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Technical report No. 885

December 2002
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Abstract:

This paper deals with numerical modelling of the geothermal flow of groundwater in the vicinity of sources
of the geothermal energy. The problem is described by a set of two partial differential equations - the heat
transport equation with convection and the equation for pressure. These equations are coupled together
in terms of a relation between density of the fluid and its temperature. As the density is depends on
temperature only, the pressure equation is of elliptic type. The resulting system of equations is thus of
parabolic-elliptic type. A suitable numerical scheme for approximation of solution to this system is proposed
and it is tested on several numerical experiments which are presented in the conclusion.
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1 Introduction

Let Ω be a bounded domain in R
2 representing a vertical cut through the soil which is fully saturated

by water. In this domain, the following mass balance condition is to be fulfilled :

n
∂ρ

∂t
+

∂ρqx

∂x
+

∂ρqz

∂z
= Q. (1.1)

Here, n denotes porosity, ρ is the density of the fluid, qx and qz are components of the Darcy velocity
vector �q, and finally, Q is a source/sinks term. Equation (1.1) will be reffered to as the mass balance
equation in the sequel. This equation was derived in [5] under assumption of medium incompressibility.

In the equation (1.1), the dependency of �q on pressure p is explicitly given by the Darcy law:

�q = −k

μ
(∇p − ρ�g), (1.2)

where μ denotes the coefficient of dynamical viscosity of the fluid and �g is a vector of gravity accel-
eration. The quantity k is the permeability of the porous medium which is assumed to be isotropic.
In the whole text, we will suppose that the coordinate system (Oxz) is oriented so that the vector of
gravitational acceleration points in the direction of negative part of z-axis. Thus, �g = (0, g), where
g = −9.81 m.s−2. Under these assumptions the Darcy law can be written in components as

qx = −k

μ

∂p

∂x
, qz = −k

μ

(
∂p

∂z
− ρg

)
. (1.3)

Substituting the Darcy law to the mass balance equation, the following equation can be derived

− ∂

∂x

(
ρ
k

μ

∂p

∂x

)
− ∂

∂z

(
ρ
k

μ

∂p

∂z
− k

μ
ρ2g

)
= Q − n

∂ρ

∂t
, (1.4)

which will be denoted as the pressure equation in the whole text. Moreover, we add the equation of
heat transport which is taken from [2]

ρc
∂T

∂t
+ ρc�q · ∇T = ∇ · (λ∇T ). (1.5)

In this equation, T is the unknown temperature, c is the heat capacity per unit mass of the fluid and
λ denotes the homogenized coefficient of heat conductivity. We suppose that the heat conductivity
is scalar (i.e. the medium is isotropic), however, the extension for anisotropic case is possible. The
notation ρc = nρc + (1 − n)ρscs, is used, where ρs and cs denote the density and the heat capacity
per unit mass of the soil, respectively. The equations are coupled by the following relation between
the fluid density and temperature

ρ(T ) =
ρ0

1 + β1(T − T0) + β2(T − T0)2
, (1.6)

in which the coefficients ρ0 ≡ ρ(T0), β1, β2, are given constants. Additionally, the density could depend
on pressure, but this case is not considered here.

As we assumed that neither density nor porosity depend on pressure, the equation for pressure (1.4)
is an elliptic partial differential equation with respect to pressure. Therefore, we prescribe boundary
conditions of the Dirichlet, Neumann or Newton type, i.e.

p(x, z, t) = f1(x, z, t) ∀t and ∀(x, z) ∈ S1. (1.7)
(ρqxnx + ρqznz)(x, z, t) = f2(x, z, t) ∀t and ∀(x, z) ∈ S2. (1.8)
(ρqxnx + ρqznz)(x, z, t) = β(p − pout)(x, z, t) ∀t and ∀(x, z) ∈ S3, (1.9)

Here pout denotes pressure at the outer side of boundary, β is the coefficient of proportionality and the
�n = (nx, nz) denotes the unit vector of outer normal. The heat transport equation (1.5) is a parabolic
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partial differential equation and it is therefore completed by one initial condition and by boundary
conditions of the Dirichlet, Neumann or Newton type, i.e.

