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Institute of Computer Science AS CR Prague
hajek@cs.cas.cz
Dedicated to Professor Gert H. Müller on the occasion of
his 80th birthday
To appear in Proceedings of EUSFLAT conference Zittau 2003

Technical report No. 893

June 2003
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Institute of Computer Science AS CR Prague
hajek@cs.cas.cz
Dedicated to Professor Gert H. Müller on the occasion of
his 80th birthday
To appear in Proceedings of EUSFLAT conference Zittau 2003

Technical report No. 893

June 2003

Abstract:

Several logics generalizing the logic BL (basic fuzzy logic) are surveyed and reasons for their investigation
are discussed; results on the new flea logic are listed.

Keywords:
mathematical fuzzy logic, basic fuzzy logic, monoidal t-norm logic, hoop logic, non-commutative fuzzy
logic.



This paper is a companion to my [12]. The latter is a rather technical paper developing a generalized
(mathematical) fuzzy logic. Main definitions and results of [12] are reproduced here without any proofs;
but this is preceded by a survey on the basic propositional fuzzy logic BL and its generalizations and
by an attempt to explain why these generalizations are worth of study.

1. Basic fuzzy logic. (See [8] for details.) The term “fuzzy logic” is understood in its narrow
sense – symbolic logical systems, with a comparative notion of truth. We restrict ourselves to truth-
functional logic, i.e. semantics of connectives is given by their truth functions. The standard domain
of truth degrees is the real unit interval [0, 1] with its natural order. Each continuous t-norm ∗ can
be taken as the truth-function of conjunction; thus its residuum is taken to be the truth function of
implication. Some other connectives are defined, notably ¬ϕ is ϕ → 0. The three most important
continuous t-norms are /Lukasiewicz (x ∗ y = max(0, x + y − 1)), Gödel x ∗ y = min(x · y), and product
t-norm (x ∗ y = x · y).

A continuous t-norm ∗ and an evaluation e of propositional variables unique defines the value e∗(ϕ)
for any propositional formula ϕ built from the variables using conections &,→ and the truth constant
0. The formula ϕ is a t-tautology (tautology of the continuous t-norm logic) of e∗(ϕ) = 1 for each e
and each ∗.

In general, truth derees need not to be linearly ordered; the domain of truth degrees may just be
a bounded lattice (partially ordered set in which each pair of elements has sup and inf and having a
largest and a least element).

A BL-algebra is an algebra L = (L,∧,∨, ∗,→, 0L, 1L) where (L,∧,∨, 0L, 1L) is a bounded lattice
(with 0L, 1L as least and largest element, ∗ is a binary operation which is associative, commutative
and 1 ∗ x = x for all x,→ is its residuum (i.e. z ≤ x → y iff x ∗ z ≤ y) and the following axioms of
divisibility and prelinearity are satisfied: x ∧ y = x ∗ (x → y), (x → y) ∨ (y → x) = 1.

These are properties satisfied by each continuous t-norm and its residuum. Each BL-algebra L
serves as possible algebra of truth functions; one defines eL(ϕ) for each L and each evaluation of
propositional variables by elements of L in the obvious way; ϕ is a BL-tautology if eL(ϕ) = 1L for
each L and e.

Seven (schemes of) BL-tautologies (A1)–(A7) (similar to those listed below) are taken for axioms
of the basic fuzzy propositional logic BL; modus ponens is the deduction rule. This gives the notion
of provability of a formula ϕ in BL (notation: BL 	 ϕ.)

BL-algebras have subdirect representation property: each BL-algebra L is a subalgebra of a direct
product of linearly ordered BL-algebras (BL-chains). This is crucial for (a part of) the following.

Completeness theorem. The following are equivalent: (i) BL 	 ϕ, (ii) ϕ is a BL-tautology, (iii)
ϕ is a BL-chain tautology (eL(ϕ) = 1 for each BL-chain L and each L-evaluation e),, (iv) ϕ is a
t-tautology. (See [8] and [2].)

Moral: You are free to work with not necessarily linearly ordered domains of truth degrees or just
to insist on continuous t-norms on [0, 1]; but this gives the same logical truths.

