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Abstract

Some modi�cations and improvements of reduced	Hessian methods and a new fam	
ily of numerically e
cient variable metric or quasi	Newton methods for unconstrained
minimization are given� These new methods give simple possibility of adaptation for
large	scale optimization� Global convergence of the methods can be established for con	
vex su
ciently smooth functions� Some encouraging numerical experience is reported�
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� Introduction

Variable metric �VM methods� see ���� ���� for unconstrained minimization� are the
most popular iterative methods for medium	size problems� Starting with an initial
point x� � RN � they generate a sequence xk � RN � k � �� by the process xk�� �
xk � tkdk� where dk � RN is a direction vector and tk � � is a stepsize�

Our original intention was to develop a limited	memory VM method for nonsmooth
unconstrained optimization� We have tested many low storage methods� designed for
the smooth case� see ���� ���� ����� ���� ����� but the results were disappointing� We were
hardly able to solve any of the tested problems�

To test these methods better� we abandoned the nonsmooth case� From now on
we assume that the problem function f � RN � R has continuous second derivatives
on the level set fx � RN � f�x � f�x�g and denote fk � f�xk� gk � rf�xk�
sk � xk�� � xk� yk � gk�� � gk and Gk � spanfg�� � � � � gkg� k � ��

In this paper we investigate the line search methods with

dk � �Hkgk� sk � tkdk� ����

k � �� where Hk is a symmetric positive de�nite matrix and the stepsize tk is chosen
in such a way that tk � � and

fk�� � fk � ��tkg
T
k dk� gTk��dk � ��g

T
k dk� ����

k � �� where � � �� � ��� and �� � �� � ��
The �rst important property of the line search method is the global convergence

de�ned by relation
lim inf
k��

jgkj � �� ����

The following theorem� see ���� ���� characterizes the global convergence of the line
search method�

Theorem ���� Let the objective function f � RN � R be bounded from below and have
bounded second derivatives� Consider the line search method satisfying ������������ If

�X
k��

cos��k
�
�

�X
k��

�gTkHkgk
�

gTk gk g
T
kH

�
kgk

� �� ����

then ����� holds�

The second important property of the line search method is the superlinear rate of
convergence de�ned by relation

lim
k��

jxk�� � x�j�jxk � x�j � �� ����

where x� is the limit of the sequence fxkg�k��� The following theorem� see ���� ����
characterizes the superlinear rate of convergence of the line search method�
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Theorem ���� Consider the line search method satisfying ����������� and such that
tk � � whenever this value ful	ls ������ Let xk � x�
 where x� satis	es the second
order su�cient conditions for the local minimum of f � If

lim
k��

j�Bk �Gkskj�jskj � �� ����

where Gk � G�xk is the Hessian matrix and Bk � H��
k 
 then an index k� � � exists

such that tk � �
 k � k�
 and xk � x� superlinearly�

Condition ���� can also be written in another form� Since we can write yk �
gk�� � gk � �

R �
� G�xk � 	skd	�sk� k � �� and since xk � x� implies sk � �� one has

jyk � Gkskj�jskj � k R �� G�xk � 	skd	 � G�xkk � � �k�k denotes the spectral norm�
unless explicitly indicated otherwise and ���� is equivalent to

lim
k��

jBksk � ykj�jskj � �� ����

We paid special attention to reduced	Hessian methods �e�g� ���� ���� ���� ���� ini	
tially� because of some theoretical properties� signi�cant for global convergence proof�
We give some modi�cations and improvements in Section �� but only brie�y� because
they a�ected our numerical results only insubstantially� During the seeking for a suit	
able limited	memory method we discovered a new family of VM methods� which we
describe in Section �� We call it the shifted Broyden family� because of its close relation
to the well	known Broyden class� see e�g� ���� We give the derivation of the new family�
description of particular methods� the global convergence theory� some conditions for
the superlinear rate of convergence and numerical results�

Section � is devoted to the related limited	memory methods� It contains theory�
practical aspects� description of particular methods� the global convergence theory and
numerical results�

� Modi�cations of the reduced�Hessian method

��� Theoretical background

Let 
 � �� let A denote an N � N symmetric nonsingular matrix� let Z denote an
N �m matrix� m � N � such that matrix �Z�W  is orthogonal �which yields ZTZ � I
for some N � �N �m matrix W � and let PZ � range�Z� P�Z � null�ZT  and A�

Z �
fA � p � PZ� q � P�Z � Ap � PZ� Aq � 
qg� Each vector p � RN can be uniquely
written as p � pZ � pW � where pZ � PZ� pW � P�Z �

Lemma ���� Let p � RN 
 q � PZ� Then pZ � ZZTp
 pW � �I � ZZT p
 ZZTq � q�

Proof� Let q � PZ� Then q � Zu for some u � Rm� thus ZT q � u and q � ZZT q�
Let p � RN � From p � pZ � pW and since pZ � PZ and pW � P�Z � we have ZZTp �
ZZTpZ � pZ � pW � p� pZ � �I � ZZT p� �

�



Lemma ���� The following properties of A are equivalent�

�a� A � A�
Z
 �b� A�� � A���

Z 
 �c� A � A�
Z


where
A�
Z � ZZTAZZT � 
�I � ZZT � ����

If A � A�
Z then the reduced matrix ZTAZ satis	es �ZTAZ�� � ZTA��Z�

Proof� �a � �c� Let A � A�
Z� p � RN � p � pZ � pW � Then A�

Zp � ZZTApZ �

pW � ApZ � ApW � Ap by ���� and Lemma ���� thus A�

Z � A�
�c � �b� Let A � A�

Z� Using ����� we obtain AZ � ZZTAZ� or Z � A��ZZTAZ�
thus I � ZTZ � �ZTA��Z�ZTAZ� Therefore matrix ZTAZ is nonsingular and
�ZTAZ�� � ZTA��Z holds� Moreover� the relation Z � A��ZZTAZ implies A��Z �
Z�ZTAZ�� and if p � PZ then one has p � Zu for some u � Rm� which yields
A��p � A��Zu � Z�ZTAZ��u � PZ� If q � P�Z � then Aq � 
q by ����� thus
A��q � 
��q�

�b � �a� Since we have proved �a � �b� it su
ces to replace A by A��� �

Theorem ���� Let �
 � �
 �i � R
 pi � PZ
 qi � PZ
 i � �� � � � � n
 n � � and suppose
that the matrix P �

Pn
i�� �ipiq

T
i is symmetric
 �A � P is nonsingular and A � A�

Z�
Then �A � P � A��

Z �

Proof� One has ��A�P ��Z � ZZT ��A�P ZZT ��
�I�ZZT  � �A�
Z�

Pn
i�� �ipiq

T
i �

�A � P by ���� and Lemma ���� thus �A� P � A��
Z by Lemma ���� �

Theorem ���� Let Q be an orthogonal m � m matrix
 let Z � be an N �m� matrix

m� � N 
 such that PZ� 	 PZ and �Z �TZ � � I holds� Then A�

ZQ � A�
Z 
 A�

Z��

Proof� The �rst relation follows from ����� Lemma ��� and �ZQ�ZQT � ZZT � Let
p � PZ�� p � pZ � pW � q � P�Z� and A � A�

Z� Then q � P�Z and Aq � 
q� Since
PZ 
 PZ� � we have Ap � ApZ � 
pW � PZ� by A � A�

Z� thus A � A�
Z�� �

Theorem ���� Let Q be an orthogonal N�N matrix and A � A�
Z� Then QAQ

T � A�
QZ�

Proof� By ���� one has �QAQT�QZ � QZZTQTQAQTQZZTQT �
�I�QZZTQT  �

QAQT � thus QAQT � A�
QZ by Lemma ���� �

Utilizing this general theory� we denote by index k relevant quantities in iteration k�
In the principal variant of the reduced	Hessian method� see e�g� ���� the subspaces PZk
and Gk are identical for every k�

Suppose that the initial VM matrix is H� � 
�I � A��
Z�

and that Hk � A�k
Zk

� In

iteration k� we �rst replace Zk by some Zk��� PZk�� 	 PZk � which yields Hk � A�k
Zk��

by Theorem ���� Then we apply some Broyden VM update Hk � Hk�� �see ���� ����
which has the form Hk�� � �k�Hk �

Prk
i�� ipip

T
i � �k � �� i � R� pi � PZk��� � � i � k

�every update can contain together with any vector p also Hkp or H��

k p by de�nition

A�k
Zk��

and Lemma ���� Setting 
k�� � �k
k� one has Hk�� � A�k��
Zk��

by Theorem ����

thus always Hk � A�k
Zk

� k � ��

�



This property H � A�
Z �omitting index k is important� because then we can

equivalently replace H by H�
Z � Z�ZTHZZT � 
�I � ZZT  in all computations

by Lemma ���� thus we can proceed with the reduced matrix ZTHZ instead of H so
that we have all iterates the same �in the precise arithmetic� Moreover� we see from
equality ZT �H��pqT Z � ZTHZ���ZTp�ZT qT that we can simply update reduced
matrix ZTHZ using reduced vectors ZTp� ZT q instead of updating matrix H using
vectors p� q�

��� Matrix damage caused by discarding some basis vector

The situation will be quite di�erent in the limited	memory version of the reduced	
Hessian method� We suppose that A � A�

Z and that we need to discard some column
z of the basis matrix Z � �Z� z� Note that Z is usually multiplied from the right by
some orthogonal matrix in advance �to adapt Z to stored vectors gi� or better to si�
see ���� but this fact is not signi�cant here and has no in�uence on validity A � A�

Z

by Theorem ����
Usually� only the reduced matrix ZTAZ is formed� but we will investigate a mod	

i�cation of matrix A � �A caused by the discarding of column z� with �A � A�
Z� to

be able to utilize general theory� Naturally� we assume ZT �AZ � ZTAZ� Then one
has �A � �A�

Z � Z ZT �AZ ZT � 
�I � Z ZT  � A�
Z by Lemma ��� � Note that for

A � 
I �
Pr

i�� �iqiq
T
i � r � �� the replacement A� A�

Z corresponds to the projection

qi � Z ZT qi� i � �� The following theorems describe properties of matrix �A�

Theorem ���� Let 
 � � and suppose that A is positive de	nite� Then matrix �A � A�
Z

is positive de	nite and �A � A�
Z� If p � PZ
 then pT �Ap � pTAp�

Proof� It follows from equality ZTZ � I that �A�
Z � �A�

Z�Z � A�
Z � �A� which implies

�A � A�
Z by Lemma ���� Let p � RN � p � pZ � pW � pZ � PZ� pW � P�Z � We obtain

pT �Ap � pTZ ZTAZ ZTp�
pT �I�Z ZT p � pTZApZ�
�pZ�pW TpW � pTZApZ�
pTW pW
by Lemma ���� which for p � PZ �i�e� pW � � yields the desired equality� Let p �� ��

Then the positive de�niteness of �A follows from pT �Ap � pTZApZ � � for pZ �� � and

from pT �Ap � 
pTW pW � � for pZ � �� i�e� pW �� �� �

Theorem ���� Let 
 � �
 A � A�
Z
 Z � �Z� z and �A � A�

Z� Then

A� �A � wzT � zwT � ��� 
zzT � ����

where w � Z ZTAz
 � � zTAz� Moreover
 one has Tr�A� �A � ��
 and kA� �Ak�F �
��� 
� � �jwj� �Frobenius matrix norm��

Proof� By Lemma ��� one has A � ZZTAZZT � 
�I � ZZT  and using ZZT �
Z ZT � zzT gives ����� The relation Tr�A � �A � � � 
 follows from ZTZ � I�
which implies wT z � � and jzj � �� Observe that we obtain further kA � �Ak�F �
kwzT � zwTk�F � �� � 
�jzj� � �jwj� � �� � 
�� �

Note that we tested some possibilities of decreasing this matrix damage� without
substantial improvement of the results�

�



��� Basis vector adding strategies

Usually� the new basis vector �z is formed and added to Z in iteration k� if jgW j � �Ajgj�
where we write g � gk�� and �A � � is an adding tolerance �typically �A � ����� Then
we set �z � gW �jgW j� The main disadvantage is that the new vector can be left out�
while the old ones remain unchanged in the basis �sometimes even in many consecutive
iterations�

One way out from this situation is represented by the following strategy� when
jgW j � �Ajgj� we sometimes discard some column z of Z � �Z� z in advance to have
value jgW j su
ciently large� where jgW j � jg� gZ j� In view of Z ZT � ZZT � zzT and
z � PZ we easily obtain jgW j� � jg�Z ZT gj� � jgW ��zTgzj� � jgW j���zT g�� which
can be advantageously utilized for the choice of z�

The following method of basis vector adding seems to be more hopeful� because we
always add the new vector to the basis� First we set �z � gk���jgk��j and determine
an orthogonal matrix Q as a product of plane rotations� for which vector �ZQT �z has
the �rst m � � elements equal to zero� Denoting by z�i� i � �� � � � �m the columns
of ZQ� we then set z��m � z�m � ��zT z�m�z � �z and �Z � �z��� � � � � z

�

m��� z
��

m�jz��mj� �z for
z��m �� �� �Z � �z��� � � � � z

�

m��� �z otherwise� Obviously �ZQTZQ � I � �ZT �Z and
P �Z 	 PZQ � PZ and we can pass from basis Z to �Z by Theorem ���� Note that in
practice we leave out z��m not only when z��m � �� but also when jz��mj � �A� similarly as
we leave out gk�� in the usual method of basis vector adding�

Surprisingly� the plane rotations caused extreme growth of rounding errors here�
these errors were approximately the same� when we replaced the plane rotations by
Householder transformations� see ����

��� Basis vector discarding using QR transformation

The choice of basis vectors to discard in this method should increase stability� The
discarded vectors are replaced by their projection �see Section ���� Since the algorithm
respecting the error analysis is rather complicated� we present only a simpli�ed version�
Note that there are other ways how to increase stability� but this is very robust�

Let H � 
I � UMUT � U � �u�� � � � � um� m � �� rank U � �� Initially� we have
M � diag�	�� � � � � m� where u�� � � � � um and 	�� � � � � m are computed using standard
VM updates� see ���� ���� Using QR transformation �e�g� Householder transformation
with pivoting� see ���� we can write

