narodni
N U dlozisté
1 L Sedé
6 literatury

Formal Reasoning in the Bang3 Multi-Agent System

Beuster, Gerd
2003

Dostupny z http://www.nusl.cz/ntk/nusl-34099

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 29.07.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-34099
http://www.nusl.cz
http://www.nusl.cz

’ L] L]
7 Institute of Computer Science
Academy of Sciences of the Czech Republic

Formal Reasoning in the Bang3
Multi-Agent System

Gerd Beuster

Technical report No. V-889

Pod Vodarenskou vézi 2, 182 07 Prague 8, phone: (+4202) 66051111, fax: (+4202) 86 585 789,
e-mail:iics@cs.cas.cz

~ . .
Institute of Computer Science
Academy of Sciences of the Czech Republic

Formal Reasoning in the Bang3
Multi-Agent System

Gerd Beuster?!

Technical report No. V-889

Abstract:

Bang3 is a Multi-Agent-System platform focusing on soft computing. In this paper, we describe
the formal logical reasoning component of Bang3. We describe how formal logics are applied to
Bang3 Multi-Agent Systems, and the reasoning procedures used. We present a method to transform
Description Logics into Horn rules.

Keywords:
MAS, Bang, Logic, Deduction, Description Logics, Agents

1gb@cs.cas.cz

Chapter 1

Introduction

The use of distributed Multi-Agent Systems (MAS) instead of monolithic programs has become a popular
topic both in research and application development. Autonomous agents are small self-contained programs
that can solve simple problems in a well-defined domain.[19] In order to solve complex problems, agents have
to collaborate, forming Multi-Agent Systems (MAS). A key issue in MAS research is how to generate MAS
configurations that solve a given problem.[10] In most Systems, an intelligent (human) user is required to set
up the system configuration. Developing algorithms for automatic configuration of Multi-Agent Systems is a
major challenge for Al research.

Bang3 is a platform for the development of Multi-Agent Systems.[16] Its main areas of application are soft
computing methods (genetic algorithms, neural networks, fuzzy controllers) on single machines and clusters.
As Multi-Agent Systems, Bang3 applications require a number of cooperating agents to fulfill a given task.
So far, MAS are created and configured manually.® In this paper, we introduce a logical reasoning compo-
nent for Bang3. With this component, Bang3 system configurations can be created automatically and semi-
automatically. The logical description of MAS opens Bang3 for interaction with ontology based distributed
knowledge systems like the Semantic Web.[14]

The description of Bang3 by formal logics enhances the construction, testing, and application of Bang3-
MAS in numerous ways:

e System Checking
A common question in Multi-Agent System design is whether a setup has certain properties. By the use
of formal descriptions of the agents involved in a MAS and their interactions, properties of the MAS can
be (dis-)proofed.[18]

e System Generation
Starting with a set of requirements, the reasoning component can be used to create a MAS. The for-
mal logical component augments evolutionary means of agent configuration that are already present in
Bang3.[5]

e Interactive System Generation
The reasoning component can also be used to create agents in semi-automated ways. Here, the reasoning
component acts as a helper application that aids a user in setting up MAS by making suggestions.

e Interaction with ontology based systems

There is a growing interest in creating common logical frameworks (ontologies) that allow the interaction
of independent, distributed knowledge based system. The most prominent one is the Semantic Web,
which attempts to augment the World Wide Web with ontological knowledge. Using formal logics and
reasoning in Bang3 allows to open this world to Bang3.

In order to satisfy these requirements, the logical formalism must fulfill the following requirements:

1. It must be expressive enough to describe Bang3 MAS.

1Simple MAS for the approximation of polynomial functions can also be developed evolutionary.[5]

CHAPTER 1. INTRODUCTION 2

2. There must be efficient reasoning methods.
3. It should be suitable to describe ontologies

4. It should interface with other ontology based systems.

There is a lot of research in how to use formal logics to model ontologies. The goal of this research is to
find logics that are both expressive enough to describe ontological concepts, and weak enough to allow efficient
formal reasoning about ontologies. Description Logics are widely accepted as a family of languages that fulfill
both requirements.[9] In short, description logics are equivalent to subsets of predicate logic restricted to unary
and binary predicates.[2] Although this restriction is acceptable to describe ontologies, it is too limited to
describe configurations of MAS, as we will show in chapter 3.1. Therefore, we combine description logics
with traditional logical programs written in Prolog.

This technical report is split into two parts. Next, we describe the logical formalism used to reason about
agents and MAS, and the reasoning methods. In the second part, we describe how these methods are practically
applied to the Bang3 MAS platform.