Note that the corresponding predicate calculus is well elaborated (see [8]); but it will not be
discussed here.

2. Generalizations. BL has been generalized in three directions: First, a t-norm has residuum
(and hence leads to a logic with reasonable implication) iff it is left continuous; the corresponding
logic is MTL (monoidal t-norm logic, [4]) and the definition of the corresponding MTL-algebras
results from the definition of BL-algebras by omitting the axiom of divisibility. A natural example
of a t-norm which is left continuous but not continuous is Fodor’s nilpotent minimum x ∗ y = 0 for
x, y ≤ 1

2 , otherwise x ∗ y = min(x, y). (See [14] for extensive theory of t-norms.)
Second, BL-algebras an particular hoops (cf. [1], [?]). The corresponding logic is “falsity-free” –

the truth degrees may not have a least element. (Think of real product on the half-closed interval
(0, 1].) Studying the hoop logic one gets reasonable conservativeness results: a formula ϕ not containing
negation is provable in BL iff it is provable in the corresponding hoop logic.

Third, one you give up commutativity of conjunction. This was started by [7] and the corresponding
logic is in [10]. There are various examples of non-commutative conjunction in natural language (e.g.
“not only – but also –”; “– and then –”). Besides, there are good mathematical reasons for the study
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of non-commutative analogon of BL (called psBL – pseudo BL). Remarkably, here we loose subdirect
representability, i.e. psBL-tautologies are a proper subset of psBL-chain-tautologies [15]. An example
of a non-commutative left continuous (pseudo)-t-norm of [0, 1] was given by Mesiar: let 0 < a < b < 1
and let x ∗ y = 0 for x ≤ a, y ≤ b, x ∗ y = 0 otherwise.

Now it is natural to ask if we make all those three generalizations: we get the flea logic, a rather
weak but still well-working fuzzy logic. Even if we believe that fuzzy logic is not confined to the
standard truth set [0, 1] (as explained above), it is of some interest to know whether there are examples
of such general algebras on [0, 1] or (0, 1]. Before we go into details, consider the following modification
of Mesiar’s example: let 0 < c < a < b1, let x ∗ y = c for c ≤ x ≤ a and c ≤ y ≤ b, x ∗ y = min(x, y)
otherwise. This is a non-commutative left continuous pseudo-t-norm on [0, 1] and the half-open interval
(0, 1] is closed under ∗ (making it to a flea as we shall see).

What we have to pay in the non-commutative case is the fact that the operation ∗ now has two
residua → and ❀ with the following property:

If eL)(ϕ) = a and eL(ϕ → ψ) = b then eL(ψ) ≥ b ∗ a,
if eL(ϕ) = a and eL(ϕ ❀ ψ) = b then eL(ϕ) ≥ a ∗ b.

To show how this subtleness may be practically used remain a task for the future.
Before we close this section, two remarks: First, the reader should know that fuzzy logic uses truth

degrees as an auxiliary mathematical apparatus for defining its semantics (inside a crisp metatheory).
You will never say “I love you with the truth degree 0.98”; you will say “I love you” and will make
(fuzzy) conclusions from it. Fuzzy logic can teach you how the truth degrees behind your assertion
propagate to the conclusions you make.

Second, more informal information on fuzzy logic may be found in my [9].
In the next section we survey basics of the flea logic.

3. Flea algebras and flea logic.

Definition 1 A flea algebra is a structure F = (F,∧,∨, ∗,→,❀, 1) where
(F,∧,∨, 1) is a lattice with a greatest element,
∗ is as binary associative operation with 1 as (both-side) unit,
x ∗ y ≤ z iff x ≤ y → z iff y ≤ x ❀ z (residuation)
(x → y) ∗ x ≤ x ∧ y, x ∗ (x ❀ y) ≤ x ∧ y,
(x → y) ∨ (y → x) = 1, (x ❀ y) ∨ (y ❀ x) = 1 (prelinearity)

