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1 Introduction

The aim of the article is to present main mathematical properties of a system of phase-field equations
endowed by anisotropy. The equations represent a mathematical model of the solidification of pure
crystallic substances at microscale. The mentioned physical phenomenon is accompanied by presence
of an interface between phases which can move in the space and is determined intrinsicly by the state
of the physical system and its boundary and initial data. Among various approaches to mathematical
treatment of the problem (see [24], [26]), the diffuse interface model yields as a part of the solution
a well controlled smooth approximation of characteristic function of the phase. This fact originally
observed in the form of a wave-like solution of reaction-diffusion systems (see [1], [21]) lead to the
formulation of a model of solidification with additional consequences in understanding physics of phase
transitions ([16], [19]). The model equations consist of the heat equation with nearly singular heat
source coupled to a semilinear or quasilinear parabolic equation for the order parameter known as
the Allen-Cahn equation or equation of phase. The equations in various setting were studied in,
e.g. [12], [13], and applied in simulation of physical phenomena ([27], [3], [5]). The application of
models based on phase-field theory rose several quantitative questions questions concerning relation
to the sharp-interface analogue ([5]). Problems of choice of the small parameter versus mesh size,
and problems with interface stability lead to various modifications mainly in the Allen-Cahn equation
(see [10], [14], [4], [7]). Quantitative comparison, performed especially in case of curve motion (or
hypersurface motion) driven by mean curvature (see [9]) showed a satisfactory agreement of numerical
computations with analytical solution (where it was possible) or with results obtained by numerical
solution of other models and rised a question about how the anisotropy can be incorporated into the
Allen-Cahn equation without loosing a possibility of work with weak formulation. This requires a
second-order space differential operator in the divergence form. As shown in [2], a natural way of
introducing the anisotropy into the model is the use of Finsler geometry. This has been done e.g.
in [22] for the case of mean-curvature flow, and in [6] for the full phase-field model. The viscosity
solution concept allowed to treat even a fully anisotropic (i.e. the case when the kinetic term is also
direction-dependent) Allen-Cahn equation not coupled to the heat equation (i.e. the case when the
kinetic term is also direction-dependent) – [15].

The paper extends the scope of [6], where the anisotropic model has been presented:

∂u

∂t
= ∇2u+ Lχ′(p)

∂p

∂t
,

αξ
∂p

∂t
= ξ∇ · T 0(∇p) +

1
ξ
f0(p) + F (u)ξΦ1(∇p),

with initial conditions
u|t=0 = u0 , p|t=0 = p0,

and with boundary conditions of Dirichlet type

u|∂Ω = 0 , p|∂Ω = 0.

Here, ξ > 0 is the “small” parameter, and f0 derivative of a double-well potential. The coupling
function F (u) is bounded and continuous, or even Lipschitz-continuous. The anisotropy is included
using the concept of the Finsler geometry, where two – possibly different Finsler metrics Φ0 and
Φ1 describe the surface and kinetic anisotropy, T 0 is corresponding gradient operator (see below).
We consider f0(p) = ap(1 − p)(p − 1

2 ) with a > 0. The enthalpy is given by H(u) = u − Lχ(p),
where the coupling function χ is monotone with bounded, Lipschitz-continuous derivative: χ(0) = 0,
χ(0.5) = 0.5, χ(1) = 1, supp(χ′) ⊂ 〈0, 1〉. For the sake of simplicity, n = 2, Ω is a bounded domain
in R

n with a C2 boundary, and boundary conditions are homogeneous. Obviously, the extension to
higher dimensions, and to other boundary conditions is possible.