Chapter 2

Formal Reasoning

The most natural approach to formalize ontologies is the use of First Order Predicate Logics (FOL). This
approach is used by well known ontology description languages like Ontolingua[11] and KIF[13].

The disadvantage of FOL-based languages is the expressive power of FOL. FOL is undecidable[8], and
there are no efficient reasoning procedures. A lot of effort is put into the research of subset of FOL that are
decidable and allow efficient reasoning algorithms. Nowadays, the de facto standard for ontology description
language for formal reasoning is the family of description logics. Description logics are equivalent to subsets
of first order logic restricted to predicates of arity one and two.[7] They are known to be equivalent to modal
logics.[1]

Description logics are used in the Semantic Web, a project of the Internet standardization body W3C. “The
Semantic Web is an extension of the current web in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.”[4] Description logics is also a main topic of interest in
other projects dealing with the standarization of agent communications.

For the purpose of describing multi-agent systems, description logics is sometimes to weak. An example
for this is given in chapter 3.1. In these cases, we want to have a more expressive formalism. We decided to
use Prolog-style logic programs for this. In the following chapters, we describe how both approaches can be
combined.

2.1 Ontologies

Description logics and Horn rules are orthogonal subsets of first order logic.[7] During the last years, a number
of approaches to combine these two logical formalisms in one reasoning engine have been proposed. Most of
these approaches use tableaux-style reasoners for description logics and combine them with Prolog-style Horn
rules. In [15], Hustadt and Schmidt examined the relationship between resolution and tableaux proof systems
for description logics. Baumgartner, Furbach and Thomas propose a combination of tableaux based reasoning
and resolution on Horn logic [3]. Vellion [22] examines the relative complexity of SL-resolution and analytic
tableau. The limits of combining description logics with horn rules are examined by Alon Y. Levy and Marie-
Christine Rousset [17]. Borgida [6] has shown that Description Logics and Horn rules are orthogonal subsets
of first oder logic.

Our approach differs insofar as we are not using a tableau-algorithm for reasoning, but Prolog’s build in
resolution-algorithm. This approach allows to freely mix description logics with Horn rules and reason about
them in a common environment. To do this, description logics expressions are transformed into Horn rules and
added to the “native” Horn rules. See figure 2.1.

Another advantage of our approach is that no special reasoning engine beside Prolog’s build-in mechanisms
is required after the description logics part have been transformed into Prolog rules. In this section, we describe
how description logic statements are transformed into Prolog rules.

2.2 Transforming a subset of ALC into Horn rules

We start with a subset of the basic description logic ALC that does not contain all-quantifiers, negation, and the
LI-operator. After that, the subset is extended by the missing parts until all ALC-constructs can be transformed.

CHAPTER 2. FORMAL REASONING 4

1
Input
1
DL description : DL description
of MAS el compiled into PL| _
Knowledge
+ Base

PL description
of MAS

Figure 2.1: Description logics expressions are transformed into Horn rules and added to the “native” Horn
rules.

| Construct name | Syntax | Semantics |
negation -C AT\C?
conjunction cnD | cTnD?
disjunction CuD | ctuD?
existential restriction | Ir.C | {x € AT|Fy: (x,y) € T Ay € CT}
value restriction vr.C |{xeATVy: (x,y)erl -y e Cl}

Table 2.1: Semantics of ALC. See [2].

Concept descriptions in this subset of .ALC can be defined inductively. Let C be a set of concept names and
R be a set of role names:

All elements of C are concept descriptions.

If c is a concept description, so is —c.

If c and d are concept descriptions, so are ¢ LI d and ¢ 1 d.
e if ¢ is a concept description and r is a role name, 3c.r and Vc.r are concept description.

The semantic of concept descriptions can be defined via an interpretation Z = (AZ,-). AT is the domain.
Interpretation function -Z maps concept names to subsets of A and role names to binary relations on A7 x AZ.
The semantics of composed concept descriptions is given in table 2.1.[2]

Concept definitions of the form C := D can be removed by unfolding if they are acyclic. In the following,
we assume all concept descriptions are in negative normal form (NNF), i.e. negation appears only in front of
atomic concepts. Concept subsumptions are written as C 1 D, meaning concept D is a subset of concept C. A
finite set of concept subsumptions is called a T-Box. For the left side of a concept subsumption, we allow only
primitive concept definitions.