Definition 2 The flea logic FlL is a propositional calculus with binary connectives ∧,∨, &,→,❀ .
The axioms:
(Ã1) (ψ → χ) → ((ϕ → ψ) → (ϕ → χ)), the same for ❀,
(Ã2) (ϕ&ψ) → ϕ,
(Ã3) (ϕ&ψ) → ψ,
(Ã4a) (ϕ ∧ ψ) → ϕ,
(Ã4b) (ϕ ∧ ψ) → (ψ ∧ ϕ),
(Ã4c) ((ϕ → ψ)&ϕ) → (ϕ ∧ ψ),

(ϕ&(ϕ ❀ ψ)) → (ϕ ∧ ψ),
(Ã5) (ϕ → (ψ → χ)) � ((ϕ&ψ) → χ),

(ϕ ❀ (ψ ❀ χ)) � ((ψ&ϕ) ❀ χ)
(Ã6) ((ϕ → ψ) → χ) →
→ (((ψ → ϕ) → χ) → χ), the same for ❀

(Ã8) (ϕ ∨ ψ) �
((ϕ → ψ) ❀ ψ) ∧ ((ψ → ϕ) ❀ ϕ) �
� ((ϕ ❀ ψ) → ψ) ∧ ((ψ ❀ ϕ) → ϕ)
(no (Ã7)!)

Deduction rules are modus ponens and (Imp): from ϕ → ψ infer ϕ ❀ ψ and vice versa.

A psMTL-algebra is just a flea algebra having a least element; the logic psMTL is just the
extension of FlL by the axiom (Ã7) saying 0̄ → ϕ. (See [11].)
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Definition 3 Let F be a flea and 0 an element not belonging to F . 0⊕F is the algebra whose domain
is F ∪ {0}, and the operations are extended as follows: x∧ 0 = 0, x∨ 0 = x for all x, 0 ∗ x = x ∗ 0 = 0,
0 → x = 0 ❀ x = 1 for all x, and for x �= 0 x → 0 = x ❀ 0 = 0.

Lemma 1 For each flea F, 0 ⊕ F is a psMTL-algebra and F is a subalgebra of 0 ⊕ F.

Corollary 1 A formula not containing 0̄ is a psMTL-tautology iff it is a flea tautology.

Lemma 2 The logic FlL is sound w.r.t. fleas; i.e. each axiom of FlL is a tautology of each flea and
deduction rules preserve Fl-tautologicity.

Theorem 1 The class of flea algebras is a variety.

(This means that a flea algebra can be defined as an algebra stisfying a set of identities.)

Theorem 2 A flea is subdirectly representable iff the following identities are valid in it:

(y → x) ∨ (z ❀ ((x → y) ∗ z)) = 1,

(y ❀ x) ∨ (z → (z ∗ (x ❀ y))) = 1.

Cf. [15]. Moreover, introduce FlLr (representable flea logic) by adding Kühr’s axioms

(ψ → ϕ) ∨ (χ ❀ ((ϕ → ψ)&z))

(ψ ❀ ϕ) ∨ (χ → (χ&(ϕ ❀ ψ)))

to FlL; clearly, FlLr is sound for representable fleas.

Theorem 3 FlL proves the following formulas:
(1) ϕ → (ψ → ϕ), ϕ ❀ (ψ ❀ ϕ)
(2) (ϕ ❀ (ψ → χ)) � (ψ → ϕ ❀ χ))
(3) ϕ → ϕ, ϕ ❀ ϕ
(4) (ϕ&(ϕ ❀ ψ)) → ψ, ((ϕ → ψ)&ϕ) → ψ
(5) ϕ → (ψ → (ϕ&ψ)), ϕ ❀ (ψ ❀ (ψ&ϕ))
(6) (ϕ → ψ) → ((ϕ&χ) → (ψ&χ)), (ϕ ❀ ψ) → ((χ&ϕ) → (χ&ψ))
(no (7))
(8) ((ϕ&ψ)&χ) � (ϕ&(ψ&χ))
(9) (ϕ&ψ) → (ϕ ∧ ψ)
(10) (ϕ → ψ) → (ϕ → (ϕ ∧ ψ)), the same with ❀

(11) (ϕ ∧ ψ) → ϕ
(12) (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ)), the same with ❀

(13) ϕ → (ϕ ∨ ψ), (ϕ ∨ ψ) → (ψ ∨ ϕ),
(14) (ϕ → ψ) → ((ϕ ∨ ψ) → ψ), the same with ❀

(15) (ϕ → ψ) ∨ (ψ → ϕ), the same with ❀

(16) (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ), the same with ❀ .

