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An alternative to the classical Ritz method of approximate optimization is investigated. In the
extended Ritz method, sets of admissible solutions are approximated by their intersections with
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infimum and argminimum are expressed in terms of the “degree” n of variable-basis functions, of
the modulus of continuity of the functional to be minimized, of the modulus of Tychonov well-
posedness of the problem, and of certain norms tailored to the type of variable basis. Classes of
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machine learning.

Keywords:
approximate optimization, extended Ritz method, rates of convergence of approximate infima and
argminima, high-dimensional optimization problems, curse of dimensionality, convex best
approximation, learning from data.

1Collaboration between V. K. and M. S. was supported by the Scientific Agreement Italy-Czech Republic,
Area MC 6, Project 22: “Functional Optimization and Nonlinear Approximation by Neural Networks.” V. K.
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1 Introduction

In many high-dimensional optimization problems (e.g., routing in communications networks,
closed-loop optimal control, inventory problems, optimal management of water resources, large-
scale traffic networks, etc. [10], [14], [26], [46]), theoretically optimal admissible solutions
cannot be found analytically or, even when they can be found, they may not be implementable.
However, optimal solutions can be approximated by suboptimal ones that are implementable.
The classical Ritz method [23] considers a sequence of approximate solutions achievable over
intersections of the original set of admissible solutions with a nested family of linear subspaces
of increasing dimensionality.

Although linear approximation methods have many convenient properties, their practical
applications are limited by the “curse of dimensionality” [11], i.e., an exponential growth with
the number of variables of the dimension of a linear subspace needed for a given accuracy
of optimization. Experimental results confirm that the Ritz method is often unable to deal
efficiently with high-dimensional optimization tasks [46]. However, a systematic theoretical
study of rates of approximation for the Ritz method have not yet been made. The estimates
available in the literature [4], [42], [22], [43] either are formulated in the case of only one variable
or do not explicitly state their dependence on the number of variables of admissible solutions.

In [46], an alternative to the classical Ritz method, called the extended Ritz method, was
introduced. According to this method, instead of linear subspaces of increasing dimensionality,
a nested family of so-called variable-basis functions is used to approximate admissible functions.
The variable-basis approximation scheme includes a variety of nonlinear approximators such
as free-node splines, trigonometric polynomials with free frequencies, and feedforward neural
networks [27], [32]. The introduction of the extended Ritz method was motivated by successful
applications of feedforward neural networks for the approximate solution of high-dimensional
optimization problems [2], [3], [6], [7], [8], [12], [13], [34], [35], [36], [37], [38], [41], [45], [46].
When such networks are used as a variable basis, the extended Ritz method reduces the original
optimization task to a nonlinear programming problem in which the optimal values of the
network parameters can be determined by means of a suitable descent algorithm such as the
backpropagation one [40].

In this paper, we investigate the extended Ritz method theoretically. We derive upper
bounds on the speed of convergence of approximate infima and argminima over nested families
of variable-basis functions to the global infima and argminima. The upper bounds are formu-
lated in terms of the “degree” n of variable-basis functions, norms tailored to the type of basis,
the modulus of continuity of the functional to be minimized and the modulus of well-posedness
of the problem. By inspection of these bounds we obtain a description of high-dimensional
optimization problems for which the extended Ritz method does not exhibit the curse of di-
mensionality. As our estimates are not merely asymptotic, they allow one to estimate the
quality of approximate solutions achievable over admissible sets that are implementable.

We illustrate our results on two examples. The first is the convex best approximation
problem and the second is learning from data, modeled as the minimization of the so-called
regularized empirical error functional.

The paper is organized as follows. Section 2 introduces basic concepts and results from
optimization theory that we use throughout the paper. Section 3 describes the variable-basis
approximation scheme and the extended Ritz method. Section 4 contains our main results on
the speed of convergence of the extended Ritz method, and Section 5 states their refinements
for convex optimization problems. Sections 6 and 7 apply our estimates to convex best ap-
proximation problems and kernel methods in machine learning, resp. Section 8 provides a brief
discussion.

2 Preliminaries

By a normed linear space (X, ‖.‖) we mean a real normed linear space. R denotes the set
of real numbers and R+ the set of positive reals. For a positive integer d, Ω ⊆ Rd and
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p ∈ [1,∞), (Lp(Ω), ‖.‖p) denotes the space of measurable, real-valued functions on Ω such that∫
Ω
|f(x)|p dx < ∞ endowed with the Lp-norm.
A ball, a sphere, resp., of radius r centered at h ∈ X is denoted by Br(h, ‖.‖) = {f ∈ X :

‖f − h‖ ≤ r}, Sr(h, ‖.‖) = {f ∈ X : ‖f − h‖ = r}. We write shortly Br(‖.‖) = Br(0, ‖.‖)
and Br(h) = Br(h, ‖.‖), Br = Br(0) when it is clear which norm is used; similarly for spheres.
Sequences (of real numbers, sets or elements of normed linear spaces) are denoted by {xn}
instead of {xn : n ∈ N+}, where N+ is the set of positive integers.

A functional Φ : X → (−∞,+∞] is called proper if it is not identically equal to +∞. The
set dom Φ = {f ∈ X : Φ(f) < +∞} is called the domain of Φ.

Φ is continuous at f ∈ dom Φ if for all ε > 0 there exists η > 0 such that for every g ∈ dom Φ,
‖f − g‖ < η implies |Φ(f) − Φ(g)| < ε and the modulus of continuity of Φ at f is the function
αf : R+ → R+ defined as ωf (t) = sup{|Φ(f) − Φ(g)| : f, g ∈ dom Φ, ‖f − g‖ ≤ t}. We write
merely α instead of αf when f is clear from the context. Φ is Lipschitz continuous on M with
a Lipschitz constant c if for all f, g ∈ M , |Φ(f) − Φ(g)‖ ≤ c‖f − g‖.

A functional Φ is convex on a convex set M ⊆ X if for all h, g ∈ M and all λ ∈ [0, 1],
Φ(λh+(1−λ)g) ≤ λΦ(h)+ (1−λ)Φ(g). Φ is uniformly convex on a convex set M ⊆ X if there
exists a non-negative function δ : R+ → R+, such that δ(0) = 0, δ(t0) > 0 for some t0 > 0 and
for all h, g ∈ M and all λ ∈ [0, 1], Φ(λh+(1−λ)g) ≤ λΦ(h)+(1−λ)Φ(g)−λ(1−λ)δ(‖h−g‖).
Any such function δ is called a modulus of convexity of Φ [44]. The functional Φ is called strictly
uniformly convex on M if δ(t) > 0 for all t ∈ R+.

Using standard notation [19], we denote by (M,Φ) the problem of infimizing a functional Φ
over a subset M of X. M is called a set of admissible solutions or admissible set. When both
M and Φ are convex, (M,Φ) is called a convex optimization problem.