The analysis presented in this article has been motivated by interesting numerical studies obtained
by the model both for the case of curve dynamics in the plane (see [6], and Figure 1.1), dynamics
of hypersufaces in 3D ([23]), and for the case of microstructure growth in solidification (see [6]).
The model works with an anisotropy rigorously implemented into the equations. In addition, the
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Figure 1.1: Qualitative study of dendritic growth for convex (A = 0.06) and non-convex anisotropy
(m = 4, A = 0.40). Other parameters are: r = 2, ξ = 0.02, u∗ = 1.0, u0 = 0.0, L = 2.0, β = 300,
a = 4.0, α = 3, L1 = L2 = 3.0, N1 = N2 = 200, Δt = 0.008, initial radius = 0.025. The curve
evolution above is accompanied by the Frank diagram and Wulff shape of each anisotropy type.

mentioned setting allows a conversion from the double-well potential to the double-obstacle potential
in the Allen-Cahn equation ([10]). Finally, the model gives reasonable results even in case of non-
convex anisotropies, when the presented theory is not applied. Our aim is to deliver details of the
existence and uniqueness proof as well as to recover the sharp-interface relations.

2 Preliminaries

We give a brief summary of the Finsler-geometry concept, which seems to be a natural way of intro-
ducing anisotropy into the model in question. We stress out that details about this approach can be
found in [2] and in references therein.

A nonnegative function Φ : R
n → R

+
0 which is smooth, strictly convex, C2(Rn−{Θ}) and satisfies:

Φ(tη) = |t|Φ(η), t ∈ R, η ∈ R
n, (2.1)

λ|η| ≤ Φ(η) ≤ Λ|η|, (2.2)

where λ,Λ > 0, is called Finsler metric. The function given by

Φ0(η∗) = sup{η∗ · η | Φ(η) ≤ 1},
is called dual Finsler metric. They satisfy the following relations

Φ0
η(tη∗) =

t

|t|Φ
0
η(η∗) , Φ0

ηη(tη∗) =
1
|t|Φ

0
ηη(η∗), t ∈ R − {0},

Φ(η) = Φη(η) · η , Φ0(η∗) = Φ0
η(η∗) · η∗, η, η∗ ∈ R

n,

where the index η means derivative with respect to. We define the map T 0 : R
n → R

n as

T 0(η∗) := Φ0(η∗)Φ0
η(η∗) for η∗ 	= 0,

T 0(0) := 0.
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It allows to define the Φ-gradient of a smooth function u:

∇Φu := T 0(∇u) = Φ0(∇u)Φ0
η(∇u). (2.3)

The Φ-normal vector (the Cahn-Hoffmann vector) and velocity of a levelset

Γ(t) = {x ∈ R
n | p(t,x) = const.} :

given by a field p are

nΓ,Φ = − ∇Φp

Φ0(∇p) = −T
0(∇p)

Φ0(∇p) , vΓ,Φ =
pt

Φ0(∇p) .

The anisotropic curvature is give by the formula

κΓ,Φ = div(nΓ,Φ).

Compared to [2], we do not consider an explicit dependence of Φ on space, for the sake of simplicity.
In analogy to the isotropic case [8], we can investigate an anisotropic motion by mean curvature

αvΓ,Φ = −κΓ,Φ + F,

in the direction of nΓ,Φ. Manifold described as

Γ(t) = {x ∈ R
n | p(t,x) = 0.5},

with convention
Ωs(t) = {x ∈ R

n | p(t,x) > 0.5}
induces the Hamilton-Jacobi equation

α
∂p

∂t
= Φ0(∇p)∇ · ( ∇Φp

Φ0(∇p) ) + Φ0(∇p)F ,

compared to isotropic case

α
∂p

∂t
= |∇p|∇ · ( ∇p

|∇p| ) + |∇p|F .

Similarly, we derive a modified (see [6]) anisotropic Allen-Cahn equation for curve dynamics in plane

αξ2
∂p

∂t
= ξ2∇ · T 0(∇p) + f0(p) + Fξ2Φ0(∇p).

