norm of the error). The A-norm of the error is estimated
more accurately than the M -norm of the error; while the estimate ν1/2

j,d differs
for no more that one order of magnitude from ‖x− xj‖A, τ 1/2

j,d differs often for
about two orders of magnitude. The behaviour of both estimates is similar,
but the peaks on the line representing τ 1/2

j,d are higher than the peaks on the
line representing ν1/2

j,d . For d = 4 both estimates behave erratically, similarly to
the residual norm (dotted line). By increasing the value of d, the estimates are
smoother and closer to the approximated curves (see lower part). The estimate
of the M -norm of the error is in our example more sensitive to a slow decrease
of error norms.

6 Conclusions

We suggest the estimate for the A-norm of the error ν1/2

j,d and the estimate
for the relative A-norm of the error %1/2

j,d to be incorporated into software re-
alizations of the PCG method. They are simple and numerically stable. The
estimates are tight if the A-norm of the error reasonably decreases. With a
good preconditioner ensuring fast convergence we get an authentic informa-
tion about convergence in terms of the A-norm of the error. The proposed
estimates can very usefully complement or replace the standard quantities,
such as residual norm or normwise backward error, for constructing a proper
stopping criteria. The last topic as well as the (variable) choice of the param-
eter d in the estimates still needs further work.
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[33] C. C. Paige and Z. Strakoš. Residual and backward error bounds in minimum
residual Krylov subspace methods. SIAM J. Sci. Comput., 23(6):1898–1923
(electronic), 2002.

[34] R. D. Skeel. Iterative refinement implies numerical stability for Gaussian
elimination. Math. Comp., 35(151):817–832, 1980.

[35] G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema. BiCGstab(l) and
other hybrid Bi-CG methods. Numer. Algorithms, 7(1):75–109, 1994.
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