T (x, z, 0) = T 0(x, z) ∀(x, z) ∈ Ω, (1.10)
T (x, z, t) = f4(x, z, t) ∀t and ∀(x, z) ∈ S4. (1.11)(

−λ
∂T

∂�n

)
(x, z, t) = f5(x, z, t) ∀t and ∀(x, z) ∈ S5. (1.12)(

−λ
∂T

∂�n

)
(x, z, t) = γ(T − Tout)(x, z, t) ∀t and ∀(x, z) ∈ S6, (1.13)

where Tout is the outer temperature and γ > 0 is the heat transfer coefficient. The problem will be
correctly formulated if the S1, S2, S3 and S4, S5, S6 are two (generally different) decompositions of
boundary ∂Ω.

2 Weak Formulation

In the sequel, we will suppose that Ω is a bounded domain with the Lipschitz boundary. Let us
introduce the space VT = {f ∈ C∞ (

Ω
)

: f |S4 = 0} and the enthalpy by the following definition

H(T ) =

T∫
0

ρc(τ) dτ. (2.1)

Moreover, let us denote the time interval (0, Θ) as I. At this moment, we are ready for the following
definition.

Suppose the following input data qualification : ρs, cs, n, λ ∈ L∞(Ω), c > 0, n ∈ (0, 1),
qx, qz ∈ L2(I; L2(Ω)), f4 ∈ L2(I; L1/2(S4)), f5 ∈ L2(I; L2(S5)), γ ∈ L∞(S6), Tout ∈ L2(I; L2(S6)),
T 0 ∈ W 1

2 (Ω). Then we say that the mapping T ∈ L2(I; W 1
2 (Ω)) is the weak solution of the equation

of heat transport if the following conditions hold

T (0) = T 0 a.e. in Ω, (2.2)
T (t)|S4 = f4 a.e. in I, (2.3)

and the integral identity

d

dt
(H(T ), v) + (ρc�q · ∇T, v) + (λ∇T,∇v) +

∫
S6

γTv dS = −
∫
S5

f5v dS +
∫
S6

γToutv dS (2.4)

holds for all v ∈ VT in D′(I).
Further, let us define the space of the functions which fulfill the homogeneous stable boundary

conditions in sense of traces Vp = {f ∈ W 1
2 (Ω) : f |S1 = 0}. At this moment, we can formulate the

following definition.
Let μ is a positive constant. Suppose the following input data qualification : k ∈ L∞(Ω), f2 ∈

L2(I; L2(S2)), β ∈ L∞(S3), pout ∈ L2(I; L2(S3)) and

Q,
∂ρ

∂t
∈ L2(I; L2(Ω)).

Suppose that there exists a function pΩ ∈ W 1
2 (Ω) such that pΩ|S1 = f1. Then we say that the

mapping p ∈ L2(I; W 1
2 (Ω)) is the weak solution of the pressure equation if

p(t) − pΩ ∈ Vp a.e. in I,

and the integral identity∫
Ω

[
ρ
k

μ
∇p · ∇w − k

μ
ρ2g

∂w

∂z

]
dxdz+

∫
S3

βpw dS = (Q, w)−
∫
S2

f2w dS+
∫
S3

βpoutw dS−
(

n
∂ρ

∂t
, w

)
(2.5)

holds for all w ∈ Vp in D′(I).
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3 Discretization and Numerical Algorithm

Following the procedure described in [3], we suggest the following combination of method of charac-
teristics and standard Galerkin scheme for approximation of the heat transport equation (1.5)

(A + ΔtkB)T(k+1) = AT(k) ◦ ϕ(k) + ΔtkF, (3.1)

where

Aij =
∫
Ω

ρcNiNj dxdz,

Bij =
∫
Ω

λ

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂z

∂Nj

∂z

)
dxdz +

∫
S6

γNiNj dS,

Fi = −
∫
S5

f5Ni dS +
∫
S6

γToutNi dS.

and the function
ϕ(k)(x) := x − Δtkωh ∗ ρc�q(tk−1, x)

nρc + (1 − n)ρscs
(3.2)

is the Euler explicit approximation of characteristics. According the [3], the velocity field has to be
smoothed by convolution with mollifier ωh which is defined as