Thus, all concept subsumptions (i.e. the T-Box) are of the following form: C 3 C;1...M C,, with C a
primitive concept. The A-Box is a set of assertional axioms C(a) and R(a, b), asserting that a is an instance of
concept C, resp. that a, b are in relation R.

Algorithm 1 shows how T-Boxes can be transformed into Horn rules, and algorithm 2 show the transforma-
tion of A-boxes.

Proof of correctness for algorithms 1 and 2 We have to show that a) the transformation of concept defini-
tions into predicate logic is correct and b) the resulting rules are Horn. a) follows directly from the definition of
description logics in FOL. b) follows from the fact that only once a positive literal, concept_instance(Cy, , X), is
added to each clause. In the following for-loop, only negative literals are added. Therefore, all rules are horn.l

CHAPTER 2. FORMAL REASONING 5

Algorithm 1 Transforming a T-Box into Horn rules
Require: A T-Box of DL concept definitions DL = {Dy, ... Dy}
with D; = Ci, J Ci, ... Cy,,. Anempty set H.
1. forallD; € DL do

2. N ={concept.instance(Cj,, X)}

3 forallCi; €Dy, j>1do

4: if Cy; is an atomic concept definition then
5: Add —concept.instance(C;, , X) to N.
6: end if

7: if Cy; is of the form Jr;, .C{j then

8: Add —role_instance(ri;, X, Y) to N.
o Add ﬁconcept_instance(C{j ,Y)toN.
10: end if
11: end for
122 Add N to H.
13: end for

Ensure: H is a transformation of DL into Horn rules.

Proof of completeness and soundness (SLD-Resolution) Completeness and soundness of SLD-
resolution on Horn rules has been proven a number of times, e.g. in [20].H

The aim of transforming DL expressions into Horn rules is to use the Horn rules as Prolog programs.
Since Horn rules are directly transferable into Prolog, we can use algorithms 1 and 2 directly to create Prolog
programs. It is a well known fact that Prolog’s reasoning algorithm is neither complete nor sound. In the next
paragraphs, we will show that the Prolog programs produced by these algorithms are sound, but not complete.

Proof of soundness (Prolog program) The unsoundness of Prolog is due to the lack of a occurs check
in Prolog. The statement p(X, X), p(X, f (X)) is true in Prolog, (X is unified with the infinite term
f(f(f(...)))) although there is no model for it. However, this can not happen for the programs generated by
algorithm 1, because in synthesized Prolog program, variables are instantiated only with other uninstantiated
variables (T-Box) or with atomic concepts names (A-Box).ll

Algorithm 2 Transforming a subset of an ALC A-Box into Horn rules

Require: An A-Box of DL concept and role assertions DL = {Dy, ... Dy}
with D; = C(x) or D; = R(x,y). An empty set H.
1. forall D; € DL do
if D; = C(x) then
Add {concept_instance(C,x)} to H.
end if
if D; = R(x,y) then
Add {role_instance(R, x,y)} to H.
7. endif
8 end for
Ensure: H is a transformation of DL into Horn rules.

Proof of (in-)completeness (Prolog program) Prolog’s reasoning mechanism is incomplete, because it’s
depth-first search strategy may get lost in infinite branches of the search tree. Infinite branches are possible if
we allow cycles in concept or role definitions, e.g. A I A 1 3B.C. When we do not allow cycle definitions,
all search trees are finite and thus Prolog’s reasoning procedure is complete.ll

Limitations Before extending this algorithm to handle full ALC, it should be noted that the algorithm is
limited in the way that it requires primitive concepts on the left side of concept subsumptions.

CHAPTER 2. FORMAL REASONING 6

2.3 Expanding to full ALC

From this limited description logic, it is easy to expand to a more expressive one. The following additional
concepts are needed for the language ALC: Negation, Li-operator, nested role fillers, and all quantifiers. We
also add inverse roles, resulting in the language ALCZ.

Nested role fillers Nested role fillers, e.g. concept descriptions of the form 3r.(C; ... M1 C,,) can be
handled by replacing lines 8 and 9 in algorithm 1 by algorithm 3. Algorithm 3 replaces nested subterms
Cy, = (Ci].1 n...n Ci,.k) by a new unique concepty which is defined asy J Ci).] n...nc

ljk'

Algorithm 3 Additions to algorithm 1 to allow nested role fillers.
Add -7y (X, Y) to N.
if Cy; is of the form (Cij1 m...mn Ciik) then
Let y be a new unique concept name.
Let Hy be the result of applying algorithm 1 toy 3 Cj;.

Add H, to H.