A sequence {gn} of elements of M is called Φ-minimizing over M if limn→∞ Φ(gn) =
infg∈M Φ(g). By the definition of infimum, for any problem (M,Φ) with M non-empty, there
always exists a minimizing sequence. We denote by argmin (M,Φ) = {go ∈ M : Φ(go) =
infg∈M Φ(g)} the set of argminima of the problem (M,Φ) and for ε > 0, we denote by
argminε(M,Φ) = {gε ∈ M : Φ(gε) < infg∈M Φ(g) + ε} the set of its ε-near argminima.

The following proposition summarizes well-known elementary properties of uniformly convex
functionals.

Proposition 2.1 Let (X, ‖.‖) be a normed linear space, M ⊆ X convex, Φ be a uniformly
convex functional on M with a modulus of convexity δ. Then
(i) if Ψ is convex on M , then Φ + Ψ is uniformly convex on M with a modulus of convexity δ;
(ii) if Φ : X → R, then for every f ∈ X the translated functional Φ(· − f) is uniformly convex
on M − f with a modulus of convexity δ;
(iii) if go ∈ argmin(M,Φ) then for every g ∈ M , δ(‖g − go‖) ≤ Φ(g) − Φ(go);
(iv) if (X, ‖.‖) is a Hilbert space, then the functional ‖.‖2 : X → R is uniformly convex with
modulus of convexity δ(t) = t2.

Proof. (i) and (ii) follow directly from the definitions.
(iii) By the definition of uniform convexity, for every λ ∈ [0, 1] we have λ(1 − λ)δ(‖g − go‖) ≤
λΦ(g)− (1−λ)Φ(go)−Φ(λg +(1−λ)go). As Φ(go) ≤ Φ(λg +(1−λ)go), we get λ(1−λ)δ(‖g−
go‖) ≤ λΦ(g)+(1−λ)Φ(go)−Φ(go) = λ (Φ(g) − Φ(go)). Hence (1−λ)δ(‖g−go‖) ≤ Φ(g)−Φ(go).
Taking the infimum over λ, we obtain δ(‖g − go‖) ≤ Φ(g) − Φ(go).
(iv) It is easy to check that for every h, g ∈ X and λ ∈ [0, 1], we have ‖λh + (1 − λ)g‖2 ≤
λ‖h‖2 + (1 − λ)‖g‖2 − λ(1 − λ)‖h − g‖2. �

The problem (M,Φ) is Tychonov well-posed if it has a unique minimum to which every
minimizing sequence converges [19, p. 1]. The modulus of Tychonov well-posedness of (M,Φ)
at an argminimum go is a function ξgo : R+ → R+ such that for every t ∈ R+, ξgo(t) =
infg∈M∩St(go) Φ(g) − Φ(go). Note that the modulus of Tychonov well-posedness is defined for
any problem that has an argminimum even when such a problem is not Tychonov well-posed.

The linear span of M is spanM = {∑n
i=1 wigi : wi ∈ R, gi ∈ M, n ∈ N+}. The topological

interior of M is int M = {g ∈ M : (∃ ε > 0) (Bε(g) ⊂ M)} and its closure is cl M = {f ∈ X :
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(∀ε > 0) (Bε(f)∩M) �= ∅)}. If clM = Y , then M is said to be dense in Y . The diameter of M
is defined as diamM = sup{‖f − g‖ : f, g ∈ M}.

The Minkowski functional of M ⊆ X is the functional pM : X → [0,+∞] defined for every
f ∈ X as pM (f) = inf{λ ∈ R+ : f/λ ∈ M}. M is called absorbing if dompM = X. For every
M , pM is positively homogeneous and for M convex, pM is convex. The following proposition
states elementary properties of Minkowski functionals of convex sets containing zero, which will
be used in our proofs.

Proposition 2.2 Let (X, ‖.‖) be a normed linear space, M ⊆ X and r0 = sup{r > 0 :
Br(‖.‖) ⊆ M}. Then the following hold:
(i) if M is convex with 0 ∈ M , then M ⊆ {f ∈ X : pM (f) ≤ 1};
(ii) if M is convex with 0 ∈ M , then {f ∈ X : pM (f) ≤ 1} ⊆ M ;
(iii) if M is closed and convex with 0 ∈ M , then M = {f ∈ X : pM (f) ≤ 1};
(iv) if 0 ∈ int M , then dompM = X;
(v) if 0 ∈ int M and r0 < ∞, then for every f ∈ X, pM (f) ≤ ‖f‖/r0;
(vi) if M is convex and 0 ∈ intM , then pM is Lipschitz on X with constant c = 1/r0 if r0 < ∞
and c = 0 if r0 = ∞.

Proof. (i) By the definition of pM , f ∈ M implies pM (f) ≤ 1 and so M ⊆ {f ∈ X : pM (f) ≤ 1}.
(ii) Let f ∈ X be such that pM (f) < 1. By the definition of pM , there exists λ ≤ 1 such

that f/λ ∈ M . As M is convex and 0 ∈ M , f = λ (f/λ) + (1 − λ) 0 ∈ M .
(iii) By (i) and (ii), it is sufficient to check that for every f ∈ X with pM (f) = 1, f ∈ M .

By the definition of pM , there exists a sequence {λi} such that limi→∞ λi = 1 and for every i,
f/λi ∈ M . As M is closed and f = limi→∞(f/λi), we have f ∈ M .

(iv) and (v) As 0 ∈ int M , there exists r > 0 such that Br(0) ⊆ M . So for every f ∈ Br(0),
pM (f) ≤ 1. Let g ∈ X. Then, pM (g) = pM (r ‖g‖ (g/r ‖g‖)) and by the positive homogeneity
of pM , pM (g) = (‖g‖/r) pM ( r (g/‖g‖)). As ‖r g/‖g‖‖ = r, we have r g/‖g‖ ∈ Br(0) and so
pM (g) = (‖g‖/r) pM ( r (g/‖g‖)) ≤ ‖g‖/r ≤ ‖g‖/r0 < ∞.

(vi) When M is convex, pM is also convex. By the convexity and positive homogeneity of pM ,
we have (1/2)pM (f) = pM ((1/2)f) = pM ((1/2)g + (1/2)(f − g)) ≤ (1/2)pM (g)+(1/2)pM (f −
g). Thus, pM (f) − pM (g) ≤ pM (f − g) ≤ ‖f − g‖/r0. By exchanging the roles of f and g, we
obtain the inequality −‖f − g‖ ≤ pM (f) − pM (g). Hence |pM (f) − pM (g)| ≤ ‖f − g‖/r0. �

3 Variable-basis approximation and the extended Ritz method

The classical Ritz method [23, p. 192] for approximate optimization replaces the problem (M,Φ)
with a sequence of problems

{(
M ∩ Xn,Φ

)}
,

where, for each n, Xn is an n-dimensional subspace of X. Under suitable conditions on Φ, M ,
and {Xn} (such as continuity of Φ, compactness of M , and density of

⋃
n∈N+

M ∩Xn in X), for
every n there exists an argminimum gn of the approximate problem (M ∩Xn,Φ), the sequence
{gn} converges to some go ∈ M , and limn→∞ Φ(gn) = Φ(go).