ωh(x) =
1
h2

ω1(
x

h
), ω1(x) =

{
κexp

(
|x|2

|x|2−1

)
, for|x| < 1

0 for|x| ≥ 1,
(3.3)

and the coefficient κ is chosen so that the integral of ω1 over the whole support is unitary. This
smoothing guarantees that the approximated characteristics do not intersect each other. This scheme
is nothing but the implicit standard Galerkin approximation of the heat transport equation without
convection which is included in the right hand side in terms of method of characteristics. As the
Galerkin scheme solves just the diffusion problem there are no problems with the artificial oscilations in
the case of dominant convection. The matrix of the system of linear algebraical equations is symmetric,
and if we use the mass lumping technique then it will be diagonally dominant and therefore also
positively definite which is advantageous for the numerical solution of this linear algebraical system.

The equation for pressure (1.4) is discretized by the standard Galerkin approach. The same
triangulation and the same linear basis functions as in the case of heat transport equation are used.
Assuming that the heat transport equation has been solved before we can approximate the time
derivative of density on the right hand side of (2.5) by the forward difference. The standard Galerkin
discretization results to the following algebraical system for the unknown pressures at the nodes of
the mesh in time tk+1

Ap(k+1) = F, (3.4)

where

Aij =
∫
Ω

ρ
k

μ

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂z

∂Nj

∂z

)
dxdz +

∫
S3

βNiNj dS, (3.5)

Fi =
∫
Ω

[
QNi − n

∂ρ

∂t
Ni +

k

μ
ρ2g

∂Ni

∂z

]
dxdz −

∫
S2

f2Ni dS +
∫
S3

βpoutNi dS

are the coefficents of the matrix A and vector F. As the pressure is approximated linearly on each
element the pressure gradients are element-wise constant and thus, the Darcy velocity can be easily
determined in terms of (1.3).

Assume, that we are situated in the k−th time level and all the quantities at time tk are known -
either from the initial condition or from the previous time step. The values of all examined quantities
in time tk+1 can be obtained using the following steps :
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• Step 1. The solution of the heat transport equation with the initial condition T(k) provides a
new distribution of temperature - T(k+1).

• Step 2. The new layer of densities is obtained by substitution of the new temperatures to (1.6).

• Step 3. Then, the equation for pressure can be solved in order to obtain the new layer of
pressures – p(k+1). The time derivative of pressure on the right hand side of this equation can
be approximated by the backward difference as the values of densities in time tk and tk+1 are
known.

• Step 4. Compute new Darcy velocities using (1.3).

At this moment, values of all required quantities in time tk+1 have been evaluated. This procedure
can be repeated from the step one if needed or can be stopped if the simulation time is up.

4 Results

We simulate the saturated groundwater flow in a rectangular domain of size 100 × 30 m. At the
begining, the temperature inside of the considered domain is 10 ◦C and the water does not move.
The boundary conditions and the material properties will be described individualy depending on the
problem solved.
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Figure 4.1: Problem 1DirHill.
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Figure 4.2: Problem 3DirHill

Problem : 1DirHill Suppose that the soil in Ω is homogeneous and isotropic. The top and the
bottom boundary of Ω are impermeable. On the top part of boundary and along the sides, the
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Figure 4.3: Problem 1Well.
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Figure 4.4: Problem HorLayer.

zero heat flux is prescribed. On the left and right side of the boundary, we prescribe the hydrostatic
pressure. The water in domain Ω is heated from the bottom - in this case we prescribe the temperature
on the bottom side of the ∂Ω. This temperature grows up linearly from 10 ◦C on the sides to the
90 ◦C in the middle of the bottom part of the boundary ∂Ω. In the figure 4.1, we can see the situation
in time of 1000 days. The colours represent the temperatures – white colour belong to the 10 ◦C and
black represents the 90 ◦C. The other colours are associated with the temperatures in between. The
arrows show distribution of the Darcy velocities.
Problem : 3DirHill This is an example of the similar problem as described in the previous sub-
section. The only difference is that the temperature on the bottom part of the ∂Ω is given by a
cosinus function of x-coordinate such that the temperature changes between 10 and 90 ◦C and has
three maxima along the boundary. In the regions of these maxima, we can observe the flow to the top
of the aquifer where the water is cooled and then it flows toward the bottom boundary in the regions
of the minima of the temperature. The situation in Ω in time of 1000 days is shown in the figure 4.2.
This example is useful for comparison with the problems 1Well and HorLayer whose results are
shown in figures 4.3 and 4.4. The first of the figures shows the same situation with added pumping
while in the second figure there is a situation in which we added a horizontal layer of soil in which the
permeability and the coefficient of heat conductivity are higher than in the rest of the aquifer.