Add —concept_instance(y, Y) to N.
else

Add —concept_instance(Cy,, Y) to N.
end if

Inverse roles Extending our algorithm for handling inverse roles is trivial. We add algorithm 4 to algorithm 1
after line 10.

Algorithm 4 Additions to algorithm 1 to allow inverse roles.
if Cy, is of the form Elri_’_] .C{, then
Add —ry, (Y, X) and —Ci, (Y) to N.
end if

Adding All-quantifier The all-quantifier V can be added by using Prolog’s predicate findall, which gener-
ates all instantiations of a goal as shown in algorithm 5.

Algorithm 5 Additions to algorithm 1 to allow inverse roles.
if Cs; is of the form Vry,.C{, then
Add findall(Y, i, (X,Y), Z) A all_satisfy(Z, Ci’i)to N.,
end if

The new predicate al | _sat i sf y(X, C) checks if all elements of X satisfy concept C. This predicate is
also defined via findall and added to N after all terms have been transformed, as shown in algorithm 6. Note
that in algorithm 6 we use the Prolog notation of referring to empty lists by [], and in the term [F| R] Fis
the first element of a list and R the rest of the list. Although we are using a cyclic definition in algorithm 6, this
does not affect completeness, because predicate al | _sat i sfy always terminates.

The U-Operator In order to handle the Li-operator, the set of formulae DL is transformed as described in
algorithm 7 before applying algorithm 1.

Negation Negation requires three transformation of D;:
e Replaceall terms —(Cy; M...MCyy)by (=Ciy U...U—Cyy)

* Replace all terms —3r;;.C{, by Vri; ~C;,

1

CHAPTER 2. FORMAL REASONING 7

Algorithm 6 Predicate al | _sat i sfy.

Add all_satisfy([], C) to N.
Add all_satisfy([F|R], C) « concept_instance(F, C) A all_satisfy(R,C) to N.

Algorithm 7 Eliminating the LI-operator.
for all D; € DL of the form C;;, J U 3 do
replace D; by D! = C;; Jxand D{' = C;, I B
end for

* Replace all terms —vry;.C{, by 3ri;.~C{,

After this transformation, the algorithm is extended to accept negated concept and role terms by adding
algorithm 8 to the inner for all loop.

The drawback of this algorithm is that the resulting rules are not be Horn, because negated roles or concepts
will show up as additional non-negated element in the clause. Therefore, Prolog’s SLD resolution is incomplete
and unsound for theses formulae.[21] It should be noted that Prolog is complete for these clauses if we add sys-
tem elimination to Prolog’s reasoning rules.[21] The unsoundness is due to Prolog’s closed world assumption
and negation as failure.

Algorithm 8 Addition to the inner loop of algorithm 1 to allow negation.
if =Cy; is an atomic concept definition then
Add concept_instance(Cy, , X) to N.
end if

2.4 Adding System Generation

The algorithms we have shown so far do system checking. Given a T-Box and an A-Box description, they de-
cide if a given term is an instance of a concept. In section 1, we gave the reasons for adding logical deduction
capabilities to Bang3. System checking is only one of them. We also want system generation. System gener-
ation allows not only to ask questions like “Does Multi-Agent System X fulfills concept Y?”, but also “How
does Multi-Agent System X has to be changed in order to fulfills concept Y?”.

The idea behind adding system creation capabilities is the following:

e Whenever a concept can not be fulfilled because something is not an instance of an atomic concept or an
atomic role, make it an instance of this concept resp. role.

e Keep track of all concepts and roles created this way.

The list of these additional concepts and roles yields an extension of the A-Box that fulfills the concept in
question. Algorithm 1 transforms concept and role definitions into horn rules of the form

concept_instance(C, X) «
concept_instance(Cq, X) A ... A concept_instance(Cy,, X)

In order to add system generation, the terms on the left side are extended with another parameter Y. This
parameter contains all additional concept and role assertions required to fulfill the concept:

concept_instance(C, X, [Ui=1.. nYi]) <
concept_instance(Cq, X, Y1) A ... Aconcept_instance(Cy, X, Y)

CHAPTER 2. FORMAL REASONING 8

Finally, for atomic concepts and roles we add the rules
concept_instance(C, X, [concept_instance(C, X, [)])
and
role_instance(R, X, Y, [role_instance(R, X, Y, [1)])

The meaning of the latter is that X is an instance of concept C when the A-Box assertion
concept_instance(C, X, [1) is added, and X and Y are in role-relationship R if role_instance(R, X, Y, []) is added
to the A-Box assertions. In order to work correctly, it is necessary that the SLD selection function chooses
these rules only after all other atomic concept and role definitions have been used. Otherwise, it may happen
that an atomic concept or role definition that is already present in the A-Box is added to the list of additional
definitions. These predicates also have to cause some side-effects: Whenever a new concept or role instance is
created, it has to be added to the database. Upon backtracking, these new facts have to be removed again. This
behavior can be easily implemented with a stack and Prolog’s assertaandr et ract al | commands.