The complete model containing the above equation is formulated as follows

∂u

∂t
= ∇2u+ Lχ′(p)

∂p

∂t
,

αξ
∂p

∂t
= ξ∇ · T 0(∇p) +

1
ξ
f0(p) + F (u)ξΦ0(∇p), (2.4)

with boundary and initial conditions. We notice that the forcing term can include another type of
anisotropy given by different dual Finsler metric: F (u)ξΦ1(∇p), as indicated by experiment – see a
remark in [6].
Example. We typically use the Finsler dual metric set as

Φ0(η∗) = 
Ψ(Θ),

where [
,Θ] are polar coordinates of η∗. Our choice is Ψ(Θ) = 1+A sin(mΘ), where A is the anisotropy
strength, and m the order of symmetry. The convexity condition reads as A ≤ 1

1−m2 .
Remark. The (strong) monotonicity of the operator T 0 is equivalent to the (strict) convexity of the
functional ∫

Ω

Φ0(∇p)2dx.

3



3 Existence of the Solution

We introduce the following notations:

(u, v) =
∫

Ω

u(x)v(x) dx, ‖u‖ =

√∫
Ω

u(x)2dx for u, v ∈ L2(Ω),

(∇u,∇v) =
∫

Ω

∇u(x) · ∇v(x) dx, ‖∇u‖ =

√∫
Ω

|∇u(x)|2dx for u, v ∈ H1
0(Ω).

We also notice that the assumptions on χ imply that there are constants Cχ, Lχ > 0 such that
|χ′(s)| ≤ Cχ, |χ′(s1) − χ′(s2)| ≤ Lχ|s1 − s2| for all s, s1, s2 ∈ R. Similarly, the assumptions on F
imply that there are constants CF , LF > 0 such that |F (s)| ≤ CF , |F (s1) − F (s2)| ≤ LF |s1 − s2| for
all s, s1, s2 ∈ R. Our existence and uniqueness result is contained in the following theorem.

Theorem 1 Consider the problem (2.4) in a bounded domain Ω ⊂ R
2 with a C2 boundary, with

T 0 monotone, and with F being a bounded continuous function, χ a function with χ(0) = 0, χ(1) =
1, χ(0.5) = 0.5, χ′ bounded, Lipschitz continuous with the support in 〈0, 1〉. Assume that ξ > 0 is
fixed, and

u0, p0 ∈ H1(Ω). (3.1)

Then, there is a solution of the problem

d

dt
(u− Lχ(p), v) + (∇u,∇v) = 0 a.e. in (0, T ), (3.2)

u|t=0 = u0,

αξ2
d

dt
(p, q) + ξ2(T 0(∇p),∇q) = (f0(p), q) + ξ2(F (u)Φ1(∇p), q) a.e. in (0, T ),

p|t=0 = p0.

for each v, q ∈ H1
0(Ω), satisfying

u, p ∈ L∞(0, T ; H1
0(Ω)), p ∈ L∞(0, T ; L∞(Ω)),

∂u

∂t
,
∂p

∂t
∈ L2(0, T ; L2(Ω)).

Additionally, if F is Lipschitz-continuous, χ′ ≡ 1, and T 0 is strictly monotone, the solution is unique.

Proof. We follow the proof for the isotropic case given in [8] and we stress out details concerning
the anisotropy. We derive a sequence of approximate solutions to the original problem. Assume that
there is an orthonormal basis of the Hilbert space L2(Ω) consisting of eigenvectors of the operator −Δ
denoted as {vi}i∈N where (∀i ∈ N)(vi ∈ C2(Ω) ∩ C1(Ω̄)) with corresponding eigenvalues denoted as
{λi}i∈N. Let Vm = span{vi}i∈Nm be a finite-dimensional subspace (Nm = {1, . . . ,m}); Pm : L2(Ω) →
Vm be the projection operator (coinciding with the H1-projection). We seek for a solution of an
auxiliary problem:

d

dt
(um − Lχ(pm), vi) + (∇um,∇vi) = 0 a.e. in (0, T ), ∀i = 1, . . . ,m, (3.3)

um(0) = Pmu0,

αξ2
d

dt
(pm, vj) + ξ2(T 0(∇pm),∇vj) = (f0(pm), vj) + ξ2(F (um)Φ1(∇pm), vj) (3.4)

a.e. in (0, T ), ∀j = 1, . . . ,m,
pm(0) = Pmp0.