Typically, the subspaces Xn are generated by the first n elements of a subset of X with a
fixed linear ordering. So this approximation scheme can be called fixed-basis approximation in
contrast to variable-basis approximation, which uses nonlinear approximating sets formed by
linear combinations of at most n elements of a given subset G of X. Such sets are denoted by
spann G = {∑n

i=1 wigi : wi ∈ R, gi ∈ G}. The variable-basis approximation scheme includes
splines with free nodes, trigonometric polynomials with free frequencies, and feedforward neural
networks [27], [32].

An alternative to the classical Ritz method consists in approximating an admissible set by its
intersections with a nested sequence of the form {spannG}. For G formed by a parameterized
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family G = {ga : a ∈ A} where A ⊆ Rp, this approach was introduced in a series of papers (see
[2], [3], [6], [7], [36], [37], [38], [45], [46] and the references therein) and formalized in [46] as the
extended Ritz method. Here we use the term extended Ritz method for optimization over the
intersection of an admissible set with a nested sequence of the form {spannG}, for a general
set G. This includes the important class of admissible sets computable by neural networks
with one hidden layer containing n computational units computing functions from the set G
(for example, G can be formed by functions computable by perceptrons, radial-basis units, etc.
[29], [30].

Sets spannG are not convex and so when the classical Ritz method is replaced with the
extended one, the existence of argminima over approximate admissible sets might be lost. How-
ever, argminima can be replaced with εn-near argminima and a sequence of εn-near argminima
might converge to a global argminimum much faster than in the case of the classical Ritz
method. Indeed, the union of subspaces spanned by all n-tuples of elements of a set G is “much
larger” than a single n-dimensional subspace generated by the first n elements of G and so the
functional to be minimized might achieve in such unions of subspaces values that are closer to
the global argminimum.

To estimate rates of convergence of approximate infima and argminima for the extended
Ritz method, we take advantage of a result from nonlinear approximation theory by Maurey
[39], Jones [25], and Barron [9]. Here we use its reformulation in terms of a norm tailored
to a given basis G. Such a norm, called G-variation and denoted by ‖.‖G, was introduced in
[28] for a subset G of a normed linear space (X, ‖.‖) as the Minkowski functional of the set
cl conv (G ∪ −G). Thus,

‖f‖G = inf
{
c > 0 : c−1f ∈ cl conv (G ∪ −G)

}
.

G-variation is a norm on the subspace {f ∈ X : ‖f‖G < ∞} ⊆ X satisfying ‖.‖ ≤ sG ‖.‖G.
When G is an orthonormal basis of a separable Hilbert space, G-variation is equal to the l1-norm
with respect to G, defined for every f ∈ X as ‖f‖1,G =

∑
g∈G |f · g| [33], [31]. Besides being

a generalization of the notion of l1-norm, G-variation is also a generalization of the concept of
total variation studied in integration theory [9].

The next theorem is a reformulation in terms of G-variation of estimates derived by Maurey
[39], Jones [25], and Barron [9] for Hilbert spaces and of their extension by Darken et al. [17]
to Lp-spaces, p ∈ (1,∞). We shall refer to Theorem 3.1 (i) as MJB theorem or MJB bound.
For t > 0, we define

G(t) = {wg : g ∈ G,w ∈ R, |w| ≤ t}.

Theorem 3.1 Let (X, ‖.‖) be a normed linear space, G its bounded subset and sG =
supg∈G ‖g‖. For every f ∈ X and every positive integer n, the following hold:

(i) if (X, ‖.‖) is a Hilbert space, then

‖f − spannG‖ ≤ ‖f − convn G(‖f‖G)‖ ≤
√

(sG ‖f‖G)2 − ‖f‖2

n
.

(ii) if Ω ⊂ Rd is compact and (X, ‖.‖) = (Lp(Ω), ‖.‖p), p ∈ (1,∞), then

‖f − spann G‖ ≤ ‖f − convn G(‖f‖G)‖ ≤ 21/p̄+1sG ‖f‖G

n1/q̄
,

where q = p/(p − 1), p̄ = min(p, q), and q̄ = max(p, q).

Proof. (i) See [28] and [30].
(ii) By [17, Theorem 5], for every S ⊆ X, every f ∈ cl conv S, every r > 0 such that S ⊆
Br(f, ‖.‖), every ε > 0, and every n ∈ N+, there exists fn ∈ convn S such that ‖f − fn‖ ≤
21/p̄r+ε

n1/q̄ . Setting S = {w g : g ∈ G, |w| ≤ ‖f‖G} and r = 2 sG ‖f‖G, we get for every g ∈ S and
f ∈ X, ‖g − f‖ ≤ ‖g|| + ‖f‖ ≤ sG ‖f‖G + sG ‖f‖G = r, as for every f ∈ X, ‖f‖ ≤ sG ‖f‖G.
Thus S ⊆ Br(f, ‖.‖) and so we can apply [17, Theorem 5] to obtain for every f ∈ X, ε > 0 and
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n ∈ N+, fn ∈ convn S ⊆ spann G such that ‖f −fn‖ ≤ 2
1
p̄

+1
sG ‖f‖G+ε
n1/q̄ . Hence ‖f −spann G‖ ≤

2
1
p̄

+1
sG ‖f‖G

n1/q̄ . �

As for any number d of variables of the functions in X, the bounds from Theorem 3.1 (i),
(ii) are of the orders of O(n−1/2) and O(n−1/q̄), resp., some authors called them “dimension-
independent.” However, this is misleading as both sG and balls of fixed radii in G-variation
depend on d (for properties of balls in G-variation, see [9], [33], [32], and [30]).

4 Rates of approximate optimization over variable-basis functions

In this section, we investigate approximate optimization over variable-basis functions of a prob-
lem (M,Φ) that has an argminimum. This assumption is satisfied by various convex problems
in reflexive Banach spaces (e.g, the minimization of a lower semicontinuous uniformly convex
functional over a closed convex admissible set [16] or the minimization of a convex lower semi-
continous proper functional over a closed convex bounded set [20, p. 35]). Such problems are
often derived by regularization [19, p. 29] from problems that do not have an argminimum. So
the following results apply to a wide class of regularized problems.

Let go be an argminimum of a problem (M,Φ) to which the extended Ritz method based
on the approximation of M by sets M ∪ spannG is applied. As the existence of argminima of
approximate problems (M∩spannG,Φ) is not guaranteed, we can only consider εn-near argmin-
ima. To estimate the speed of convergence of these εn-argminima to the global argminimum
go, we take advantage of MJB theorem. But we cannot apply it directly as MJB bound esti-
mates the distance of go from spannG, not from M ∩ spannG. The following technical lemma,
which extends a result from [43], allows us to construct an auxiliary sequence of elements of
M ∩ spannG, to which MJB bound can be applied (see Figure 4.1).

Lemma 4.1 Let A and M be subsets of a normed linear space (X, ‖.‖), M be closed and
convex, 0 ∈ M , and λA ⊆ A, for all λ ∈ [0, 1). Then for every g ∈ M and every f ∈ A with
pM (f) < +∞, there exists h ∈ M ∩ A such that
(i) ‖h − g‖ ≤ ‖f − g‖ + ‖g‖ ∣∣pM (f) − pM (g)

∣∣;
(ii) if 0 ∈ int M , then ‖h− g‖ ≤ (1 + c ‖g‖) ‖f − g‖, where c is the Lipschitz constant of pM

on X.