U � Q

�
R C�

� C�

�
� ����

where Q is N �N orthogonal matrix� R is r � r nonsingular upper triangular matrix�
whose diagonal elements are arranged in descending order �which minimizes column
norms of C�� i�e� discarding errors� see below and r � ���m� is chosen so that �N�r�
�m� r matrix C� could be neglected� Denoting U � Q�RT � �T and P � R��C�� one
has Q�CT

� � �T � Q�RT � �TR��C� � UP � Assuming C� � �� we obtain U � U �I� P  by
����� thus we can reduce H to the form H � 
I�U M UT � where M � �I� P M�I� P T �
and continue in VM updating� which does not change this form of matrix H represen	
tation� as we see from relation H �  uuT � 
I � �U� u diag�M� �U� uT �

�



We show that this neglecting C� corresponds to the vector projection� caused by
some basis vector discarding� as was shown in Section ���� First we can de�ne Z �
UR�� � Q�I� �T � since obviously range�U  � range�Z and ZTZ � �I� �QTQ�I� �T �
I� By ����� we now can write the corresponding projection in the form

Z ZTU � Q

�
I �
� �

�
QTU � Q

�
I �
� �

��
R C�

� C�

�
� Q

�
R C�

� �

�
�

The advantages of this method are easy computing of discarding errors and good
stability� the disadvantage is the greater number of arithmetic operations in comparison
with the reduced	Hessian method� this number can be reduced using a suitable strategy
of choice r� Unfortunately� although the method can minimize the discarding errors�
these errors were in practice very soon too great to be neglected� i�e� numerical results
were not substantially better than in the reduced	Hessian method�

��� Methods without basis vector discarding

These methods are similar to the reduced	Hessian method except that the basis vector
discarding is replaced by an orthogonal transformation� which preserves VM matrices
eigenvalues and a certain number of direction vectors� We present only two versions�
the �rst one preserves the maximum number of these vectors and appears to be more
e
cient� the second one preserves only the latest direction vector and seems to be more
advantageous for small number of basis vectors�

Let H � A�
Z �see Section ���� where 
 � �� Z � �z�� � � � � zm� m � N � Initially� we

simply process the reduced	Hessian method until we need discard some basis vector�
Let g � gk�� and s � sk be the latest values of gradient and basic points increment �in
iteration k�

In the �rst version� we further suppose that we have the last increment vectors
matrix �indices of vectors si are changed S � �s�� � � � � sm such that ZTS is an upper
triangular matrix� this property can be easily achieved� see e�g� ���� First we replace

matrix Z by Z � � ZQ� � �z��� � � � � z
�

m
�
� �z��� Z such that sTj z

�

� � � �thus sj � PZ and
sTj z

�

i � �� � � j � i � m� where Q� is an orthogonal matrix� product of plane rotations
�the �rst row of ZTS is combined with the other ones� In this connection we correct
the reduced matrix according to relation �ZQ�TH�ZQ� � QT

� �ZTHZQ��
For gW �� �� where gW � g � Z Zg� we then set �z � gW�jgW j� �z � z�� otherwise�

Further we set v � z�� � �z and Q� � I � �vvT�jvj� for v �� �� Q� � I otherwise�
and replace H by �H � Q�HQT

� � it can be achieved by replacing Z � by Q�Z
�� without

changing the reduced matrix �Z �THZ � � �Q�Z
�T �Q�HQT

� �Q�Z
�� Obviously� it holds

Q�Z � Z in view of ZTv � � �thus also Q�sj � sj � j � �� Combining this with

Q�z
�

� � z�� � �
�z�� � �zTz��
jz�� � �zj� �z�� � �z � z�� � �

�� �zT z��
� � ��zT z��

�z�� � �z � �z�

one has Q�Z
� � ��z� z��� � � � � z

�

m� Lastly we replace Q�Z
� by Z� � �z��� � � � � z

�

m� �z �
Q�Z

�Q	 for some orthogonal Q	 and again correct the reduced matrix� It is easy to see
that �H � A�

Z�
by Theorem ��� and Theorem ����

�



In the second version� we only set �H � QHQT and Z� � QZ� where Q is an
orthogonal matrix� such that g � PZ�� Qs � s and that the angle between g and Qg
is minimized� see Lemma ��� �if g � PZ� the choice Q � I is suitable� Again we have
�H � A�

Z�
by Theorem ����

Finally� in both these versions� we update �H to H�� or equivalently ZT
�

�HZ� to
ZT
�H�Z� �see Section ���� Obviously� for update belonging to the Broyden class�

see ���� ���� one has H� � A�
Z�

by ���� and Theorem ��� and we can go to the next
iteration�

Lemma ���� Let s � PZ
 s �� �
 g �� PZ and Q � I � �vvT�jvj�
 where v � gW � �wZ

with wZ � gZ � �gT s�jsj�s and � � jgW j��
�
jwZj� � jwZj

q
jwZj� � jgW j�

�
for wZ �� �


v � g � �s � ��s otherwise
 where �� � �jsj�jgj� � �sT g���jsj�j�sj� � �sT �s�
 � �
�sTg � �sT �s�jsj� and �s � PZ is some vector
 linearly independent of s�

Then orthogonal matrix Q satis	es Qs � s
 g � PQZ and v maximizes quantity
gTQg�jgj� subject to these conditions�

Proof� The condition g � PQZ is equivalent to Qg � QTg � PZ� Let Qg � q for some
q � PZ� Then jqj � jQgj � jgj and q � g � ��gTv�jvj�v� Since q �� g by g �� PZ� it
must be gTv �� � and v is proportional to g � q� we can set v � g � q� On the other
hand� let v � g � q for some q � PZ such that jqj � jgj� It is easy to see that Qg � q�

The condition Qs � s is equivalent to vTs � �� a general solution of this equation
can be written as v � M�g � p� M � I � ssT�jsj�� p � RN � Denoting u � Mp and
w � Mg� this yields v � w � u� Since q � g � v � u � g � w and w � g � Mg � g is
proportional to s� one has u � PZ� Observing that Ms � �� this gives � � uTs � wT s�
thus � � uT �w � g � wT �w � g� Combining it with q � u � �w � g� we get
jqj� � juj� � jw� gj� � juj� � �jw� gj� � jwj�� jwj� � juj� � jgj�� jwj�� Consequently�
the condition jqj � jgj is equivalent to juj � jwj�

We want to minimize �jgj��� � gTQg�jgj� � �gT �g � q � jg � qj� � ju � wj�
under the conditions g � PQZ and Qs � s examined above� By u � PZ and juj � jwj
we obtain ju � wj� � juj� � �uTwZ � jwZj� � jwW j� � �jwj � jwZj� � ��jujjwZj �
uTwZ � jwW j�� which is for wZ �� � minimized� when u is proportional to wZ � i�e�
u � �jwj�jwZ jwZ by juj � jwj� Since wZ � MgZ � gZ � �gT s�jsj�s and wW � gW �
we obtain v � w� u � wW �wZ � �jwj�jwZjwZ � gW � �wZ with � � jwj�jwZj � � �

�
q
jwZ j� � jgW j� � jwZj�jwZj� which can be rewritten in the desired form�

If wZ � �� the quantity ju � wj �
p

�jgW j is independent of u or q� If we then set
v � g � q � g � �s� ��s� the conditions jqj � jgj and vTs � �� equivalent to g � PQZ
and Qs � s� give the desired relations �since we have two conditions� we need two
parameters� note that we cannot choose gZ as �s� because wZ � � implies that gZ is
proportional to s� �

It is interesting that numerical results were comparable with the reduced	Hessian
method� in spite of the VM matrix damage caused by the orthogonal transformation�

�



� Shifted variable metric methods

Variable metric methods� see ���� ���� use symmetric positive de�nite matrices Hk�
k � �� usually H� � I and Hk�� is obtained from �kHk ��k � � is a scaling parameter
by a rank	two VM update to satisfy the quasi	Newton condition �in generalized form
Hk��yk � �ksk� where �k � � is a nonquadratic correction parameter �see ����

In shifted VM methods� matrices Hk have the form

Hk � 
kI � Ak� ����

k � �� where 
k � � and Ak are symmetric positive semide�nite matrices� usually
A� � � and Ak�� is obtained from �kAk by a rank	two VM update to satisfy the
shifted quasi	Newton condition

Ak��yk � �k�sk� 
k�� � �k�k� ����

where
�sk � sk � �kyk ����

and �k � � is a shift parameter� Obviously� relations ����	���� imply that matrix
Hk�� satis�es the quasi	Newton condition Hk��yk � �ksk�

In the subsequent analysis we use the following notation

ak � yTkHkyk� �a � yTkAkyk� �ak � yTk yk� bk � sTk yk�
�bk � �sTk yk� Bk � H��

k �

k � �� To simplify the notation we frequently omit index k and replace index k � � by
symbol �� Although we use the unit values of �k and �k in almost all cases� we will
consider also non	unit values in the subsequent analysis as it is usual in case of VM
methods �see ����

In this section we concentrate on shifted analogy of the Broyden class� see ���� ����
which we call the shifted Broyden family� Involving the scaling and the nonquadratic
correction and using the same argumentation as in standard VM methods� we can write
the shifted VM update for �b � � �which implies �s �� �� y �� � in the form

�

�
A� � A �

�

�

�s�sT

�b
� AyyTA

�a
�
�

�a

�
�a
�b

�s�Ay
��

�a
�b

�s�Ay
�T

����

�if �a � �� i�e� Ay � �� we simply omit the last two terms� because their limit value
is zero for Ay � lim��� 	q� �a � lim��� 	q

Ty� qTy �� �� where � is a free parameter
�veri�cation of A�y � ��s for this update is straightforward� There are two important
special cases� For � � � we obtain the shifted DFP update� for � � � the shifted BFGS
update

�

�
ADFP
� � A �

�

�

�s�sT

�b
� AyyTA

�a
�

�

�
ABFGS
� � A �

�
�

�
�

�a
�b

�
�s�sT

�b
� �syTA� Ay�sT

�b
�

�



��� Basic properties

Theorem ���� Let A be positive semide	nite
 � � � and ��a � b� Then matrix A�

given by ���� is positive semide	nite�

Proof� Since ��a � b� relation ���� implies �b � �sTy � b � ��a � � and the positive
semide�niteness of matrix A� follows for �a � � from ����� otherwise from the quasi	
product form of ����

�

�
A��

�
I �

�p
�

�b
�s �

��p�
�a

Ay
�
yT
�
A

�
I � y

�p
�

�b
�s �

��p�
�a

Ay
�T�

�
�

�

�s�sT

�b
� ����

which can be readily veri�ed� using straightforward arrangements and comparing cor	
responding terms� �

Note that there are other useful quasi	product forms of ����� e�g�

�

�
A� �

�
I � pyT

�
A
�
I � ypT

�
�
�

�

��b

���a�
AyyTA� ����

p �
�
�b

�s �
�

�a

�
�� �

�

�
Ay� � � 

q
� � �����b��a�

which becomes a product form for � � � and which can also be easily veri�ed�
From now on we will suppose that � � �� In view of Theorem ���� the shift

parameter should satisfy inequality � � � � b��a� Therefore� it is advantageous to
introduce relative shift parameter � � ��a�b � ��� � and by ���� we can write

� � �b��a� �b � �sTy � b� ��a � b�� � �� ����

Note that if we set � � 
��
 �this case is however not so e
cient as that with
� � � and use Woodbury formula �H � UMUT �� � B �BU�M�� � UTBU��UTB
as in ���� we can derive update relation for B� from ����� because then by ����

�

�
H� �

�

�
�
�I � A� � 
I �

�

�
A� � H �

�
�

�
A� �A

�
�

��� Determination of the shift parameter

Determination of the shift parameter � �or � is a crucial part of the shifted VM
method� Since 
� � �� by ����� the choice of � in�uences the lowest eigenvalue of
matrix H�� Therefore � should not be close to zero when matrix A is not su
ciently
positive de�nite� On the other hand� the norm of A� can increase explosively when �
tends to b��a �see below�

In the simplest shift parameter determination strategy the value of � remains the
same in all iterations� The values from the interval

���� � � � ���� ����

�e�g� the choice � � ���� are suitable in this case� If � � ���� then the convergence is
usually lost �the shifted DFP method is an exception� In spite of the fact that we do

�



not know all causes of this phenomenon� our following restricted analysis of the shifted
BFGS method with A � UUT � where U is a rectangular matrix� gives a useful formula
for determination of parameter ��

Lemma ���� Denoting  � ���� � �
 � � 
q

� � b����ajsj�
 V � I � syT�b and
�V � I � �syT��b
 there holds k�V �V k�kV k � �� Moreover
 let vector u � RN 
 yTu �� �

be scaled to satisfy yTu � b� Then

�� ju� sj
juj �� � � � j�V uj

juj � � �
ju� sj
juj �� � �� ����

Proof� One has

�V � V �
syT � ��b��ayyT � ��� �syT

b�� � �
� 

�
syT

b
� yyT

�a

�
�



b

�
s� b

�a
y
�
yT

by ���� and ����� Observing that b� � �ajsj� by the Schwartz inequality and that
�js� �b��ayj� � ��jsj� � b���a � jsj���� this implies

k�V � V k� � k� �V � V T � �V � V k � ��b� js� �b��ayj� kyyTk � ���ajsj��b��

Matrix V TV has one zero eigenvalue� N � � unit eigenvalues and Tr�V TV  � N � � �
�ajsj��b�� Thus kV k� � �ajsj��b�� which yields the �rst assertion�

Let yTu � b� By ���� and ���� we get �V u � u� �s����� � u� s� �s� �b��ay��
Since we have js� �b��ayj � �jsj� the rest follows from inequalities

j�V uj � �jsj� ju� sj � ��juj� ju� sj � ju� sj � �juj� �� � �ju� sj�
j�V uj � �jsj � ju� sj � ��juj � ju� sj� ju� sj � �juj � �� � �ju� sj� �

Now we turn back to the shift parameter determination� Value k�V �V k�kV k� equal
to � by Lemma ���� represents a relative deviation of �V from V � The shifted BFGS
update A� � � �V UUT �V T � ��s�sT��b� see ����� multiplies columns of U by

p
� �V � In

the BFGS update� see ���� which can be written in the form H� � �V HV T � �ssT�b�
multiplication by

p
� V instead of

p
� �V is performed� Thus if A � H and kAk is

great compared to k��s�sT��b � �ssT�bk and if we want to have the shifted BFGS and
the BFGS update not too di�erent� � should not be great�

When we chose � close to unity in our numerical experiments� we often found a
strongly dominant column of U �usually the �rst one� whose norm increased steadily�
Denoting u the dominant column� �u � �b�uTyu for uTy �� �� we have s � 	u for
some 	 � R by ����� thus s � �u and by ���� we get j�V uj�juj � j�V �uj�j�uj � ��
Therefore for

p
�� � � we can expect exponential growth of the norm of this col	

umn and probably also convergence loss� We can reason similarly in case of a clus	
ter of dominant linearly dependent columns of U � Setting

p
�� � �� we obtain

�� � ��
�
� �

p
�
q

�� b����ajsj�
�
� This value can serve as a reasonable maximum

of � and should be multiplied by coe
cient � � � with the properties

��



� if UTy � � then � � � because �V U � U and it is not necessary to decrease ��

� if �a � jUTyj� � � then � � � to moderate possible convergence loss�

The choice � �
q

�� �a�a �
q

�a�a represents a simple possibility how to satisfy these

conditions� Moreover� this value of � e�ectively damps down a possible growth of kUk
	 better than the scaling parameter � in �� above� for this reason we omit � in ���
Multiplying �� �without � by �� we obtain �nally

� �

q
� � �a�a

� �
q

�� b����ajsj�
� �����

This value of � has the following interesting property�

Theorem ���� Let A � �� Then matrix H� � 
�I � A� with value ������
 where A�

is given by ����
 is optimally conditioned�

Proof� If A � �� formula ���� �where we omit the last two terms gives H� �

�I � � �s�sT��b� which yields H��

� � ���
��I � �s�sT����b� j�sj�� by ����� Thus kH�k �

��� � j�sj���b� kH��
� k � ��
� � ������ �� � kH�kkH��

� k � � � j�sj�����b� By �����
���� and denoting again  � ���� � �� we obtain

�� � � �
�a

b�

�����s� ��b��ay

� � �

�����
�

� � �
�a

b�

�����s�� � � 
b

�a
y

�����
�

� � �
�a

b�

�
jsj��� � � � b�

�a
�� � �

�
� � �

�a

b�
jsj� � � � �

�
�a

b�
jsj� � �

�
�

which gives the equation for the local minimum of function ���

�a

b�
jsj�

�
�� �

�

�
� �

with the positive root  � ��
q

�� b����ajsj�� By �a � �� this leads to ������ �

Formula ����� gives good results with update ���� without any corrections� with
the exception of the �rst �ve to ten iterations� when it must be corrected� e�g� in the
following way

� � min
�

max
�q

�� �a�a
	�

� �
q

�� b����ajsj�
�
� ���

�
� ���

�
� �����

because our reasoning leading to ����� was simpli�ed and the shifted VM methods
e�ectivity is very sensitive to the shift parameter determination in the �rst iterations�

��� The shifted DFP method

If A� � � and �k � �k � �� k � �� then the shifted DFP method with

Ak�� � Ak �
�sk�sTk
�bk

� Akyky
T
kAk

�ak
� k � �� �����

has an interesting property�

��



Theorem ���� Consider the sequence of matrices Ak
 k � �
 satisfying ������ with
A� � � �if k � � we omit the last term� and �ak �� �
 k � �� Then

Ak�� �
�sk�sTk
�bk

� k � �� �����

Proof �by induction� For k � �� ����� holds by assumption� Suppose that �����
holds for index k � �� Then

Akyk �
�sk���sTk��

�bk��
yk �

�sTk��yk
�bk��

�sk���

so

Ak�� �
�sk���sTk��

�bk��
�

�sk�sTk
�bk

�
�bk��

��sTk��yk
�

��sTk��yk
�

�b �k��
�sk���sTk�� �

�sk�sTk
�bk

by ������ thus ����� is proved for index k� �

Consider now that the line search is perfect� i�e� sTk gk�� � �� k � �� Then

�sTk gk�� � sTk gk�� � 
k��y
T
k gk�� � �
k��yTk gk���

k � �� by ���� and ����� Thus using ����� ���� and ������ we can write for k � �

dk�� � �Hk��gk�� � �
k��gk�� � �sk�sTk
�bk

gk�� � 
k��

�
�gk�� �

yTk gk��
�bk

�sk

�
� �����

We can interpret ����� as the shifted conjugate gradient method�
If A� � � is chosen� regardless of whether �k � �k � � holds� k � �� the shifted

DFP method for �ak �� �� k � �� always generates a sequence of matrices of rank
at most one� This follows from A� � �����b��s��sT� and from the product form of the
shifted DFP method ���� for � � �� which shows that the rank of the updated
matrix cannot increase� Therefore� this method does not accumulate information from
previous iterations su
ciently� which probably causes its lower e
ciency�

Very surprising results were obtained with the modi�ed shifted DFP method which
uses a modi�ed quasi	Newton condition

A�y � �s � 	�Ay�

where � � 	� � � �suitable values are 	� � ���� In this case� the update has the form

�

�
A� � A �

�

�

�s�sT

�b
� 	�Ayy

TA� 	� �
�

�a

�
�� 	�

�

�
� �����

This method can be much more e
cient than the standard shifted DFP method� as
shown in Section ����

The choice 	�������a�a� i�e� 	����a is another interesting variant of the method�

��



��� Global convergence

In this section we use the following assumptions�

Assumption ���� The objective function f � RN � R is uniformly convex and has
bounded second derivatives �i�e� � � G � ��G�x � ��G�x � G � �
 x � RN 

where ��G�x and ��G�x are the lowest and the greatest eigenvalues of the Hessian
matrix G�x��

Assumption ���� Parameters �k and �k of the shifted VM method are uniformly pos�
itive and bounded �i�e� � � � � �k � � � �
 � � � � �k � � � �
 k � ���

Lemma ���� Let s �� �
 the objective function satisfy Assumption ��� and parameter �
satisfy Assumption ���� Then y �� �
 �s �� �
 b � �
 �b � �
 �a�b � �G�G � and b�jsj� � G�

Proof� Setting GI �
R �
� G�x � 	sd	� one has y � g� � g � GIs and Assumption ���

gives b �
R
�

� s
TG�x � 	ssd	 � �� which yields y �� �� Thus �b � � by Assumption ���

and ����� which implies �s �� �� Furthermore� setting q � �GI ���s� we obtain

�a

b
�

yTy

sTy
�
qTGIq

qTq
�
Z �

�

qTG�x � 	sq

qTq
d	 � �G�G �

by Assumption ���� Similarly� b�jsj� � sTGIs�sT s �
R �
� s

TG�x � 	ss�sTs d	 � G� �

Theorem ���� Let the objective function satisfy Assumption ���� Consider any shifted
variable metric method satisfying ����������� and Assumption ���
 with the line search
method ful	lling ������������ If there is a constant � � C �� such that