We use basic functions of Vm to express the solution of (3.3) as

um(t) =
∑

i∈Nm

βm
i (t)vi, pm(t) =

∑
i∈Nm

γm
i (t)vi,
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and to obtain a system of ordinary differential equations for the unknown functions of time: βm
i , γm

i

using (3.3-3.4) . We follow the procedure of the compactness method (e.g., see [25]), show that the
solution of (3.3-3.4) is defined on (0, T ) for T > 0 and show an appropriate convergence of the couple
[um, pm]. For this purpose, we prove an a priori estimate by multiplying (3.3) by

dβm
j

dt , (3.4) by
dγm

j

dt ,
and summing for j ∈ Nm:

‖∂u
m

∂t
‖2 +

1
2
d

dt
‖∇um‖2 = L(

∂χ(pm)
∂t

,
∂um

∂t
),

αξ2‖∂p
m

∂t
‖2 +

ξ2

2
d

dt
Φ0(∇pm)2 +

d

dt
(w0(pm), 1) = ξ2(F (um)Φ1(∇pm),

∂pm

∂t
).

where we have used (2.3), and notation w′
0 = −f0. Using the Schwarz and Young inequalities, we get

‖∂u
m

∂t
‖2 +

d

dt
‖∇um‖2 ≤ L2C2

χ‖
∂pm

∂t
‖2,

1
2
αξ2‖∂p

m

∂t
‖2 +

ξ2

2
d

dt
Φ0(∇pm)2 +

d

dt
(w0(pm), 1) ≤ C2

F

2α
ξ2Φ1(∇pm).

Combining these estimates, we have

1
4
αξ2‖∂p

m

∂t
‖2 +

αξ2

4L2C2
χ

‖∂u
m

∂t
‖2 +

αξ2

4L2C2
χ

d

dt
‖∇um‖2 +

ξ2

2
d

dt
Φ0(∇pm)2

+
d

dt
(w0(pm), 1) ≤ C2

F

2α
ξ2Φ1(∇pm)2,

It remains to use the equivalence of the two Finsler metrics

λ̄Φ0(η) ≤ Φ1(η) ≤ Λ̄Φ0(η), (3.5)

following from (2.2), and add non-negative terms on the right-hand side,

1
4
αξ2‖∂p

m

∂t
‖2 +

αξ2

4L2C2
χ

‖∂u
m

∂t
‖2 +

αξ2

4L2C2
χ

d

dt
‖∇um‖2 +

ξ2

2
d

dt
Φ0(∇pm)2 +

d

dt
(w0(pm), 1)

≤ Λ̄2C2
F

α

(
ξ2

2
Φ0(∇pm)2 +

αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)
)

. (3.6)

We integrate over (0, t),(
αξ2

4L2C2
χ

‖∇um‖2 +
ξ2

2
Φ0(∇pm)2 + (w0(pm), 1)

)
(t) (3.7)

≤
(

αξ2

4L2C2
χ

‖∇um‖2 +
ξ2

2
Φ0(∇pm)2 + (w0(pm), 1)

)
(0) exp

(
Λ̄C2

F

α
t

)
.

The assumption of the theorem together with the coincidence of projectors in L2 and H1 imply that
∇Pmp0,∇Pmu0 ∈ L2(Ω) and Pmp0 in L4(Ω) are bounded independently of m (due to the continuous
imbedding of H1 into L4). Consequently, the inequality (2.2) implies that, independently of m,
∇um,∇pm are bounded in L∞(0, T ; L2(Ω)), and pm are bounded in L∞(0, T ; L6(Ω)) for each finite
time T > 0.

We are able to show an additional estimate by testing (3.4) by (pm)l for l ∈ N being arbitrary,
but odd. We follow [20].

αξ2

l + 1
d

dt
((pm)l+1, 1) + ξ2l(T 0(∇pm), (pm)l−1∇pm)

= (f0(pm), (pm)l) + ξ2(F (um)Φ1(∇pm), (pm)l).
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Using the fact that T 0(∇pm)∇pm = Φ0(∇pm)2, we have

αξ2

l + 1
d

dt
((pm)l+1, 1) + ξ2l(Φ0(∇pm)2, (pm)l−1)

= (f0(pm), (pm)l) + ξ2(F (um)Φ1(∇pm), (pm)l).