Proof. (i) When f ∈ A ∩ cl M , the estimate holds trivially with h = f . If f ∈ A − cl M ,
then f �= 0 and so we can set h = pM (g)

pM (f) f . Hence pM (h) = pM (g) ≤ 1, and by Proposition
2.2 (ii), h ∈ M . As f �∈ M again by Proposition 2.2 (ii), we have pM (f) > 1. Thus h =
pM (g)
pM (f) f with pM (g)

pM (f) < 1 and f ∈ A, which implies h ∈ A. Hence h ∈ A ∩ M and ‖h −
g‖ =

∥∥∥ pM (g)
pM (f)f − g

∥∥∥ =
∥∥∥ pM (g)

pM (f) (f − g) −
(
1 − pM (g)

pM (f)

)
g
∥∥∥ ≤

∣∣∣ pM (g)
pM (f)

∣∣∣ ‖f − g‖ +
∣∣∣1 − pM (g)

pM (f)

∣∣∣ ‖g‖ <

‖f − g‖ +
∣∣∣pM (f)−pM (g)

pM (f)

∣∣∣ ‖g‖ < ‖f − g‖ + |pM (f) − pM (g)| ‖g‖.
(ii) If 0 ∈ int M , then, by Proposition 2.2 (v), pM is Lipschitz continuous on X. Denoting

by c its Lipschitz constant, we have
∣∣pM (f) − pM (g)

∣∣ ≤ c ‖f − g‖. So ‖h − g‖ ≤ ‖f − g‖ +
‖g‖ ∣∣pM (f) − pM (g)

∣∣ implies ‖h − g‖ ≤ (1 + c ‖g‖) ‖f − g‖. �

Under suitable assumptions on M (which are verified, e.g., by any ball Br(‖.‖) ), Lemma
4.1 allows us to construct an auxiliary sequence hε

n ∈ M ∩ spannG satisfying ‖go − hε
n‖ ≤

C‖go − spannG‖ + ε, for a constant C dependent only on ‖go‖ and on the Lipschitz constant
of pM ( C = 1 + c‖go‖ ). Combining this inequality with MJB theorem, we derive the following
estimates of rates of approximate optimization in terms of G-variation of an argminimum go of
the problem (M,Φ) and the modulus of continuity of Φ at go.

Theorem 4.2 Let (X, ‖.‖) be a Hilbert space, M and G be its subsets, G be bounded, sG =
supg∈G ‖g‖, M be closed, convex, and 0 ∈ int M . Let Φ : X → (−∞,+∞] be a functional,
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Figure 4.1:

go ∈ argmin (M,Φ), Φ be continuous at go with a modulus of continuity α, and {εn} be a
sequence of positive reals such that gn ∈ argminεn

(M ∩ spann G,Φ). Then pM is Lipschitz on
X and if c is its Lipschitz constant, the following hold for every integer n:

(i) infg∈M∩ spann G Φ(g) − Φ(go) ≤ α

((
1 + c‖go‖)√ (sG‖go‖G)2−‖go‖2

n

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is a Φ-minimizing sequence over M and

Φ(gn) − Φ(go) ≤ α

((
1 + c‖go‖)√ (sG‖go‖G)2−‖go‖2

n

)
+ εn;

(iii) if ξ is the modulus of Tychonov well-posedness of (M,Φ) at go, then

ξ(‖gn − go‖) ≤ α

((
1 + c‖go‖)√ (sG‖go‖G)2−‖go‖2

n

)
+ εn;

(iv) if Φ is uniformly convex on M with a modulus of convexity δ, then

δ(‖gn − go‖) ≤ α

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+ εn.

Proof. (i) As 0 ∈ int M , by Proposition 2.2 (iv) and (v), dompM = X and pM is Lipschitz
on X.

For every n and every ε > 0, choose an ε-near best approximation fε
n of go in spannG, i.e.,

‖go − fε
n‖ < ‖go − spann G‖ + ε. As M is closed, convex, 0 ∈ M , and fε

n ∈ dompM = X,
applying Lemma 4.1 (ii) with f = fε

n, g = go, and A = spann G, we obtain hε
n ∈ M ∩ spann G

satisfying

‖hε
n − go‖ ≤ (

1 + c‖go‖) ‖fε
n − go‖ ≤ (1 + c‖go‖)(‖go − spannG‖ + ε). (4.1)

As hε
n ∈ M ∩ spannG, we have infg∈M∩ spann G Φ(g) − Φ(go) ≤ Φ(hε

n) − Φ(go). Estimating
the right-hand side of this inequality in terms of the modulus of continuity α of Φ at go we
obtain infg∈M∩ spann G Φ(g) − Φ(go) ≤ α

(‖hε
n − go‖). Combining this estimate with inequality

(4.1), we get

inf
g∈M∩ spann G

Φ(g) − Φ(go) ≤ α
(
(1 + c‖go‖)‖go − spannG‖ + ε

)
.

By Theorem 3.1 (i), we have

inf
g∈M∩ spann G

Φ(g) − Φ(go) ≤ α

(
(1 + c‖go‖)

√
(sG‖go‖G)2 − ‖go‖2

n
+ ε

)
. (4.2)

By infimizing (4.2) over ε, we obtain
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inf
g∈M∩ spann G

Φ(g) − Φ(go) ≤ α

((
1 + c‖go‖)

√
(sG‖go‖G)2 − ‖go‖2

n

)
.

(ii) By the definition of εn-argminimum, Φ(gn)−Φ(go) ≤ infg∈M∩ spann G Φ(g)−Φ(go)+εn.
So by item (i) we have

Φ(gn) − Φ(go) ≤ α

((
1 + c‖go‖)

√
(sG‖go‖G)2 − ‖go‖2

n

)
+ εn. (4.3)

If limn→∞ εn = 0 and ‖go‖G is finite, then the right-hand side of (4.2) converges to zero and
so {gn} is Φ-minimizing.

(iii) By the definitions of εn-argmin and of the modulus of Tychonov well-posedness of
(M,Φ) at go, and by item (i), we have ξ(‖gn − go‖) = infg∈M ∩S‖gn−go‖(go) Φ(g) − Φ(go) ≤
Φ(gn)−Φ(go) < infg∈M ∩ spann G Φ(g)−Φ(go)+ εn ≤ α

((
1 + c‖go‖)√ (sG‖go‖G)2−‖go‖2

n

)
+ εn.

(iv) By the definition of εn-argmin, Proposition 2.1 (iii) and item (i), we have δ(‖gn−go‖) ≤
Φ(gn)−Φ(go) < infg∈M ∩ spann G Φ(g)−Φ(go)+ εn ≤ α

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+ εn.

�

Theorem 4.2 shows that for ‖go‖G finite, the approximate argminima {gn} form a Φ-
minimizing sequence and the speed of convergence of {Φ(gn)} to the global minimum Φ(go) is
bounded from above by α

(
(1+c‖go‖)sG‖go‖G√

n

)
.