Avoiding redundancies The algorithm may mistakenly add facts to the system which are already present,
because the system generating statement concept_instance(C, A, [concept_instance(C, Ay, [])]) does not
check whether the concept is already in the fact base. This can be avoided by changing the rule to

concept_instance(C, Ay, [concept_instance(C, Ay, [1)]) «
—concept_instance(C, A, [1)

The all-quantifier rules present another kind of redundant fact generation. The new predicate
all_satisfy(X, C) as defined in algorithm 6 checks if all elements of X satisfy concept C. Because of the
fact generating rules, even if no additional rules are necessary to form a system, an instance of the role with a
free variable is always added to the list of results. This problem can be avoided by creating a special variant of
the f or al | -predicate that exempts fact generating rules.

2.5 Summary

We have shown a method to convert description logic ALC to Prolog clauses. This clauses can be combined
with hand-written Prolog clauses to form logical programs. The combination of description logics and tra-
ditional Prolog programs provides a powerful way to describe Multi-Agent Systems in an ontological sound
way. The Prolog programs resulting from the conversion can be used to check if a given MAS fulfills certain
characteristics. It can also be used to generate MAS according to a given set of constraints. Next, we show how
the formalisms described in this chapter are applied to Bang3 MAS.

Chapter 3

Formal logics in Bang3

An agent is an entity that has some form of perception of its environment, can act, and can communicate with
other agents. It has specific skills and tries to achieve goals. A Multi-Agent System (MAS) is an assemble of
interacting agents in a common environment.[12]

In order to use automatic reasoning on a MAS, the MAS must be described in formal logics. For the Bang3
system, we define a formal description for the static characteristics of the agents, and their communication
channels. We do not model dynamic aspects of the system yet.

Bang3 agents communicate via messages and triggers. In order to identify the receiver of a message,
the sending agent needs the message itself and a link to the receiving agent. A conversation between two
agents usually consists of a number of messages. For example, when a neural network agent requests training
data from a data source agent, it may send the following messages: “Open the data source located at XYZ”,
“Randomize the order of the data items”, “Set the cursor to the first item”, “send next item”. All these messages
belong to a common category: Messages requesting input data from a data source. In order to abstract from
the actual messages, we subsume all these messages under a message type when describing an agent in formal
logics.

Definition 1 (Message type) A message type identifies a category of messages that can be send to an agent in
order to fulfill a specific task. We refer to message types by unique identifiers.

The set of message types understood by an agent is called its interface. For outgoing messages, each link
of an agent is associated with a message type. Via this link, only messages of the given type are sent. We call
a link with its associated message type a gate.

Definition 2 (Interface) An interface is the set of message types understood by a class of agents.
Definition 3 (Gate) A gate is a tuple consisting of a message type and a named link.

Now it is easy to define if two agents can be connected: Agent A can be connected to agent B via gate G if
the message type of G is in the list of interfaces of agent B. Note that one output gate sends messages of one
type only, whereas one agent can receive different types of messages. This is a very natural concept: When an
agent sends a message to some other agent via a gate, it assigns a specific role to the other agent, e.g. being
a supplier of training data. On the receiving side, the receiving agent usually should understand a number of
different types of messages, because it may have different roles for different agents.

Definition 4 (Connection) A connection is described by a triple consisting of a sending agent, the sending
agent’s gate, and a receiving agent.

Next we define agents and agent classes. Bang3 is object oriented. Agents are created by generating
instances of classes. An agent derives all its characteristics from its class definition. Additionally, an agent has
a name to identify it. The static aspects of an agent class are described by the interface of the agent class (the
messages understood by the agents of this class), the gates of the agent (the messages send by agents of this
class), and the type(s) of the agent class. Types are nominal identifiers for characteristics of an agent. The types
used to describe the characteristics of the agents should be ontological sound.