We proceed by considering the following inequalities resulting from the Young inequality, Hölder
inequality and from equivalence of Finsler metrics Φ0 and Φ1 via (2.2) and (3.5):

d0

2
sl+3 − d1 ≤ −f0(s)sl ≤ 3d0

2
sl+3 + d1 for s ∈ R,

|(F (um)Φ1(∇pm), (pm)l)| ≤ CF Λ̄
√

(Φ0(∇pm)2, (pm)l−1)
√

((pm)l+1, 1)

≤ l(Φ0(∇pm)2, (pm)l−1) +
C2

F Λ̄2

4l
((pm)l+1, 1).

Then,

αξ2

l + 1
d

dt
((pm)l+1, 1) − d1|Ω| ≤ ξ2

C2
F Λ̄2

4l
((pm)l+1, 1),

and consequently

d

dt
((pm)l+1, 1) ≤ C2

F Λ̄2(l + 1)
4αl

((pm)l+1, 1) +
d0(l + 1)

α
|Ω|.

The Gronwall lemma implies

((pm(t))l+1, 1) ≤ ((pm(0))l+1, 1) exp
C2

F Λ̄2(l + 1)
4αl

t+
4d0l

αC2
F Λ̄2

|Ω|
(

exp
C2

F Λ̄2(l + 1)
4αl

t− 1
)

,

a relation valid for t ∈ (0, T ), for all l ∈ N odd. Passing to the limit l → +∞ (see [17]), we obtain

‖pm(t)‖∞ ≤ ‖pm(0)‖∞ + 1 (3.8)

uniformly for each m ∈ N, independently on ξ.
Integrating (3.7) over (0, T ), we get∫ T

0

(
αξ2

4L2C2
χ

‖∇um‖2 +
ξ2

2
Φ0(∇pm)2 + (w0(pm), 1)

)
(t)dt

≤
(

αξ2

4L2C2
χ

‖∇um‖2 +
ξ2

2
Φ0(∇pm)2 + (w0(pm), 1)

)
(0)

α

C2
F

(
exp(

Λ̄C2
F

α
T ) − 1

)
.

We use this estimate for the integration of the relation (3.6), and we see that∫ T

0

(
1
4
αξ2‖∂p

m

∂t
‖2 +

αξ2

4L2C2
χ

‖∂u
m

∂t
‖2

)
(t)dt

+
(
ξ2

2
Φ0(∇pm)2 +

αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)
)

(T )

≤
(
ξ2

2
Φ0(∇pm)2 +

αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)
)

(0)

+
Λ̄C2

F

α

∫ T

0

(
ξ2

2
Φ0(∇pm)2 +

αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)
)

(t)dt

≤
(

αξ2

4L2C2
χ

‖∇um‖2 +
ξ2

2
Φ0(∇pm)2 + (w0(pm), 1)

)
(0) exp(

Λ̄C2
F

α
T ).
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Passing to a subsequence m′, we have um′
⇀ u and pm′

⇀ p in L2(0, T ; H1
0(Ω)). The non-linear terms

in (2.4) require stronger convergence result. Using the the compact-imbedding theorem as in ([8])
with the setting

{um}∞m=1 bounded in L2(0, T ; H1
0(Ω)), {∂u

m

∂t
}∞m=1 bounded in L2(0, T ; L2(Ω)),

{pm}∞m=1 bounded in L6(0, T ; H1
0(Ω)), {∂p

m

∂t
}∞m=1 bounded in L2(0, T ; L2(Ω)),

we see that {um′}∞m′=1 converges strongly in L2(0, T ; L2(Ω)), and {pm′}∞m′=1 converges strongly in
L6(0, T ; L6(Ω)). The polynomial form of f0 implies the existence of the strong limit of f0(pm′