TrAk�� � TrAk � C� k � �� �����

then ����� holds�

Proof� Since �a�b � �G�G � by Lemma ���� Assumption ��� implies 
k�� � � 
� 
 �� k � ��

by ���� and ����� where 
 � �� �G and 
 � ���G� Using ������ one has

kHk��k � 
k�� � kAk��k � 
 � TrAk�� � 
 � TrA� � C k � �C �k � �� k � ��

where �C � max�
 � TrA�� C� By ����� this gives

cos��k
�
�

�gTkHkgk�

gTk gk g
T
kH

�
kgk

�
gTkHkgk
gTk gk

gTkHkgk
gTkH

�
kgk

� 
k
�

kHkk �



�C k
� k � ��

Thus
P
�

k�� cos
��k � � and ���� follows from Theorem ���� �

Theorem ���� Let the objective function satisfy Assumption ���� Consider the shifted
variable metric method ���� satisfying Assumption ��� and �k � �
 k � �
 with the
line search method ful	lling ������������ If there is a constant C �� such that

�k

�����ak�bk
�sk �Akyk

����� � C
�ak
�bk
j�skj� � jAkykj�� k � �� �����

then ����� holds�

��



Proof� From ���� and ����� we obtain �if �a � � we omit the two terms containing �a

�

�
TrA� � TrA �

�

�

�
�b
j�sj� � �

�a
jAyj� �

�

�a

�����a�b �s�Ay

����� � TrA �
�

�

�
�b
j�sj� �

C
�b
j�sj��

Since j�sj� � jsj� � ��� � �b���a � jsj� by ����� ���� and Assumption ���� we have
�b�j�sj� � �� � �b�jsj� � �� � �G by ����� Assumption ��� and Lemma ���� Using
inequality � � �� we obtain

TrA� � �TrA�
�
�b
j�sj� � �

C
�b
j�sj� � TrA � �� � C

j�sj�
�b
� TrA�

� � C

�� � �G
�

which implies ���� by Theorem ���� �

Theorem ��� forms a basis for the hybrid globally convergent shifted VM method�
We choose a constant C and parameters �k� k � �� which satisfy ������ Note that we
can always choose � � � �the choice of � is irrelevant for �a � �� Since choice � � �
satis�es ������ the shifted DFP method is globally convergent� Also the modi�ed
shifted DFP method with 	� � � is globally convergent owing to Theorem ��� and
�b�j�sj� � �� � �G �see the proof of Theorem ���� In this connection� our numerical
experiments show that these methods are less sensitive to the choice of parameter ��

Formula ����� shows that the uniform boundedness of �a��b is crucial for the global
convergence� If �a��b is bounded� we can choose C in such a way that �a��b � C� Then

C��a��bj�sj� � jAyj�
j��a��b�s�Ayj� � j��a��b�sj� � jAyj�

j��a��b�s�Ayj� � j��a��b�sj� � jAyj�
��j��a��b�sj� � jAyj� �

�

�
�

so a reasonable value of � can be used�

��� Conditions for the superlinear rate of convergence

Lemma ���� Consider any shifted variable metric method satisfying ����������� and
Assumption ���
 with the line search method ful	lling ����������� and such that tk � �
whenever this value satis	es ������ Suppose that xk � x�
 where x� satis	es the second
order su�cient conditions for the local minimum of f �i�e� g�x� � � and G�x� is
positive de	nite�� If j�k � 
kj � � and

lim
k��

j�sk �Akykj�jykj � ��

then an index k� � � exists such that �k � �
 k � k�
 and xk � x� superlinearly�

Proof� If x� satis�es the second order su
cient conditions for the local minimum of f �
then Assumption ��� is ful�lled in a neighbourhood of x�� Let xk� k � k� be su
ciently
close to x� so Assumption ��� is satis�ed� Then 
k � 
 �see proof of Theorem ��� and

jBksk � ykj � kBkk jsk �Hkykj � jsk �Hkykj�
 � j�sk � ��k � 
kyk �Akykj�

by ���� and ����� Since jykj � j R �� G�xk � 	skskd	j � Gjskj� we obtain


 jBksk � ykj
Gjskj

� j�sk � ��k � 
kyk �Akykj
jykj � j�sk �Akykj

jykj � j�k � 
kj � �

and we can use Theorem ��� with condition ����� �

��



Theorem ���� Let the assumptions of Lemma ��� be satis	ed� Consider the shifted
variable metric method ���� with �k � �k � � and �k � � � �� If

�
�� �k � �k

�ak
�bk

��
�ak
�bk
j�skj� � jAkykj�

�
� � �����

and TrAk � C
 k � �
 for some C � �
 then the shifted variable metric method
converges to x� superlinearly�

Proof� Using ���� with � � � � �� we can write �if �a � � we omit the last two terms

TrA� � TrA �
j�sj�
�b
� jAyj

�

�a
�
�

�a

�����a�b �s�Ay

����� �
which can be rewritten in the form

TrA� � TrA � �
�a
�b

� j�s�Ayj
jyj

��
�

�

�a

�
� � � � �

�a
�b

��
�a
�b
j�sj� � jAyj�

�

for �a �� �� or TrA��TrA � �j�s�Ayj�jyj� �a��b otherwise� Now application of Lemma ���
and assumption ����� completes the proof if we realize that ��a��b � ��a�b � �G by
����� Assumption ��� and Lemma ��� and that boundedness of fTrAkg together with
TrAk�� � TrAk � �� k � � imply TrAk�� � TrAk � �� �

The conditions used in Theorem ��� are relatively strong� First� we require j�k �

kj � j
k���
kj � �� which can be achieved by a suitable shift parameter determination
strategy� Secondly� matrices Ak have to be bounded� This condition is not necessary
for the global convergence� Third� the inequality ����� should hold�

Theorem ���� Consider the shifted variable metric method ���� with ���b � �a � �b
�e�g� � � �� and set � � �ajsj��b� and � � �ajAyj�����ab� If �a � � or �� � � � � then
������ holds for any � � ��� �� Otherwise
 if

� �
q
�� � � � � � � � � � � or � � � � ��

q
�� � � � �� �� �����

then ������ holds�

Proof� Since assumption ���b� �a � �b implies �� � � ��a��b � �� it su
ces to examine
the inequality jAyj� � j�sj� �a��b for �a �� �� By ���� and ���� we have �b � b��� � and

j�sj� �
����s�

�
�
b

�a

�
y

����� � jsj� � ��
b�

�a
� ��

b�

�a
�
b�

�a
��� �� � ���

Using these relations� we can write condition jAyj� � j�sj� �a��b as the following quadratic
inequality

�� � ���� � � � � � �� � ��

which is satis�ed if the discriminant is negative� i�e� ��������� or if ����� holds��

��



Note that � � � always holds by the Schwartz inequality and that for � � � �which
occurs when vectors s� y are linearly independent we can always �nd � � � satisfying
the �rst inequality in ������

It is very di
cult to utilize the above conditions in general� One reason is that
����� frequently gives values close to unit� which are unsuitable� Therefore our condi	
tions for the superlinear rate of convergence can con�ict with the numerical stability or
with conditions for the global convergence� Nevertheless� the superlinear rate of con	
vergence appears in some cases� We have investigated this phenomenon �i�e� condition
���� numerically and found that approximately ��� of cases indicate such behaviour�
Moreover� the following computational experiments show a surprisingly good e
ciency
of the shifted VM methods�

��� Computational experiments

The shifted VM methods were tested using a collection of �� relatively di
cult problems
with optional dimension chosen from ����� ���� and ���� �problems given in ���� can be
downloaded from http���www�cs�cas�cz��luksan�test�html� We have used the
dimension n��� and the �nal precision jg�x�j����
� The results of our experiments
are given in three tables� where NIT is the total number of iterations �over all ��
problems� NFV the total number of function evaluations and NRS the total number
of restarts� �Fail denotes the number of problems which were not solved successfully
�usually NFV reached its limit� �Ratio denotes the number of iterations with � � �
�for hybrid strategy with controlled �� We chose � � � � � for shifted VM methods�

The �rst row of Table � gives results for the shifted BFGS method with choice
����� of the shift parameter � and corrections ����� in the �rst six iterations� this
choice is also used in the next tables� The next six rows demonstrate an in�uence of
the constant parameter � on the e
ciency of the shifted BFGS method �the value ����
is in range ����� We see that the convergence is lost when � � ���� The last four
rows contain results for the standard BFGS method with various scaling strategies�
� ! scaling suppressed� � ! preliminary scaling �see ����� � ! interval scaling �see ����
� ! controlled scaling �see ���� This table demonstrates the high e
ciency of the
shifted BFGS method� It is much more e
cient than the standard BFGS method
with usually used preliminary scaling� Better results were obtained only by using the
standard BFGS method with interval and controlled scaling� However� the convergence
theory is not yet developed for these scaling strategies �see e�g� �����

Table � gives results for various choices of parameter � �� � � corresponds to the
shifted DFP method� We can see that the shifted DFP method is rather ine
cient
�but better than the unscaled standard DFP method �DFP"� in Table �� The shifted
BFGS method is very e
cient� although global convergence was not proved for it in
this paper� But experiments with the hybrid strategy described in Section ��� �in the
last three rows� C is the constant in ����� show that value � � � appears rarely �for
C � �� only in ����� cases� This fact shows that the shifted BFGS method is very
robust and reliable for practical computations�

The �rst �ve rows in Table � contain results for the modi�ed shifted DFP method
�� � � with various choices of the relaxation parameters 	� or 	� �see ������ The last

��



four rows contain results for the standard DFP method with various scaling strategies�
� ! scaling suppressed� � !preliminary scaling� � ! interval scaling� � ! controlled scaling�
This table demonstrates that a reasonable choice of relaxation parameters �e�g� 	� � ���
or 	� � ��a highly increases e
ciency of the shifted DFP method� Moreover� the
shifted DFP method is much more e
cient than the standard DFP method with usually
used preliminary scaling� Better results were obtained only by using the standard DFP
method with interval and controlled scaling�

Method NIT NFV NRS Fail
SBFGS ����� ����� � 	
� � ���� ����� ����� � 	
� � ���� ����� ����� � 	
� � ���� ����� ����� � �
� � ���� ����� ����� � �
� � ���� ����� ����� � ��
� � ���� ����� ������ �� ��
BFGS"� ����� ����� �� �
BFGS"� ����� ����� � �
BFGS"� ���� ����� � 	
BFGS"� ���� ���� � 	

Table �

Method NIT NFV NRS Fail Ratio ��
� � ��� ����� ����� �� �
� � ��� ����� ����� � 	
� � ��� ����� ����� � 	
� � ��� ����� ����� � 	
� � ��� ����� ����� � �
C � � ����� ����� � 	 �����
C � � ����� ����� � 	 ����
C � �� ����� ����� � 	 ����

Table �

Method NIT NFV NRS Fail
SDFP � 	� � ��� ����� ����� �� �
SDFP � 	� � ��� ����� ����� �� 	
SDFP � 	� � ��� ����� ����� � �
SDFP � 	� � ��� ����� ����� � �
SDFP � 	� � ��a ����� ����� � 	

DFP"� ����� ����� � ��
DFP"� ����� ����� � ��
DFP"� ����� ����� � �
DFP"� ����� ����� � �

Table �

��



� Limited�memory methods

All methods investigated in this section belong to shifted VM methods� they satisfy
����	���� and ���� with �positive semide�nite matrix Ak � UkU

T
k � where Uk� k � ��

is a rectangular matrix� and use the VM update

Ak�� � �kVkAkV
T
k � ����

k � �� where Vk has the form I � pkq
T
k for the type � methods� or I � pk�y

T
k � pk�s

T
kBk�

where Bk � H��

k � for the type � methods� Thus we need to store only matrix Uk� which
can be updated using relation

Uk�� �
p
�k VkUk� ����

k � �� In the subsequent analysis we use the following notation

ak � yTkHkyk� bk � sTk yk� ck � sTkBksk� �k � akck � b�k�
�ak � yTkAkyk� �bk � sTkBkAkyk� �ck � sTkBkAkBksk� ��k � �ak�ck � �b�k�

�ak � yTk yk�
�bk � sTkBkyk�

k � �� Note that the Schwartz inequality implies �k � � and ��k � �� To simplify
the notation we again frequently omit index k� replace index k � � by symbol � and
consider also non	unit values of �k and �k in subsequent analysis as it is usual in case
of VM methods �see ����

The shifted VM methods presented in Section �� particularly in the quasi	product

form ����� are ideal as starting methods� Setting U� �
�q

���b �s
�

in the �rst iteration�

every update ���� modi�es U and adds one column
q
���b �s to U�� Thus in this section

we will assume that the starting iterations have been executed and that matrix U has
m � � columns in all iterations�

The type � methods are simpler and have many interesting properties� but the
type � methods appear to be more e
cient in practice� Note that the shifted DFP
method �see Section ��� can be an example of the type � method�

��� Type � methods

Setting V � I � pqT in ���� one has

����A� � A� AqpT � pqTA� �qTAqppT � ����

Denoting � � pTy� quasi	Newton condition ���� gives

w
�
� �����s�Ay � �Aq � �qTAy � �qTAqp� ����

wTy � �����b� �a � � �qTAq � ��qTAy� ����

From ���� we obtain �qTAy � �qTAq� � �qTAy� � qTAq wTy after rearrangement�
Denoting D � qTAy � �qTAq� we have

D � qTAy � �qTAq� D� � �qTAy� � qTAq wTy� ����

Thus we can calculate vector p for given q using formulas

� � �D � qTAy�qTAq� p � �w � �Aq�D ����

��



by ���� ��rst we calculate D�� then � and p� Since D� � � must hold� ����� ���� and
���� give the conditions �the inequality right side can be negative

qTAq �� �� � � � � �

�b

�
�a� �qTAy��qTAq

�
� ����

Note that �a � �qTAy��qTAq by the Schwartz inequality�

General type � method expression

Expression ���� can be written in another form� By ���� and ���� one has

�

�
A��A��qTAy��qTAq

Aq�w��AqT��w��AqqTA
D�

� qTAq
�w��Aq�w��AqT

D�
�

Rearranging this and using ����� we obtain the following formulas

�

�
A� �A �

qTAq wwT � qTAy
�
AqwT � wqTA

�
�wTy AqqTA

D�
����

�
wwT

wT y
� wTy

D�

�
I � wyT

wTy

�
AqqTA

�
I � ywT

wTy

�

�
qTAq

D�

�
w �

qTAy

qTAq
Aq
��

w �
qTAy

qTAq
Aq
�T
� AqqTA

qTAq
�

In order to obtain the form closer to ����� the term wwT�wTy �which is ����A� �A
for the shifted rank	one update� by analogy with the Broyden class� see ��� in the
second formula can be written in the following way�

wwT

wTy
�

�

�

�s�sT

�b
� AyyTA

�a
�

���

�a���� � �a��b

�
�a
�b

�s�Ay
��

�a
�b

�s�Ay
�T

�

from which e�g� the following forms of the shifted BFGS formula can be derived

�

�
A��A�

wwT

wTy
� �

wTy

�
�a
�b

�s�Ay
��

�a
�b

�s�Ay
�T

�
wwT

wT y
�wTy

�b�

�
I�wyT

wTy

�
�s�sT

�
I� ywT

wTy

�
�

Note that we need not know vector q for updating� All relations can be based on
the vector �q � UT q � Rm� In that case we use only update ����� in the form