Theorem 4 (conservativeness). psMTL and FlL prove the same zero-free formulas. The same for
psMTLr and FlLr.

Corollary 2 (completeness). (1) FlL 	 ϕ iff ϕ is a FlL-tautology.
(2) FlLr 	 ϕ iff ϕ is a FlLr-tautology iff ϕ is a FlL-chain tautology.

Fleas and pseudo-BCK-algebras
BCK-algebras were introduced and studied by Imai, Iseki and Tanaka. And psBCK-algebras

were introduced by Georgescu and Iorgulescu as a generalization of BCK-algebras not assuming
commutativity. (See [7].)
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A pseudo-BCK-algebra (briefly psBCK-algebra) is a structure A = (A,≤,→,❀, 1) where ≤ is a
binary relation, → and ❀ are binary operations and 1 is an element of A, such that the following is
valid:

(I) y → z ≤ (z → x) ❀ (y → x), y ❀ z ≤ (z ❀ x) → (y ❀ x)
(II) y ≤ (y ❀ x) → x, y ≤ (y → x) ❀ x
(III) x ≤ x
(IV) x ≤ 1
(V) x ≤ y and y ≤ x implies x = y
(VI) x ≤ y iff x → y = 1 iff x ❀ y = 1

A BCK-algebra (pedantically: reversed left-BCK-algebra) is a psBCK-algebra in which the
identity x → y = x ❀ y is valid.

Lemma 3 Let F = (F,∧,∨, ∗,→,❀, 1) be a flea. Then the reduct (F,≤,→, ❀, 1) is a psBCK-
algebra.

Iorgulescu studied expansions of psBCK-algebras by an operation ∗ satisfying reasonable con-
ditions. The reader will easily check that our fleas are exactly Iorgulescu’s “left-X-psBCK(pRP )-
algebras” satisfying two additional conditions.

Definition 4 A pulex1 is a structure P = (P,∧,∨,→,❀, 1) such that (P,∧,∨, 1) is a lattice with a
largest element, (P,≤,→,❀, 1) is a psBCK-algebra and the axioms (Ã6), (Ã8) as well as provability
(10) are valid, i.e.

(x → y) → z ≤ ((y → z) → z) → z, the same for ❀,
x ∨ y = ((x → y) ❀ y) ∧ ((y → x) ❀ x) = ((x ❀ y) → y) ∧ (y ❀ x) → x).
(x → y) → (x → (x ∧ y)), the same for ❀ .

Thus we have the following

Corollary 3 The implicational reduct of a flea is a pulex.

Observe that the class of psBCK-algebras is not a variety since the class of all BCK algebras is
not.

Theorem 5 The class of all psBCK-algebras whose order is a lattice is a variety (in the language
∧,∨,→,❀, 1).

Definition 5 The logic of pulexes has the axioms (Ã1), (Ã4a), (Ã4b), (Ã6) and (Ã8) of the flea logic
as well as the formulas (1), (2), (10) from the list of formulas provable in FlL; the deduction rules are
modus ponens and (Imp).

Theorem 6 A formula ϕ is provable in PulL iff it is a P-tautology for each pulex P iff it is a
LPul-tautology.

Conclusion. We have presented the main definitions and theorems concerning flea algebras and
hope to have shown the reader that even rather abstract these algebras and the corresponding logics
behave (“jump”) well. Studying them helps one to clarify the role of (left) continuity of t-norms and
the corresponding (un)definability of infimum from the star operation and its reduct, the role of falsity
(zero) and the role of commutativity. Moreover, it contributes to our understanding of the role of the
linearity of the order of truth degrees and the role of the standard set [0, 1] of truth degrees. The
simple example of a flea on (0, 1] is new here; proofs of all theorems are found (let’s repeat) in [12],
where also some open problems are formulated. One can add more, eg. the problem of decidability
(and computational complexity) of the set of tautologies of the flea logics FLl, fLlr. Also to develop
the corresponding predicate calculi in the style of [8] remains a future task.
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1Pulex irritans is a kind of fleas.
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