) in
L2(0, T ; L2(Ω)) being equal to f0(p). We also observe that the term F (um)Φ1(∇pm) is bounded in
L2(0, T ; L2(Ω)) due to (2.2), and, therefore, the subsequence converges weakly to F (u)Φ1(∇p) in this
space, as shown in the Lemma 2 and 3 of [8]. Convergence of χ(pm) in L2(0, T ; L2(Ω)) via subsequence
is guarranteed by boundedness of χ′. Finally, the term χ′(pm)∂pm

∂t is bounded in L2(0, T ; L2(Ω)) which
implies the convergence of subsequence to a function χ̃ in this space which equals to ∂χ′(p)

∂t via definition
of time derivative in the sense of distributions.

Passage to the limit. Choose test functions w, q ∈ D(Ω), multiply (3.3) by (w, vj) and (3.4) by
(q, vj), sum over Nm. Then choose scalar functions ϕ, ψ ∈ C1(〈0, T 〉), for which ϕ(T ) = ψ(T ) = 0.
Integrate both equations by parts over (0, T ). Knowing that

1. ∇pm′
converges strongly in L2(0, T ; L2(Ω)) to ∇p (Lemma 2 of [8]),

2. T 0(∇pm′
) converges weakly to T 0(∇p) in L2(0, T ; H1(Ω)) due to the semicontinuity of T 0,

see [18];

3. Pm′p0, Pm′u0 converge strongly to p0, u0 in L2(Ω),

4. F (um′
)Φ1(∇pm′

) converges weakly to F (u)Φ1(∇p) in L2(0, T ; L2(Ω)) (Lemma 3 of [8]),

5. χ(pm′
) converges weakly to χ(p) in L2(0, T ; L2(Ω)),

6. pm′
(0) = Pm′p0, um′

(0) = Pm′u0,

we are able to pass to the limit, and we obtain the following relations:

(u0 − Lχ(p0), w)ϕ(0) −
∫ T

0

(u− Lχ(p), w)
dϕ

dt
dt+

∫ T

0

ϕ(∇u,∇w)dt = 0,

αξ2(p0, q)ψ(0) −
∫ T

0

αξ2(p, q)
dψ

dt
dt (3.9)

+
∫ T

0

ψ[ξ2(T 0(∇p),∇q) − (f0(p), q) − ξ2(F (u)Φ1(∇p), q)]dt = 0.

If ϕ, ψ ∈ D(0, T ), we have

d

dt
(u− Lχ(p), w) + (∇u,∇w) = 0,

αξ2
d

dt
(p, q) + ξ2(T 0(∇p),∇q) = (f0(p), q) + ξ2(F (u)Φ1(∇p), q).

The weak solution satisfies the initial condition. Indeed, in (3.9), by using scalar functions ϕ, ψ ∈
C1(〈0, T 〉), for which ϕ(T ) = ψ(T ) = 0, we obtain

(u(0) − Lχ(p(0)), w)ϕ(0) −
∫ T

0

(u− Lχ(p), w)
dϕ

dt
dt+

∫ T

0

ϕ(∇u,∇w)dt = 0,

αξ2(p(0), q)ψ(0) −
∫ T

0

αξ2(p, q)
dψ

dt
dt

+
∫ T

0

ψ[ξ2(T 0(∇p),∇q) − (f0(p), q) − ξ2(F (u)Φ1(∇p), q)]dt = 0.
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Subtracting these equations from (3.9), we get

(u0 − Lχ(p0) − u(0) + Lχ(p(0)), w)ϕ(0) = 0, (p0 − p(0), q)ψ(0) = 0, ∀w, q ∈ D(Ω).