CHAPTER 3. FORMAL LOGICS IN BANG3 10

Concepts

mas(C) C is a Multi-Agent System
agent_class(C) C is the name of an agent class
gate(C) Cisagate

message_type(C) C is a message type

Roles

agent_class_type(X,Y) Agent class X is of type Y
has_gate(X,Y) Agent X has gate Y
message_type_of_gate(X,Y) | Gate X emits messages of type Y
has_interface(X,Y) Agent class X understands messages of type Y
agent_instance(X,Y) Agent X is an instance of agent class Y
has_agent(X,Y) Agent Y is part of MAS X

Table 3.1: Concepts and roles used to describe MAS.

agent cl ass(decision_tree);

agent cl ass_type(decision_tree, conputational agent);
gate(gate_for_data_agent);

has_gat e(deci sion_tree, gate_for_data_agent);
nessage_type of gate(gate for_data _agent, training_data);
has_interface(decision tree, conputational agent _control);

Figure 3.1: Example agent class definition.

Definition 5 (Agent Class) An agent class is defined by an interface (a set of message types, a set of gates,
and a set of types.

Definition 6 (Agent) An agent is an instance of an agent class. It is defined by its name and its class.

Multi-Agent Systems are assembles of agents. For now, only static aspects of agents are modeled. There-
fore, a Multi-Agent System can be described by three elements: The set of agents in the MAS, the connections
between these agents, and the characteristics of the MAS. The characteristics (constraints) of the MAS are
the starting point of logical reasoning: In MAS checking the logical reasoner deduces if the MAS fulfills the
constraints. In MAS generation, it creates a MAS that fulfills the constraints, starting with a partial MAS.

Definition 7 (Multi-Agent System) Multi-Agent Systems (MAS) consist of a set of agents, a set of connec-
tions between the agents, and the characteristics of the MAS.

3.1 Describing Multi-Agent Systems in Description Logics

Description logics know concepts (unary predicates) and roles (binary predicates). In order to describe agents
and Multi-Agent Systems in description logics, the definitions 1 to 7 are mapped onto description logic concepts
and roles as shown in table 3.1.

An example agent class description is given in figure 3.1. It defines the agent class deci si ontr ee.
This agent class accepts messages of type conput ati onal _agent control . It has one gate called
gat e_f or _dat a_agent and emits messages of type t r ai ni ng_dat a.

In the same way, A-Box instances of agent classes are defined:

agent _i nstance(deci sion_tree, dt_instance)

An agent is assigned to a MAS via role has _agent . In the following example, we define dt_instance as
belonging to MAS my_mas:

CHAPTER 3. FORMAL LOGICS IN BANG3 11

has_agent (ny_nas, dt _instance)

Since connections are relations between three elements, a sending agent, a sending agent’s gate, and a
receiving agent, we can not formulate this relationship in traditional description logics. It would be possible
to circumvent the problem by splitting these triples into two relationships, but this would be counter-intuitive
to our goal of defining MAS in an ontological sound way. As we have described in section 2.1, we combine
description logics with traditional logic programs. Connections are described in traditional Prolog:

connection(dt _instance, data_source_instance, gate_for_data_agent, [])

(The empty last element of the predicate means that no additional facts have to be generated in order to
make this fact true. See explanations about system generation in section 2.4.)

Constraints on MAS can be described in Description Logics, in Prolog clauses, or in a combination of both.
As an example, the following concept description requires the MAS my_mas to contain a decision tree agent:

dt_.MAS 3 mas N Jhas_agent.(Jagent_instance.decision_tree)

An essential requirement for a MAS is that agents are connected in a sane way: An agent should only
connect to agents that understand its messages. According to definition 4, a connection is possible if the
message type of the sending agent’s output gate matches a message type of the receiving agent’s interface.
With the logical concepts and descriptions given in this section, this constraint can formulated as a Prolog style
horn rule. If we are only interested in checking if a connection satisfies this property, the rule is very simple:

connection(S, R, G, []) «
role_instance(agent_instance, R, RC, []) A
role_instance(agent_instance, S, SC, [[) A
role_instance(has_interface, RC, MT, [[) A
role_instance(has_gate, SC, G, [1) A
role_instance(message_type_of _gate, G, MT, [])

The first two lines of the rule body determine the classes SC and RC of the sending (S) and receiving (R)
agent. The next two lines unify MT and G with a message type (M.T) understood by the receiving agent’s class
and a gate (G) of the sending agent’s class. The last line check if gate G sends messages of type MT.

