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Abstract:

We describe a transformation of the Euler equations from the conservative form to the variables of pressure,
temperature and mass flow, which are preferred in the applications of the system control. This model is
used to describe steam and flue gas flow in two pipes coupled by a wall with finite thickness. Then, we
deal with the numerical solution of the system and suggest using a finite-volume AUSM-type scheme. A
note on a model of the wall and an injection cooler is also included. Finally, we present a comparison with
a theoretically computed temperature profile for a stationary state.
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Introduction

In this article, results of development of a model of a heat exchanger

1 Euler Equations in “Real” Variables

Recall that the system of Euler equations for one-dimensional flow through a pipe with constant
cross-section reads as

∂

∂t
ρ +

∂

∂x
q = 0, (1.1)

∂

∂t
q +

∂

∂x

(
p +

q2

ρ

)
= −1

2
ζ
q2

ρ
, (1.2)

∂

∂t
E +

∂

∂x

(
(p + E)

q

ρ

)
= Q, (1.3)

which have yet to be completed with the equation of state p = p(ρ, E, q). The additional right side
term − 1

2ζ q2

ρ should describe a pressure drop due to the turbulent friction (see [6]).

1.1 Transformations to “Real” State Variables

Next, we deal with the conversion of Euler equation in conservative variables into real variables
consisting of pressure, temperature and mass flux:

Equation of continuity

Supposing that density is function of pressure and temperature only (ρ = ρ(p, T )), after computing
the derivatives we obtain

∂ρ

∂p

∂p

∂t
+

∂ρ

∂T

∂T

∂t
= − ∂q

∂x
. (1.4)

Equation of energy

Deriving the equation of energy, we consider following basic thermodynamical relations for enthalpy

H = U + pV (1.5)

and internal energy

E = U +
1
2
ρV v2. (1.6)

Because the Euler equations are related to the unit volume (V = 1), we immediately get that

E = H +
1
2
ρv2 − p. (1.7)

We substitute for E in the equation of energy:

∂

∂t

(
H +

1
2
ρv2 − p

)
+

∂

∂x

(
pv + v

(
H +

1
2
ρv2 − p

))
= Q. (1.8)

Then, using the relations

∂

∂t

(
1
2
ρv2

)
=

1
2
v2 ∂

∂t
ρ + ρv

∂

∂t
v, (1.9)

∂

∂x

(
1
2
ρv3

)
=

1
2
v2 ∂

∂x
(ρv) + ρv2 ∂

∂x
v. (1.10)
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and the equation of continuity, after performing the differentiations we obtain

∂H

∂p

∂p

∂t
+

∂H

∂T

∂T

∂t
− ∂p

∂t
+ ρv

∂v

∂t
+

∂

∂x
(vH) + ρv2 ∂v

∂x
= Q. (1.11)

Performing the differentiation in the equation of momentum

∂

∂t
(ρv) +

∂

∂x
(p + ρv2) = −1

2
ζρv2, (1.12)

using the equation of continuity and multiplying by v we obtain

ρv
∂v

∂t
+ v

∂p

∂x
+ ρv2 ∂v

∂x
= −1

2
ζρv3. (1.13)

Subtracting (1.13) from (1.11) yields

∂H

∂p

∂p

∂t
+

∂H

∂T

∂T

∂t
− ∂p

∂t
=

q

ρ

∂p

∂x
+

1
2
ζ

1
ρ2

q3 − ∂

∂x
(vH) + Q. (1.14)

Then, it’s possible to compute the derivatives of ∂p
∂t a ∂T

∂t from the equations (1.4) and (1.14):

%1
∂p

∂t
= −∂H

∂T

∂q

∂x
− ∂ρ

∂T
%2, (1.15)

%1
∂T

∂t
= −

(
1 − ∂H

∂p

)
∂q

∂x
+

∂ρ

∂p
%2, (1.16)

where

%1 =
∂ρ

∂p

∂H

∂T
+
(

1 − ∂H

∂p

)
∂ρ

∂T
, (1.17)

%2 =
q

ρ

∂p

∂x
+

1
2
ζ
q3

ρ2
− ∂

∂x

(
q

ρ
H

)
+ Q. (1.18)

These two equations together with equation of momentum (1.2) and state equations[
ρ, Ĥ,

∂ρ

∂p
,
∂ρ

∂T
,
∂Ĥ

∂p
,
∂Ĥ

∂T

]
= f(p, T ) (1.19)

form the evolution equations in state variables (p,T ,q). Values of ∂H
∂p and ∂H

∂T can be easily computed
using the Leibniz rule:

∂H

∂p
=

∂ρ

∂p
Ĥ + ρ

∂Ĥ

∂p
, (1.20)

∂H

∂T
=

∂ρ

∂T
Ĥ + ρ

∂Ĥ

∂T
. (1.21)

1.2 Approximation of the steam properties

To complete the system of equations we have to provide the equations of state. In the case of steam,
the equations we are using are based on the Steam Properties Package [9]. However, to increase
computation speed, we currently use a polynomial approximation which seems to be precise enough.
Moreover, having a polynomial approximation, we are able to compute partial derivatives very easily.