From this we see that u(0) = u0, p(0) = p0 in L2(Ω).
In case when F is Lipschitz-continuous with the Lipschitz constant denoted by LF ,χ(p) = p,

and when T 0 is strictly continuous, we prove uniqueness of the solution of (3.2). We consider two
solutions of the problem (3.2), denoted by [u1, p1] and [u2, p2]. Subtracting corresponding systems of
equations and denoting [u12, p12] = [u1−u2, p1 − p2], multiplying the first equation by u12 −Lp12 and
the second equation by p12, we have

1
2
d

dt
‖u12 − Lp12‖2 + ‖∇(u12 − Lp12)‖2 + L(∇p12,∇(u12 − Lp12)) = 0 in (0, T ),

(u12 − Lp12)(0) = 0,
1
2
αξ2

d

dt
‖p12‖2 + ξ2(T 0(∇p1) − T 0(∇p2),∇p12)

= (f0(p1) − f0(p2), p12) + ξ2(F (u1)Φ1(∇p1) − F (u2)Φ1(∇p2), p12) in (0, T ),
p12(0) = 0.

Denote

Ψ(p1, p2) =
f0(p1) − f0(p2)

p12
.

The a priori estimate (3.8) guarantees that there is a constant Cf > 0 such that

|Ψ(p1, p2)| ≤ Cf in (0, T )× Ω,

(as implied by the continuous imbedding H1
0(Ω) ⊂> Ls(Ω) for s ∈ 〈1,+∞)). Therefore,

|(Ψ(p1, p2)p12, p12)| ≤ Cf‖p12‖2,

Using the Young and Schwarz inequalities and strong monotonicity of T 0 ((T 0(∇p1)−T 0(∇p2),∇p12) ≥
c0‖∇p12‖2), we get

d

dt
‖u12 − Lp12‖2 ≤ L2‖∇p12‖2,

1
2
αξ2

d

dt
‖p12‖2 + c0ξ

2‖∇p12‖2 ≤ Cf‖p12‖2 +
ξ2

c0
LF Λ1‖u12‖‖∇p1‖L4(Ω)‖p12‖L4(Ω)

+ξ2CF Λ1‖∇p12‖‖p12‖,
in (0, T ), where Λ1 = Λ̄Λ. Considering the fact that there is a constant Cp for which

∫ T

0

‖∇p1‖2
L4(Ω)dt ≤ C2

4

∫ T

0

‖p1‖2
H2(Ω)dt ≤ C2

p , (3.10)

where C4 is the norm of the imbedding H1
0(Ω) into L4(Ω), and Δp1 ∈ L2(0, T ; L2(Ω)), we obtain

d

dt
‖u12 − Lp12‖2 ≤ L2‖∇p12‖2 in (0, T ),

1
2
αξ2

d

dt
‖p12‖2 +

c0ξ
2

2
‖∇p12‖2 ≤ (Cf +

ξ2

c0
(C2

F Λ2
1 + 2L2C2

4‖∇p1‖2
L4(Ω)L

2
F Λ2

1))‖p12‖2

+2C2
4‖∇p1‖2

L4(Ω)L
2
F Λ2

1

ξ2

c0
‖u12 − Lp12‖2 in (0, T ).

Combining these inequalities, we have in (0, T ):

d

dt

(
1
2
α

c0
ξ2‖p12‖2 +

ξ2

2L2
‖u12 − Lp12‖2

)
≤ M(t)

(
1
2
ξ2‖p12‖2 +

ξ2

2L2
‖u12 − Lp12‖2

)
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with

M(t) =
2(Cf + ξ2

c0
(C2

F Λ2
1 + 2L2L2

F Λ2
1C

2
4‖∇p1‖2

L4(Ω))

c0 min( α
c0
, 1)ξ2

.

Such an inequality, together with (3.10) and with the initial conditions implies, that

p12(t) = u12(t) = 0 in L2(Ω), ∀t ∈ (0, T ).

as follows from the Gronwall lemma. �

4 Asymptotical Behaviour

In this section, we show that the function pξ tends to a stepwise function provided ξ → 0. This is an
extension of results described in [5], which were inspired by [11]. A priori estimate (3.7) implies that
the energy functional

Eξ[pξ](t) =
∫

Ω

[ξ
1
2
Φ0(∇pξ)2 +

1
ξ
w0(pξ)]dx,

is bounded as

Eξ[pξ](t) ≤ Eξ[pξ](0) exp{C
2
F

2α
t} t ∈ (0, T ),

where pξ is second component of the solution of (3.2).
Additionally, there is an estimate for the time derivative (see (3.6)):

1
2
αξ

∫ T

0

‖ṗ‖2dt+ Eξ[p](T ) ≤ Eξ[p](0) +
C2

F

2α
ξ

∫ T

0

Φ0(∇p)2dt

≤ Eξ[p](0) +
C2

F

α

∫ T

0

Eξ[p](t)dt

≤ Eξ[p](0) +
C2

F

α

∫ T

0

Eξ[p](0) exp{C
2
F

2α
t}dt.