When minimization is performed over the whole space, the Lipschitz constant of the
Minkowski functional pM = pX is equal to zero; thus, we obtain from Theorem 4.2 an up-
per bound α

(
sG‖go‖G√

n

)
, which is expressed in terms of the modulus of continuity of Φ and of

G-variation of go. Similarly, when an admissible set is a ball Br(‖.‖) the Lipschitz constant is
1/r and we get a bound α

((
1 + ‖go‖

r

)
sG‖go‖G√

n

)
.

Inspection of these upper bounds enables one to describe classes of high-dimensional op-
timization problems that can be approximately solved up to any degree of accuracy by the
extended Ritz method without incurring the curse of dimensionality, i.e., the number n of ba-
sis functions required for a satisfactory approximate optimization does not grow exponentially
with the number of variables of admissible solutions. For α invertible, this is guaranteed when
(1+c‖go‖)sG‖go‖G

α−1(η) does not grow exponentially with the number of variables of go.
Estimates similar to the ones stated in Theorem 4.2 for Hilbert spaces can be obtained for

Lp-spaces, p ∈ (1,∞), when in the proof of Theorem 4.2 the estimate from Theorem 3.1 (ii) is
used instead of the estimate from Theorem 3.1 (i).

Theorem 4.3 Let Ω ⊂ Rd be compact, M and G be subsets of (Lp(Ω), ‖.‖p), p ∈ (1,∞), G be
bounded, sG = supg∈G ‖g‖, M be closed, convex, 0 ∈ int M , and q = p/(p − 1), p̄ = min(p, q),
q̄ = max(p, q). Let Φ : X → (−∞,+∞] be a functional, go ∈ argmin (M,Φ), Φ be continuous
at go with a modulus of continuity α, and {εn} be a sequence of positive reals such that gn ∈
argminεn

(M ∩ spann G,Φ). Then pM is Lipschitz on X and if c is its Lipschitz constant, the
following hold for every integer n:
(i) infg∈M∩ spann G Φ(g) − Φ(go) ≤ α

((
1 + c‖go‖) 21/p̄+1sG ‖go‖G

n1/q̄

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is a Φ-minimizing sequence over M and
Φ(gn) − Φ(go) ≤ α

((
1 + c‖go‖) 21/p̄+1sG ‖go‖G

n1/q̄

)
+ εn;

(iii) if ξ is the modulus of Tychonov well-posedness of (M,Φ) at go, then
ξ(‖gn − go‖) ≤ α

((
1 + c‖go‖) 21/p̄+1sG ‖go‖G

n1/q̄

)
+ εn;

(iv) if Φ is uniformly convex with a modulus of convexity δ, then
δ(‖gn − go‖) ≤ α

((
1 + c‖go‖) 21/p̄+1sG ‖go‖G

n1/q̄

)
+ εn.
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5 Asymptotic estimates for convex problems

For convex problems such that the functional to be minimized is bounded in a neighborhood
of an argminimum, under the additional assumption of density of M ∩ spanG in M Theorem
4.2 can be simplified. As such a simplification is based on local properties of the modulus
of continuity of the functional, it gives only asymptotic estimates. For f, g : N+ → N+ we
write g(n) ≤ O(f(n)) when there exists a > 0 such that, for all but finitely many n ∈ N+,
g(n) ≤ a f(n).

Theorem 5.1 Let (X, ‖.‖) be a Hilbert space, M and G be its subsets, G be bounded,
sG = supg∈G ‖g‖, M be closed, convex, 0 ∈ int M , and M ∩ spanG dense in M . Let
Φ : X → (−∞,+∞] be a proper convex functional, go ∈ argmin (M,Φ) such that Φ is
bounded in its neighborhood, {εn} be a sequence of positive reals such that εn ≤ O(1/

√
n)

and gn ∈ argminεn
(M ∩ spann G,Φ). Then the following hold:

(i) infg∈M∩ spann G Φ(g) − Φ(go) ≤ O
(√

(sG‖go‖G)2−‖go‖2

n

)
;

(ii) if ‖go‖G < ∞, then {gn} is a Φ-minimizing sequence over M and

Φ(gn) − Φ(go) ≤ O
(√

(sG‖go‖G)2−‖go‖2

n

)
;

(iii) if ξ is the modulus of Tychonov well-posedness of (M,Φ) at go, then

ξ(‖gn − go‖) ≤ O
(√

(sG‖go‖G)2−‖go‖2

n

)
;

(iv) if Φ is uniformly convex with a modulus of convexity δ, then

δ(‖gn − go‖) ≤ O
(√

(sG‖go‖G)2−‖go‖2

n

)
.

Proof. (i) Let ν > 0 be such that Φ is bounded on Bν(go, ‖.‖). As Bν(go, ‖.‖) ⊆ dom Φ,
we have go ∈ int domΦ. Since Φ is a proper convex functional bounded on Bν(go, ‖.‖), Φ is
locally Lipschitz on Bν(go, ‖.‖) [20, Corollary 2.4, p. 12]. Let η ≤ ν be such that Φ is Lipschitz
continuous with constant c1 on Bη(go, ‖.‖).

As M ∩ spanG is dense in M , limn→∞ ‖go − spannG‖ = 0 and so there exist ε0 > 0 and
n0 ∈ N+ such that ‖go − spann0G‖ + ε0 ≤ η

1+c‖go‖ . For every n ≥ n0 and ε ≤ ε0, choose
fε

n ∈ spann G such that ‖go − fε
n‖ ≤ ‖go − spann G‖ + ε.

As M is closed, convex, 0 ∈ int M , and dompM = X, we can apply Lemma 4.1 (ii) with
f = fε

n, g = go, and A = spann G to obtain hε
n ∈ M ∩ spann G satisfying

‖hε
n − go‖ ≤ (

1 + c‖go‖) ‖gε
n − go‖ < η. (5.1)

So hε
n is in the ball Bη(go, ‖.‖), on which Φ is Lipschitz continuous with the constant c1. So we

have

inf
g∈M∩ spann G

Φ(g) − Φ(go) ≤ Φ(hε
n) − Φ(go) ≤ c1 ‖hε

n − go‖. (5.2)

From (5.1) and (5.2) we obtain

inf
g∈M∩ spann G

Φ(g) − Φ(go) ≤ C ‖fε
n − go‖ , (5.3)

where C = c1 (1 + c ‖go‖). By Theorem 3.1 (i) we get

‖go − fε
n‖ ≤ ‖go − spann G‖ + ε ≤

√
(sG‖go‖G)2 − ‖go‖2

n
+ ε. (5.4)

Infimizing over ε, we obtain from (5.3) and (5.4) for all n ≥ n0

inf
g∈M∩ spann G

Φ(g) − Φ(go) ≤ C

√
(sG‖go‖G)2 − ‖go‖2

n
.
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(ii) As gn ∈ argmin(M ∩ spann G), we have Φ(gn) < infg∈M∩ spann G Φ(g)+ εn. Combining
this inequality with the one from item (i) and εn ≤ O(1/

√
n) we obtain Φ(gn) − Φ(go) ≤

O
(√

(sG‖go‖G)2−‖go‖2

n

)
.