For flue gas we use a state equation of an ideal nitrogen, because it constitutes the largest portion
of it, determining the behavior of the mixture. Thus, for enthalpy we consider the relation

Ĥ = cpT (1.22)
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and for density it holds that

ρ =
pM

RT
, (1.23)

where
M = 0.02801 kgmol−1

is the molar mass of nitrogen,
cp = 1037.0 J kg−1 K

specific thermal capacity for constant pressure and

R = 8.3144 J mol−1 K−1

molar gas constant.

2 Numerical Solution of the Steam/Flue Gas Flow

Taking the real variable system and replacing the spatial derivatives with differences, we obtain the
following set of equations

dpi

dt
=

1
%1

(
−
(

∂ρ

∂T

∣∣∣∣
i

Ĥi + ρi
Ĥ

∂T

∣∣∣∣∣
i

)
Δxqi − ∂ρ

∂T

∣∣∣∣
i

%2

)
, (2.1)

dTi

dt
=

1
%1

(
−
(

1 −
(

∂ρ

∂p

∣∣∣∣
i

Ĥi + ρi
∂Ĥ

∂p

∣∣∣∣∣
i

))
Δxqi +

∂ρ

∂p

∣∣∣∣
i

%2

)
, (2.2)

dqi

dt
= Δxpi + Δx

(
q2
i

ρi

)
− 1

2
ζ
q2
i

ρi
, (2.3)

where

%1 =
∂ρ

∂p

∣∣∣∣
i

(
∂ρ

∂T

∣∣∣∣
i

Ĥi + ρi
∂Ĥ

∂T

∣∣∣∣∣
i

)
+

(
1 −

(
∂ρ

∂p

∣∣∣∣
i

Ĥi + ρi
∂Ĥ

∂p

∣∣∣∣∣
i

))
∂ρ

∂T

∣∣∣∣
i

, (2.4)

%2 =
qi

ρi
Δxpi +

1
2
ζ
q3
i

ρ2
i

+ Δx(qiĤi) − Q, (2.5)

Δx{·} =
{·}R − {·}L

Δx
(2.6)

and {·}L, {·}R denote values at the left and right volume interface.
These values are determined using the AUSM formulas with Van Leer Mach number splitting.

First, recall that local sound speed and local Mach number compute as

a =
√

κ
p

ρ
, (2.7)

M =
q

ρa
. (2.8)

Then, the convective terms at the volume interface are approximated as follows:

(vx)1/2 =
1
2
M1/2(xLaL + xRaR) − 1

2

∣∣M1/2

∣∣ (xRaR − xLaL), (2.9)

where

M1/2 = M+
L + M−

R , (2.10)

M± =

{
± 1

4 (M ± 1)2 |M | ≤ 1;
1
2 (M ± |M |) otherwise.

(2.11)
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For pressure terms, we use second order polynomial expansion of the characteristic speeds:

p1/2 = p+
L + p−R, (2.12)

p± =

{
p
4 (M ± 1)2(2 ∓ M) |M | ≤ 1;
p
2 (M ± |M |)/M otherwise.

(2.13)

3 Pipe Wall Model and the Thermal Transfer

3.1 Heat transfer equations

The exchanger pipe wall is described by a partial differential equation of the heat transfer

S3

(
ρ3c3

∂T3

∂t
− ∂

∂x

(
λ

∂T3

∂x

))
= −Q, (3.1)

with S3 being the wall cross-section, c3 specific heat capacity, T3 wall temperature, λ thermal con-
ductivity and Q linear heat transfer density out of the wall.

For linear heat transfer density, we consider following relations:

Q1 = o1α1(T3 − T1), (3.2)
Q2 = o2α2(T3 − T2), (3.3)
Q = Q1 + Q2. (3.4)

Formulas for the transmission coefficient α are presented in [5]. An empirical relation for an aligned
tube bundle is

α =
Nuλf

Df
, Nu = 0.202K1Re0.64Pr0.4, Re =

ufDf

ν
, Pr =

λ

ρcν
(3.5)

where ν is the cinematic viscosity, Df outer tube diameter, uf fluid velocity and K1 fitting constant.
Re, Pr and Nu are Reynolds number, Prandtl number and Nusselt number, respectively.

3.2 Numerical solution

The heat equation describing the wall can be easily solved using method of lines. This method has
also an advantage that it can be incorporated into MATLAB/Simulink framework very easily.

The heat transfer equation is discretized in space, yielding the following set of ordinary differential
equations (indices omitted):

dTi

dt
=

λ

ρc

(
Ti−1 − 2Ti + Ti+1

Δx2
− Qi

SΔx

)
. (3.6)

The wall model can be eventually simplified yet, because the thermal transfer coefficient λ and the
wall cross-section are fairly small and thermal transfer along the wall can be neglected. In that case,
the (discretized) wall model simply reduces to

dTi

dt
= − λ

ρc

Qi

SΔx
. (3.7)

4 Model of an Injection Cooler

Injection cooler model we currently use follows the idea of [5]. We neglect the pressure drop in the
cooler element so the model reflects only dynamics of output temperature change.