As described in chapter 2.4, the last argument of a predicate is used for system generation purposes: This
argument is unified with a list of additional assertions required to make the predicate true. In the connection-
rule, this argument has been set to the empty list [] for all predicates. Therefore, this predicate can be used for
system checking, but not for system generation. Extending it for system generation is easy:

connection(S,R, G, AC) «
role_instance(agent_instance, R, RC, ACO) A
role_instance(agent_instance, S,SC, AC1) A

(
role_instance(has_interface, RC, MT, [[) A
(
(

role_instance(has_gate, SC, G, []) A

role_instance(message_type_of_gate, G, MT, [|) A
flatten([ACO, AC1, connection(S, R, G,)], AC)

With this definition, it is possible to generate new class instances, while all other predicates remain the
same. The flatten-predicate in the last line concatenates the lists of newly generated facts to one list. Note that
we allow the creation of new instances only at certain points in this predicate: It is possible to create new agents
(ACO0 and ACT1) and a new connection, but it is not possible to create new interfaces, new gates, or to change
the message type of a gate.

The following paragraphs show some more examples for logical descriptions of MAS. It should be noted
that these MAS types can be combined, i.e. it is possible to query for an interactive, computational MAS, or
for a computational MAS with graphical output.

CHAPTER 3. FORMAL LOGICS IN BANG3 12

Computational MAS A conput at i onal _MAS can be defined as a MAS with a computational agent and
a data source agent which are connected:

computational MAS(MAS, AC) «
role_instance(agent_class_type, CAC, computational agent, [I) A
role_instance(agent_instance, CA, CAC,AC0) A
role_instance(has_agent, MAS, CA,AC1) A
role_instance(agent_instance, DS, data_source, AC2) A\
role_instance(has_agent, MAS, DS, AC3) A
connection(CA, DS, G, AC4) A
flatten([ACO, AC1, AC2, AC3, AC4], AC)

The first three lines of the clause body ensure that the MAS has an agent CA whose class CAC is of type
computational. The next two lines make sure that the MAS has an agent DS of class data_source. Line six
ensures that these agents are connected via a gate G.

Trusted MAS A MAS is trusted if all of its agents are trusted. This examples uses the Prolog predicate
findall.findall returnsa list of all instances of a variable for which a predicate is true. In the definition
of predicate al | _t r ust ed the usual Prolog syntax for recursive definitions is used.

trusted_MAS(MAS, []) «
findall(A, role_instance(has_agent, MAS, A), A) A
all _trusted(A)

all_trusted([]) « true

all_trusted([F|R]) «
role_instance(agent_class, FC, F, []) A
role_instance(agent_class_type, FC, trusted, [])

Interactive MAS A MAS is interactive if it contains a computational agent and the computational agent is
connected to a GUI (Grapical User Interface) agent or a CLI (Command Line Interface) agent.

interactive_lMAS(MAS,AC) «
has_agent(MAS, CA,ACO) A
role_instance(agent_instance, CA, CAC,AC1) A
role_instance(agent_class_type, CAC, computational, []) A
has_gui_or_cli_agent(MAS, I, AC2)
connection(l, CA, G, AC3) A
flatten(JACO, AC1, AC2, AC3], AC)
has_gui_or_cli_agent(MAS, I, AC) «
has_agent(MAS, 1, AC0) A
role_instance(agent_instance, I, IC, AC1) A
role_instance(agent_class_type, I1C, gui, [1)

CHAPTER 3. FORMAL LOGICS IN BANG3

has_gui_or_cli_agent(MAS,I,AC) «
has_agent(MAS, 1, AC0) A
role_instance(agent_instance, I, IC, AC1) A
role_instance(agent_class_type, IC,cli, [])

13

Chapter 4

Conclusion

We have shown how formal logics can be incorporated in a MAS. We presented both a logical formalism for the
description of MAS, and reasoning procedures to draw conclusions from the logical descriptions. In this, we
combined Description Logics with traditional Prolog rules. The system we implemented allows the practical
application of these technologies. So far, we only describe static aspects of MAS. Further research will be put
in the development of formal descriptions of dynamic aspects of MAS.

The reasoning component uses a traditional resolution based method to generate MAS configurations. A
further field of research will be different reasoning methods, e.g. tableaux-methods.

The hybrid character of the system, with both a logical component and soft computing agents, also makes
it interesting to combine these two approaches in one reasoning component. In order to automatically come
up with feasible hybrid solutions for specific problems, we plan to combine two orthogonal approaches: a
soft computing evolutionary algorithm with a formal ontology-based model. We expect synergy effects from
using formal logics to aid evolutionary algorithms and vice versa. Testing the fitness of an evolutionary bred
Multi-Agent System can be an expensive operation, because multiple agents have to be created and connected
in possibly complex ways. Testing the system consumes even more time. Determining the characteristics of a
Multi-Agent System by formal logics can help avoiding or at least reducing these expensive operations. On the
other hand, formal logic inference algorithms are geared to find optimal, non-redundant solutions to a given
problem, at the expense of unfavorable complexity problems. In the field of Multi-Agent System configuration,
good but non-optimal results are often acceptable. By the combination with evolutionary methods, complexity
issues of formal logic inferences can be alleviated, while still producing adequate results.