(iii) By the definitions of εn-argmin and of the modulus of Tychonov well-posedness of (M,Φ)
at go and by item (i), we have for every n ≥ n0, ξ(‖gn − go‖) = infg∈M ∩S‖gn−go‖(go) Φ(g) −
Φ(go) ≤ Φ(gn) − Φ(go) < infg∈M ∩ spann G Φ(g) − Φ(go) + εn ≤ C

√
(sG‖go‖G)2−‖go‖2

n + εn. As

εn ≤ O(1/
√

n), we obtain ξ(‖gn − go‖) ≤ O
(√

(sG‖go‖G)2−‖go‖2

n

)
.

(iv) By the definition of εn-argmin and Propositions 2.1 (iii) and 5.1 (i), we get for all n ≥ n0,

δ(‖gn−go‖) ≤ Φ(gn)−Φ(go) < infg∈M ∩ spann G Φ(g)−Φ(go)+εn ≤ O
(√

(sG‖go‖G)2−‖go‖2

n

)
+

εn. As εn ≤ O(1/
√

n), we obtain δ(‖gn − go‖) ≤ O
(√

(sG‖go‖G)2−‖go‖2

n

)
. �

Inspection of the proof of Theorem 5.1 shows that the expression O
(√

(sG‖go‖G)2−‖go‖2

n

)

can be written for n ≥ no as C
√

(sG‖go‖G)2−‖go‖2

n , where C = c1 (1 + c ‖go‖), c is the
Lipschitz constant of pM , and c1 is the Lipschitz constant of Φ in a neighborhood of go.
The proof also shows that for any sequences {εn} of positive reals and {gn} such that
gn ∈ argminεn

(M,Φ), the statements of Theorem 5.1 (ii), (iii) and (iv) hold with the bounds

replaced with O
(√

(sG‖go‖G)2−‖go‖2

n

)
+ εn.

Applying Theorem 3.1 (ii) instead of Theorem 3.1(i) and following steps analogous to those
in the proof of Theorem 5.1, one can obtain for Lp-spaces estimates similar to those stated
in Theorem 5.1 for Hilbert spaces (the condition εn ≤ O(1/

√
n) has to be replaced with

εn ≤ O(n1/q̄), where q = p/(p − 1) and q̄ = max(p, q)).

6 Application to convex best approximation problems

The simplest example illustrating results reported in Section 4 is the application of the extended
Ritz method to convex best approximation problems.

For any f ∈ X, let ef denote the functional defined as the distance from f , i.e., ef (g) =
‖g − f‖ for any g ∈ X. When M is a closed convex subset of X, (M, ef ) is called a convex best
approximation problem [19, p. 40].

Applying Theorem 4.2 to the problems (M, ef ) and (M, e2
f ), we obtain the following esti-

mates of rates of approximate optimization.

Theorem 6.1 Let M and G be subsets of a Hilbert space (X, ‖.‖), G be bounded, sG =
supg∈G ‖g‖, M closed, convex, 0 ∈ int M , and f ∈ X. Then there exists a unique argmin-
imum go of (M, ef ) such that the following hold:

(i) for every positive integer n, infg∈M∩spann G ef (g)− ef (go) ≤ (1 + c‖go‖)
√

(sG‖go‖G)2−‖go‖2

n ;
(ii) if M is bounded, {εn} is a sequence of positive reals, and for every n, gn ∈ argminεn

(M ∩
spann G, e2

f ), then

‖gn − go‖2 ≤ 2 diamM

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)2

+ εn.

Proof. As every closed convex subset of a Hilbert space is Chebyshev [18, p. 35]) (i.e., there
exists a unique go ∈ M such that ‖f − go‖ = ‖f − M‖), the problem (M, ef ) has a unique
argminimum.
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By the triangle inequality, for every h, g ∈ X we have |ef (h) − ef (g)| ≤ ‖h − g‖. So ef is
uniformly continuous on X and its modulus of continuity is α(t) = t. Hence, applying Theorem
4.2 (i) we obtain (i).

To derive (ii), we apply Theorem 4.2 (iv) to the functional e2
f . As ‖f − go‖2 = infg∈M ‖f −

g‖2, go is an argminimum of (M, e2
f ). By Proposition 2.1 (iii), the functional ‖.‖2 is strictly

uniformly convex with a modulus of convexity δ(t) = t2.
By the triangle inequality, for every h, g ∈ X we have |e2

f (h) − e2
f (g)| = (‖f − h‖ − ‖f −

g‖)(‖f − h‖ + ‖f − g‖) ≤ 2 diamM‖h − g‖, and so α(t) = 2 t diamM is an upper bound
on the modulus of continuity of e2

f . Thus, applying Theorem 4.2 (iv) we get ‖gn − go‖2 ≤

2 diamM

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)2

+ εn. �

For convex best approximation problems in Lp spaces, p ∈ (1,∞), analogous estimates
can be obtained combining Theorem 4.3 with estimates of the modulus of convexity based on
geometrical properties of such spaces.

Theorem 6.2 Let Ω ⊂ Rd be compact, M and G be subsets of (Lp(Ω), ‖.‖p), p ∈ (1,∞),
G be bounded, sG = supg∈G ‖g‖, M be closed, convex, 0 ∈ int M , f ∈ X, q = p/(p − 1),
p̄ = min(p, q), q̄ = max(p, q), and αp, αq be moduli of continuity of ep

f , eq
f , resp., at f . Then

there exists a unique argminimum go of (M, ef ) such that the following hold:

(i) for every positive integer n, infg∈M∩spann G ef (g) − ef (go) ≤ (
1 + c‖go‖) 21/p̄+1sG ‖go‖G

n1/q̄ ;

(ii) f M is bounded and {εn} is a sequence of positive reals, then for every n,

if p ≥ 2 and gn ∈ argminεn
(M ∩ spann G, ep

f ), we have

‖gn − go‖p ≤ 2p−2 αp

((
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)2
)

+ εn;

if 1 < p ≤ 2 and gn ∈ argminεn
(M ∩ spann G, eq

f ), we have

‖gn − go‖q ≤ 2q−2 αq

((
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)2
)

+ εn.

Proof. As for all p ∈ (1,∞), (Lp(Ω), ‖.‖p) is uniformly convex [1, 2.29] and every convex best
approximation problem in a uniformly convex space is Tychonov well-posed [19, p. 40], there
exists a unique go ∈ M such that ‖f − go‖p = ‖f − M‖p and so the problem (M, ef ) has a
unique argminimum.

By the triangle inequality, for every h, g ∈ X we have |ef (h) − ef (g)| ≤ ‖h − g‖p. So ef is
uniformly continuous on X and its modulus of continuity is α(t) = t. Hence applying Theorem
4.3 (i) we obtain (i).

To derive (ii), we apply Theorem 4.3 (iv) to the functional ep
f when p ≥ 2, wheraes when

p ∈ (1, 2], we use the functional eq
f with q = p/(p − 1).