Mass balance in the cooler implies immediately (in the following, all the mass flows are specified
in kg s−1, rather than kg s−1 m−2)

V
dρ

dt
= qin + qw − qout (4.1)
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and from the energy balance

V
d
dt

(ρĤ) = qinĤin + qwĤw − qoutĤ. (4.2)

Multiplying (4.1) by Ĥ and subtracting it from (4.2) we obtain

V ρ
dĤ

dt
= qinĤin + qwĤw − (qin + qw) Ĥ. (4.3)

For steady state, enthalpy of the mixture is

Ĥ =
qinĤin + qwĤw

qin + qw
. (4.4)

Using the state equations ρ = ρ(p, T ) and Ĥ = Ĥ(p, T ), we can rewrite (4.1) and (4.3) to the following
form:

V

[
∂ρ
∂p

∂ρ
∂T

ρ∂Ĥ
∂p ρ∂Ĥ

∂T

][
∂p
∂t
∂T
∂t

]
=
[

qin + qw − qout

qinĤin + qwĤw − (qin + qw)Ĥ

]
. (4.5)

As the hydraulic resistance of the cooler can be omitted we may assume that p = pin. When we also
neglect the terms containing dp

dt , the system (4.5) can be rewritten in the form[
V ∂ρ

∂T −1
V ρ∂Ĥ

∂T Ĥ − Ĥin

][
dT
dt
qin

]
=
[

qw − qout

qw(Ĥw − Ĥ)

]
. (4.6)

From the first line we get

qin = qout − qw + V
∂ρ

∂T

dT

dt
. (4.7)

Substitution of (4.7) into the second equation of (4.6) gives

V

(
(Ĥ − Ĥin)

∂ρ

∂T
+ ρ

∂Ĥ

∂T

)
dT

dt
= (Ĥw − Ĥin)qw − (Ĥ − Ĥin)qout. (4.8)

In many cases we can neglect the cooler dynamics at all and use a static model. Linearized expression
for the specific enthalpy is

Ĥ − Ĥin = Ĥ(pin, T )− Ĥ(pin, Tin) =
∂Ĥ

∂T
(T − Tin). (4.9)

With dT
dT = 0, (4.8) then simplifies to

T = Tin − Ĥin − Ĥw

∂Ĥ
∂T

qw

qout
(4.10)

and the mass outflow is simply
qout = qin + qw. (4.11)

5 Stationary Flow in Heat Exchangers

When we impose additional simplifying assumptions, it is possible to treat the problem of finding the
stationary state by solving a system of ordinary differential equations. Using [4], we are able to find
temperature profiles in parallel heat exchangers, and compare the theoretical profiles with the results
obtained by our numerical simulation.
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Figure 5.1: Sample stationary profiles compared to the theoretical ones. Thermal transfer coefficient
was increased here so the exponential character of the profiles can be demonstrated.

Let’s denote mass fluxes in the pipes a and b by qa and qb. We assume that the velocity and all
thermodynamical quantities except temperature T are constant. We look for a stationary solution to
the transport equations

Saρaca

(
∂Ta

∂t
+ va

∂Ta

∂x

)
= Qa, (5.1)

Sbρbcb

(
∂Tb

∂t
+ vb

∂Tb

∂x

)
= Qb, (5.2)

where we don’t consider any heat capacity of the wall, so just a direct Newton-type heat exchange
occurs between the two media:

Qa = k(Tb − Ta), Qb = k(Ta − Tb). (5.3)

The constant k denotes the linear heat transfer coefficient, e.g k = αo, where α is the heat transfer
coefficient and o denotes an effective perimeter of the pipe. Performing the laplacian transformation,
it’s possible to find the following solution:

Ta(x) =
Ta1 − Ta2

1 − e−CL

(
e−Cx − 1

)
+ Ta1 , (5.4)

Tb(x) =
Tb1 − Tb2

1 − e−CL

(
e−Cx − 1

)
+ Tb1 (5.5)

with

C = k

(
1

caqa
+

1
cbqb

)
, (5.6)

for x ∈ [0, L].
An example of the stationary temperature profiles is shown in figure 5.1. The setup under which

this result was obtained resembles the real exchanger, except that the thermal transfer coefficient was
increased here to emphasize the exponential character of the profiles.
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6 Conclusion

The current version of the heat exchanger model has been tested and the full system of equations
without the direct link between inputs and outputs performs well even in the setup with more heat
exchangers with injection coolers between them.

During development of the model, a routine for extraction of the experimental data was also
written, to allow comparison between real and computed values. The results were summarized in the
appendix of [8].
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[9] J. Šomvársky, Steam Properties Package, software package, HTC Prague, 2000.

[10] Meng-Sing Liou, C. Steffen, Jr., A New Flux Splitting Scheme, J. Comp. Phys., 1993, vol. 107,
pp 23-29

8