5 Analysis of the Convergence

In this section, the convergence of the proposed numerical scheme is examined. The problem 1DirHill
was chosen as a suitable problem used for testing. As the exact solution was not available, we computed
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a numerical solution on a mesh 250× 75 with the timestep 1 day and this solution was used for the
comparison. Then, the additional solutions of the same problem were computed on coarser meshes
with larger timesteps.

Our task was to measure the distances of the individual solutions from the solution on the finest
mesh in the norms of several function spaces. The main problem here is the interpolation of the
solution between two different meshes. This is solved by the point-wise projection of the solution from
the coarse mesh to the finer mesh. Then, the computation of the norms of the difference is done on
the finer mesh.

The results of the convergence analysis are contained in the tables 5.1 and 5.2. In the table 5.1,
the symbol || · ||X denotes the X−norm of the difference of the temperature on the mesh 250 × 75
and the temperature projected from the coarser mesh to the 250 × 75−mesh. The same symbol
used in table 5.2 has the analogous meaning, only the pressure difference is measured instead of the
temperature.

# Mesh Timestep || · ||L∞(I;L2(Ω)) || · ||L∞(I;W 1
2 (Ω)) || · ||L∞(I;L∞(Ω))

1 50 × 15 25 days 28.5641 43.1245 3.18548
2 100 × 30 5 days 8.33552 13.4872 0.84721
3 150 × 45 2 1

2 days 5.41337 5.89123 0.49784
4 200 × 60 1 1

3 days 4.09549 4.20282 0.39215

Table 5.1: The results of the convergence analysis for temperature

# Mesh Timestep || · ||L∞(I;L2(Ω)) || · ||L∞(I;W 1
2 (Ω)) || · ||L∞(I;L∞(Ω))

1 50 × 15 25 days 438.598 658.184 66.8801
2 100 × 30 5 days 170.488 207.186 17.9188
3 150 × 45 2 1

2 days 108.380 124.451 9.99112
4 200 × 60 1 1

3 days 81.5763 93.0700 7.20534

Table 5.2: The results of the convergence analysis for pressure

EOC of ↓ between → #1 �→ #2 #2 �→ #3 #3 �→ #4
T in || · ||L∞(I;L2(Ω)) 1.75 1.06 0.96
p in || · ||L∞(I;L2(Ω)) 1.34 1.11 0.98

T in || · ||L∞(I;W 1
2 (Ω)) 1.65 2.03 1.17

p in || · ||L∞(I;W 1
2 (Ω)) 1.64 1.25 1.00

T in || · ||L∞(I;L∞(Ω)) 1.88 1.30 0.82
p in || · ||L∞(I;L∞(Ω)) 1.87 1.43 1.13

Table 5.3: Experimental orders of the convergence for temperature and pressure

We could present figures which show the log-log plots of the norms contained in the previous
tables as a function of the size of the mesh. The slope of the curves would allow us to estimate the
experimental orders of the convergence (EOC ′s) for temperature and pressure in the norms of the
corresponding function spaces. The EOC between two triangulations with the mesh sizes h1 and h2

is defined as in [1] by

EOC =
log E(h1) − log E(h2)

log h1 − log h2
, (5.1)

where the symbol E(h) denotes some of those norms of the difference of the solution on h-mesh and
the finest mesh. The experimental orders of the convergence between the individual triangulations
are summarized in the table 5.3.
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6 Conclusion

The presented results show that the heat transport processes in porous media are relatively slow. The
heat transport can be substantially faster in the fractures, so we intend to add the model of fracture
flow to the current model.
Acknowledgement. This work has been partly supported by the project MSM 98/210000010 of the
Czech Ministry of Education.
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[3] J. Kačur : Application of Relaxation Schemes and Method of Characteristics to Degenerate
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