A modulus of convexity for ep
f and eq

f can be estimated by means of Clarkson’s inequalities
[1, 2.28], which state that for every f, g ∈ (Lp(Ω), ‖.‖p),

if p ≥ 2, then
∥∥∥∥f + g

2

∥∥∥∥
p

p

≤ 1
2
‖f‖p

p +
1
2
‖g‖p

p − 1
2p

‖f − g‖p
p (6.1)

if 1 < p ≤ 2, then
∥∥∥∥f + g

2

∥∥∥∥
q

p

≤ 1
2
‖f‖q

p +
1
2
‖g‖q

p − 1
2p

‖f − g‖q
p , (6.2)

where q = p/(p − 1).
Inequality (6.1) implies that for p ≥ 2 the functional ep

f is uniformly convex with a modulus
of convexity δ(t) = tp

2p−2 . Let us now consider the case 1 < p ≤ 2. For every 1 ≤ r < ∞ and
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a, b ≥ 0, we have (a + b)r ≤ 2r−1(ar + br) [1, 2.24], which, combined with inequality (6.2),
implies that for 1 < p ≤ 2, the functional eq

f is uniformly convex with a modulus of convexity
δ(t) = tq

2q−2 . �

Theorems 6.1 (i) and 6.2 (i) imply an extension of MJB theorem (Theorem 3.1) on approx-
imation by spannG to a theorem on approximation by M ∩ spannG provided that M satisfies
the assumptions of Theorem 6.1 (e.g., when M is a ball, i.e., M = Br(‖.‖)).

Corollary 6.3 Let M and G be subsets of a normed space (X, ‖.‖), G be bounded, sG =
supg∈G ‖g‖, M be closed, convex, 0 ∈ int M , f ∈ M , go = argmin(M, ef ). Then pM is Lips-
chitz and if c is its Lipschitz constant, the following hold for every positive integer n:

(i) If (X, ‖.‖) is a Hilbert space, then

‖f − M ∩ spann G‖ ≤ (1 + c‖go‖)
√

(sG‖go‖G)2−‖go‖2

n + ‖f − go‖.

(i) If (X, ‖.‖) = (Lp(Ω), ‖.‖p), p ∈ (1,∞), Ω ⊂ Rd compact, q = p/(p − 1), p̄ = min(p, q),
and q̄ = max(p, q), then

‖f − M ∩ spann G‖ ≤ (1 + c‖go‖)(1 + c‖go‖) 21/p̄+1sG ‖go‖G

n1/q̄ + ‖f − go‖.

If M = X, the Lipschitz constant of pM on X is equal to 0, go = f , and so ‖f − go‖ = 0.
Thus, in this case Corollary 6.3 gives the same estimate as MJB theorem (Theorem 3.1).

7 Application to learning from data

Application of the results presented in Section 4 allows us to obtain an approximate version
of the Representer Theorem from machine learning theory [15, Proposition 8], [21, p. 18].
Learning from data can be modeled as the minimization of the empirical error functional (also
called empirical risk functional) defined as

E(f) =
1
m

m∑
i=1

(f(xi) − yi)
2
,

where {(xi, yi) ∈ Rd × R, i = 1, . . . , m} is a sample of empirical data (set of input/output
pairs).

However, the empirical error only depends on the particular sample of data {(xi, yi) : i =
1, . . . ,m} and does not take into account any global properties of the input/output mapping
from which the sample was chosen. Such properties can be expressed by means of regulariza-
tion, which replaces the functional E with Eγ,Ψ = E + γ Ψ, where Ψ is a suitable functional
called stabilizer and γ is a positive real number called regularization parameter. Typically, the
stabilizer models some desired property of the solution (e.g., smoothness), whereas the regu-
larization parameter is used to one express a trade-off between fitting to a sample of empirical
data and fitting to the global shape of the input/output mapping.

An important class of stabilizers are squares of norms of reproducing kernel Hilbert spaces.
A reproducing kernel Hilbert space (RKHS) (HK(Ω), ‖.‖K) is a Hilbert space of functions defined
on a set Ω such that for every x ∈ Ω, the evaluation functional Fx, defined for any f ∈ HK(Ω) as
Fx(f) = f(x), is bounded. For any RKHS there exists a unique symmetric, positive semidefinite
mapping K : Ω × Ω → R, called kernel, such that for any f ∈ HK(Ω) and any x ∈ Ω,
F(x) = 〈f,K(x, .)〉K [5] (a mapping K : Ω×Ω → R is positive semidefinite on Ω if for all positive
integers m, all (a1, . . . , am) ∈ Rm, and all (x1, . . . , xm) ∈ Ωm,

∑m
i,j=1 aiajK(xi, xj) ≥ 0). A

kernel K : Ω×Ω → R is called a Mercer kernel if Ω is compact and K is symmetric, continuous
and positive definite.
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With ‖.‖2
K as a stabilizer, the regularized functional obtained from E has the form

Eγ,K(f) =
1
m

m∑
i=1

|f(xi) − yi|2 + γ‖f‖2
K .

For a Mercer kernel, the Representer Theorem [15, p. 42] states that the problem (HK(Ω), Eγ,K)
has a unique argminimum go of the form go(x) =

∑m
1 aiK(x, xi). It even gives a formula

for computing the parameters a = (a1, . . . , am) as the solution of the well-posed system of
linear equations K(x) + γIa = y, where y = (y1, . . . , ym), K is the m × m matrix defined as
K(x)ij = K(xi, xj), and I is the identity matrix [24].

It has been argued in [24, p. 219] that the “regularization principles lead to approximation
schemes that are equivalent to networks with one layer of hidden units.” Indeed, the unique
argminimum is in the set spanmGK , where GK = {K(x, ·) : x ∈ Ω}. Functions from this set
can be computed by neural networks with m hidden units. In particular, for the Gaussian
kernel they can be computed by radial-basis-function networks with Gaussian units.

A drawback of this elegant result is that the number of network hidden units needed to
compute the function minimizing Eγ,K is equal to the size of the sample of input/output data.
For large data sets, such networks might not be implementable. Moreover, in typical applica-
tions of neural networks, a number of hidden units much smaller than the number of data is
chosen before learning.

Using Theorem 4.2, we derive an approximate version of the Representer Theorem. It allows
us to estimate how quickly approximate solutions achievable by networks with n hidden units
converge to the global argminimum described by the Representer Theorem. We first state basic
properties of the functional Eγ,K .

Proposition 7.1 Let m and d be positive integers, Ω be a compact subset of Rd, K : Ω×Ω be
a Mercer kernel, γ > 0 and {(x1, y1), . . . , (xm, ym)} ⊂ (Ω ×R)m. Then
(i) Eγ,K is strictly uniformly convex on HK(Ω) with a modulus of convexity δ(t) = t2;
(ii) at every f ∈ HK(Ω), Eγ,K is continuous with a modulus of continuity bounded from above
by α(t) = a2t

2 + a1t, where a1 = 2
(
m‖f‖K cK + mb

√
cK + γ‖f‖K

)
, a2 = mcK + γ and

b = max{|yi| : i = 1, . . . , m};
(iii) for M ⊂ HK(Ω) closed, convex, and bounded or for M = HK(Ω), the problem (M, Eγ,K)
has a unique argminimum go;
(iv) for M ⊂ HK(Ω) closed, convex, and bounded or for M = HK(Ω), any go ∈
argmin(M, Eγ,K) and f ∈ M , ‖f − go‖2

K ≤ |Eγ,K(f) − Eγ,K(go)|.
Proof. (i) It is easy to show that E is convex, so (i) follows from Proposition 2.1 (i) and (iv).