Acknowledgments

This work has been supported by a DAAD postgraduate grant in the framework of the common special
academia program 111 of the federal states and the federal government of Germany.

14

Bibliography

[1] F. Baader. Logic-based knowledge representation. In M. J. Wooldridge and M. Veloso, editors, Artificial
Intelligence Today, Recent Trends and Developments, number 1600, pages 13-41. Springer Verlag, 1999.

[2] F. Baader and U. Sattler. Tableau algorithms for description logics. In R. Dyckhoff, editor, Proceedings
of the International Conference on Automated Reasoning with Tableaux and Related Methods (Tableaux
2000), volume 1847, pages 1-18, St Andrews, Scotland, UK, 2000. Springer-Verlag.

[3] Peter Baumgartner and Ulrich Furbach. Model-based deduction for knowledge representation. In Pro-
ceedings of the International Workshop on the Semantic Web, Hawaii, 2002.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American, May 2001.

[5] Gerd Beuster, Pavel Krusina, Roman Neruda, and Pavel Rydvan. Towards building computational agent
schemes. In Artificial Neural Nets and Genetic Algorithms — Proceedings of the International Conference
in Roanne, France, SpringerWienNewYork, 2003.

[6] Alexander Borgida. On the relationship between description logic and predicate logic. In CIKM, pages
219-225, 1994,

[7] Alexander Borgida. On the relative expressiveness of description logics and predicate logics. Artificial
Intelligence, 82(1-2):353-367, 1996.

[8] M. Davis, editor. The Undecidable. Raven Press, 1965.

[9] Stefan Decker, Dieter Fensel, Frank van Harmelen, lan Horrocks, Sergey Melnik, Michel C. A. Klein,
and Jeen Broekstra. Knowledge representation on the web. In Description Logics, pages 89-97, 2000.

[10] J. E. Doran, S. Franklin, N. R. Jennings, and T. J. Norman. On cooperation in multi-agent systems. The
Knowledge Engineering Review, 12(3):309-314, 1997.

[11] A. Farquhar, R. Fikes, and J. Rice. Tools for assembling modular ontologies in ontolingua, 1997.

[12] Jacques Ferber. Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Harlow:
Addison Wesley Longman, 1999.

[13] Michael R. Genesreth and Richard E. Fikes. Knowledge interchange format, version 2.2. Technical report,
Computer Science Department, 1991.

[14] J. Hendler. Agents and the semantic web, 2001.

[15] U. Hustadt and R. A. Schmidt. On the relation of resolution and tableaux proof systems for description
logics. In D. Thomas, editor, Proceedings of the 16th International Joint Conference on Artificial In-
telligence 1JCAI’99, volume 1, pages 110-115, Stockholm, Sweden, July 31-August 6, 1999. Morgan
Kaufmann.

[16] Pavel KruSina, Roman Neruda, and Zuzana Petrova. More autonomous hybrid models in bang. In Inter-
national Conference on Computational Science (2), pages 935-942, 2001.

[17] Alon'Y. Levy and Marie-Christine Rousset. The limits on combining recursive horn rules with description
logics. In AAAI/IAAL, pages 577-584, 1996.

15

BIBLIOGRAPHY 16

[18] Robert Meolic, Tatjana Kapus, and Zmago Brezocnik. Model checking: A formal method for safety
assurance of logistic systems.

[19] H.S. Nwana. Software agents: An overview. Knowledge Engineering Review, 11(2):205-244, 1995.

[20] Robert F. Stark. A direct proof for the completeness of SLD-resolution. In CSL: 3rd Workshop on
Computer Science Logic. LNCS, Springer-Verlag, 1990.

[21] Mark E. Stickel. A Prolog technology theorem prover: Implementation by an extended Prolog compiler.
In J. H. Siekmann, editor, Proceedings of the Eighth International Conference on Automated Deduction,
volume 230, pages 573-587, Berlin, 1986. Springer-Verlag.

[22] André Vellino. The relative complexity of sl-resolution and analytic tableau. Studia Logica 52, 2:323-
337, 1993. Kluewer.