Consequently, there is a constant CT such that

1
2
αξ

∫ T

0

‖ ṗ ‖2 dt+ Eξ[p](T ) ≤ CTEξ[p](0).

These estimates allow to use the method proposed in [11]. Define the following monotone function

G(s) =
∫ s

0

|1 − (1 − 2r)2|dr.

Such a choice is given by the form of the double-well potential

w0(p) =
a

16
(
1 − (1 − 2p)2

)2
,

as we see that
G′(s) =

√
w0(s).

Then, we prove the lemma

Lemma 1 Be pξ the solution of (3.2) where Eξ[pξ](0) ≤ M0 independently on ξ. Then there are
constants M > 0 and M1 > 0 such that

sup{
∫

Ω

Φ0(∇G(pξ))dx | t ∈< 0, T >} ≤M (4.1)

and, for 0 ≤ t1 < t2, ∫ t2

t1

∫
Ω

|∂tG(pξ)|dxdt ≤M1(t2 − t1)0.5. (4.2)
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Proof. We have shown that
Eξ[pξ](t) ≤ CTM0,

on < 0, T >. We write

Eξ[p](t) =
∫

Ω

(
ξ

2
Φ0(∇p)2 +

1
ξ
w0(p)

)
dx

≥
∫

Ω

√
2Φ0(∇pξ)

√
w0(pξ)dx =

√
2

∫
Ω

Φ0(∇G(pξ))dx,

which shows (4.1) by setting M = 1√
2
M0CT . Furthermore, if∫ t2

t1

dt

∫
Ω

dx|∂tG(pξ)| =
∫ t2

t1

dt

∫
Ω

dx|∂tpξ||G′(pξ)|

≤
(∫ t2

t1

dt

∫
Ω

dx|∂tpξ|2
) 1

2
(∫ t2

t1

dt

∫
Ω

dx|G′(pξ)|2
) 1

2

≤

≤ (
2
α
C2

TM
2
0 )

1
2 (t2 − t1)

1
2 ,

then (4.2) is shown, if setting M1 =
√

2
αCTM0. �

The previous statement leads to the existence of a step function as expected.

Theorem 2 Let [uξ, pξ] is the solution of (3.2) with the initial data satisfying Eξ[pξ](0) < M0 inde-
pendently on ξ, and let ∫

Ω

|pξ(0,x) − v0(x)|dx → 0,

as ξ → 0, for a function v0 ∈ L1(Ω). Then for any sequence ξn tending to 0 there is a subsequence
ξn′ such that

lim
ξn′→0

pξn′ (t,x) = v(t,x),

is defined a.e. in (0, T )× Ω. The function v reaches values 0 and 1, and satisfies∫
Ω

|v(t1,x) − v(t2,x)|dx ≤ C|t2 − t1| 12 ,

where C > 0 is a constant, and

sup
t∈<0,T>

∫
Ω

|∇v|dx ≤ C1,

in the sense of BV (Ω), where C1 > 0 is a constant. The initial condition is

lim
t→0+

v(t,x) = v0(x),

a.e.

Proof. We find that

G(s) = 2s2 − 4
3
s3 for s ∈< 0, 1 > ,

G(s) =
4
3
s3 − 2s2 +

4
3

for s ∈ (1,+∞).

Consequently, a direct computation justifies that

|G(s)| ≤ 4
3

+ [1 − (1 − 2s)2]2.

When using the properties of the Finsler metric (2.1-2.2), we can apply the proof presented in [5]
and [11]. �
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