(ii) Set b = max{|yi| : i = 1, . . . ,m}. Let f ∈ H(Ω), t > 0 and g ∈ HK be such that
‖f − g‖K < t. Using the inequality ‖.‖C ≤ √

cK‖.‖K , we obtain

|Eγ,K(f) − Eγ,K(g)| = |
m∑

i=1

(
(f(xi) − yi)2 − (g(xi) − yi)2

)
+ γ

(‖f‖2
K − ‖g‖2

K

) |
≤ |

m∑
i=1

(
f(xi) − g(xi)

) (
f(xi) + g(xi) − 2yi

) |
+ γ ((‖f‖K − ‖g‖K)(‖f‖K + ‖g‖K))
≤ m ‖f − g‖C

(‖f + g‖C + 2b
)

+ γ ‖f − g‖K (‖f‖K + ‖g‖K)

≤ mt
√

cK

(√
cK‖f + g‖K + 2b

)
+ γ (‖f‖K + ‖g‖K) t .

As ‖g‖K < ‖f‖K + t, we get

|Eγ,K(f) − Eγ,K(g)| < mt
√

cK

(
2‖f‖K

√
cK + t

√
cK + 2b

)
+ γt (2‖f‖K + t)

= t2 (mcK + γ) + 2t(m‖f‖K cK + mb
√

cK + γ‖f‖K) .
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Thus, ‖f − g‖K < t implies |Eγ,K(f) − Eγ,K(g)| < α(t) = a2t
2 + a1t, where a2 = mcK + γ

and a1 = 2
(
m‖f‖K cK + mb

√
cK + γ‖f‖K

)
.

(iii) As a convex lower semicontinuous functional on a reflexive space attains its minimum on
every convex, closed and bounded set [16, pp. 7, 14], by (i) and (ii) there exists an argminimum
of (M, Eγ,K) for every M closed, convex, and bounded. For M = HK(Ω), the existence of a
unique argminimum is proven in [15, Proposition 7].

(iv) follows from (i) and Proposition 2.1 (iii). �

So the modulus of continuity of Eγ,K at any f ∈ HK(Ω) is bounded from above by the
quadratic function a2t

2 + a1t. Note that a2 does not depend on f as it depends only on m, cK

and γ, whereas a1 depends also on ‖f‖K and b. The larger the regularization parameter γ, the
larger the coefficients of this quadratic function.

Applying Theorem 4.2 to the approximate solution of the optimization problem
(H(Ω), Eγ,K), we obtain the following estimates.

Theorem 7.2 Let Ω ⊂ Rd be compact, K : Ω × Ω → R be a Mercer kernel, (HK(Ω), ‖.‖K) be
the RKHS defined by K, GK = {K(x, .) : x ∈ Ω}, sK = supx∈Ω

√
K(x, x), (xi, . . . , xm) ∈ Ωm,

(ym, . . . , ym) ∈ Rm, E : HK(Ω) → R+ be the empirical error functional E(f) = 1
m

∑m
i=1 |f(xi)−

yi|2, γ > 0, go(x) =
∑m

1 wiK(x, xi) be the unique argminimum of the problem (HK(Ω), Eγ,K)
given by the Representer Theorem, and {εn} be a sequence of positive reals such that gn ∈
argminεn

(spann GK , Eγ,K). Then for every positive integer n, the following hold:

(i) infg∈spann GK
Eγ,K(g) − Eγ,K(go) ≤ α

(√
(sK‖go‖GK

)2−‖go‖2
K

n

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is an Eγ,K-minimizing sequence over HK(Ω)
and

Eγ,K(gn) − Eγ,K(go) ≤ α

(√
(sK‖go‖GK

)2−‖go‖2
K

n

)
+ εn;

(iii) ‖gn − go‖2
K ≤ α

(√
(sK‖go‖GK

)2−‖go‖2
K

n

)
+ εn;

(iv) ‖gn − go‖2
C ≤ √

cK

(
α

(√
(sK‖go‖GK

)2−‖go‖2
K

n

)
+ εn

)
,

where α(t) = a2t
2 + a1t, a1 = 2

(
m‖go‖K cK + mb

√
cK + γ‖go‖K

)
, a2 = mcK + γ, cK =

supx,y∈Ω |K(x, y)|, and b = max{|yi| : i = 1, . . . ,m}.
Proof. The statements (i) and (ii) follow from Theorem 4.2 applied to (X, ‖.‖) =
(HK(Ω), ‖.‖K) = M , c = 0 (the Minkowski functional of HK(Ω) is equal to zero), Φ(f) =
Eγ,K(f) and G = GK . As for every x ∈ Ω, ‖K(x, .)‖K =

√〈K(x, .),K(x, .)〉K =
√

K(x, x), we
have supx∈Ω ‖K(x, .)‖K = sK . By Proposition 7.1 (ii), Eγ,K is continuous at go with a modulus
of continuity α(t) = a2t

2+a1t, where a2 = mcK +γ and a1 = 2(mcK‖go‖K +mb
√

cK +γ‖go‖K).
(iii) follows from (ii) and Proposition 7.1 (iii).
(iv) follows immediately from (iii) and the inequality ‖.‖C ≤ √

cK‖.‖K [15, p. 36]. �

As the estimates from Theorem 7.2 are not merely asymptotic, they can be applied to
networks with any number of hidden units that is smaller than the number of data. Moreover,
the estimates hold for any number of variables of the functions in HK(Ω). Thus inspection of
these estimates enables us to describe problems for which the rates of approximate optimization
guaranteed by Theorem 7.2 do not incur the curse of dimensionality. This holds when for a
desired accuracy η, the quantity sK‖go‖GK

α−1(η) does not depend exponentially on the number d of
variables.

8 Discussion

In the calculus of variations, the term direct methods [23, p. 192] is used to refer to methods of
solution of optimization problems (M,Φ) based on the construction of Φ-minimizing sequences

13



{gn} ⊆ M converging to some g ∈ M and satisfying limn→∞ Φ(gn) = Φ(g).
Using this terminology, we can rephrase our results as conditions on (M,Φ) guaranteeing

some of the features of direct methods. By Theorems 4.2 and 4.3, for ‖go‖G finite any sequence
{gn} of εn-argminima of (M ∩ spannG,Φ) is Φ-minimizing and Φ(go) = limn→∞ Φ(gn) =
Φ(limn→∞ gn). The convergence of {gn} to go is not always guaranteed (it depends on the
behavior of the modulus of Tychonov well-posedness of (M,Φ) at go); however, it occurs in both
applications presented in Sections 6 and 7. Thus when applied to convex best approximation
problems and to learning from data, the extended Ritz method is a direct method. Its speed
of convergence depends on the G-variation of the argminimum go, which can be investigated
using methods described in [9] and [30].
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