U� �
p
��U � p�qT �

and rewrite the relations containing q in corresponding way� e�g� D���yTU �q��j�qj�wTy�

Choice of vector parameter q

E�ectivity of type � methods is considerably dependent on the choice of vector q� Good
results were obtained only for q � Bs and q � y� Since scaling of q has no in�uence on
update ����� we choose q � Bs��y� � � R� Then Aq � ABs��Ay � s� 
Bs��Ay
by ���� and

qTAy � �b � ��a� qTAq � �c � ���b � ���a� D� � ��c � ���b � ���a�b��� � �� �����

��



by ����� The second condition in ���� has now the form �the right side can be negative

� � � � �

�b

�
���qTAq

�
� �����

A suitable value of � can be obtained by comparison between the Broyden class
�see ���� ��� and expression ����� where we set 
 � � � � �in that case relation
���� represents the Broyden update with A and �s replaced by H and s� In view
of ful�lling the quasi	Newton condition� it su
ces to compare only one term� e�g�
containing HyyTH� The corresponding coe
cient is �� � ��a for the Broyden class
and �qTAq � ��qTAy � ��wTy�D� for ����� Using ����� and ����� we obtain

� � �

a
�

qTAq � ��qTAy � ��wTy

D�
�

c� ��b���

�c � ��b � ��ab��� � �
� �����

which can be rearranged in the form

�

b
�

b� �c � ��b���

�c � ��b � ��ab��� � �
� �����

For the BFGS �� � � and the DFP �� � � updates� relations ����� and ����� give

�BFGS � 
s
�

�

c

b
� �DFP � ��

�

�
�

�
�
c

b

�
� �����

It is interesting that the positive value of �BFGS gives very good results� while the
negative one is not suitable for type � methods� To calculate � from �����	������ it
is useful to set

� � �b�a ��� ����

Dividing ����� by ������ we obtain

� �
��b��� � c

b � �c � ��b���
�

This gives the quadratic equation �� � ���� � ���� � c�b� ����c�b � �� which has
the roots

� � �
q

�� � ��� ��� c�b �����

for any �� excepting the values inside the interval with limits ����� �c�b� Note that
the choice � � ���� corresponds to the rank	one Broyden update� see ����

An update based on the Broyden class

Any attempt to approximate the Broyden class is complicated for the type � methods�
Thus we present only one method� motivated by the BFGS update� with q � Bs� �y�
From ���� we get

p � ������s � �� � ��Ay � �ABs��D� �����

��



Setting 
 � � � � as above� we convert A to H and ����� to p� � �s � �Hy� where
� � ������ �D� � � �������D� Since the term of ���� �after rearrangement� with
A and p replaced by H and p�� which contains HyyTH� has coe
cient ��� ��� qTAq
and corresponding coe
cient is zero for the BFGS update� we choose � � �� i�e�
� � �� � �� By ���� and ����� one has

� � � � �� � �qTAq � �qTAy � �D�qTAq � ��c � ��b� �D�qTAq�

which yields D � ��b� �c�� and thus

D� � �� � ��b � �c��� � �a�c� �b� � ��c � ���b � ���a�c����

Comparing this with ������ we get �c��� � �b��� and thus we can calculate vectors p� q
for any � � ��� �� using the formulas �we again choose only positive �� see comments
after �����

� �

s
�

�

�c
�b
� q � Bs� �y� p � ������ �s � s� 
Bs

�c � ��b
�����

by ����� and ����� Note that it is possible to have � � �BFGS �see ����� simulta	
neously� by setting � � � � �c�c due to ����� this choice is� however� not so e
cient as
����� with suitable � �e�g� given by ������

��� Type � methods

For the best known choice q � Bs � �y one has V � I � �pyT � psTB for the type �
methods� To have more free parameters� we investigate the case V � I�p�y

T �p�s
TB

in this section� From ���� we have

�

�
A��A� p�y

TA�AypT� � p�s
TBA�ABspT� � �ap�p

T
� � �b�p�p

T
� � p�p

T
�  � �cp�p

T
� � �����

Denoting �� � � � pT� y� �� � pT� y� the quasi	Newton condition ���� gives

��a�� � �b��p� � ��b�� � �c��p� � ��Ay � ��ABs � �����s� �����

�a� �� � ��b���� � �c� �� � �����b� �����

Since we still assume �b � �� inequality �� � � together with ����� imply that at least
one of values �a� �c must be nonzero� We will use the following notation

v� � �cAy � �bABs� v� � �aABs� �bAy� q� � ��p� � v�� q� � ��p� � v�

and identities vT� y � ��� vT� y � � and

qTi y � ���i� i � �� �� �a�v�v
T
� � ��ABssTBA � �c�v�v

T
� � ��AyyTA� �����

Lemma ���� Let �� � �� Then v� � v� � q� � q� � ��

Proof� Vectors Ay� ABs are proportional by assumption and the same proportionality
is between �a� �b and also between �b� �c� which gives the desired assertion� �

��



General type � method expression

First we will suppose that �a �� � and that vectors p� and p� are chosen such that
�a�� ��b�� �� � and denote �p � �ap� � �bp�� Our approach is based on the following result�

Lemma ���� Let �a �� � and ��
�
� �a�� � �b�� �� �� Then

��� � �a�b��� � ��� �� � q�q
T
� � ����p � Ay��p � AyT � �q��qT� � �a�������s�sT��b�

where

�q� �
�
q� � �qT� y�

�b�s
�
��j��j��� �� � ��

q
�a�b����

Proof� The �rst relation readily follows from ������ By ����� and ����� one has

����p � Ay � ��a�� � �b����ap� � �bp� � Ay � �a
�
�����s � ����bp� � �cp� � ABs

�
� �b����ap� � �bp� � Ay � �a�����s � ����p� � ��v� � �a�����s� ��q�

� �a�����s � ��
�
j��j�� �q� � �������b�s

�
� j��j�j��j�s��b � ���� �q�� �����

thus

����p � Ay��p � AyT � q�q
T
� � ���j��j�s��b� ���� �q��j��j�s��b� ���� �q�

T

� ������s��b � j��j�� �q�������s��b � j��j�� �q�
T � �a�������s�sT��b � �q��qT� � �

Before utilizing this lemma� we rewrite ����� in the following way

�a �����A� �A� � �pyTA � Ay�pT � p�v
T
� � v�p

T
� � �p�pT � ��p�p

T
�

� p�v
T
� � v�p

T
� � ��p � Ay��p� AyT �AyyTA � ��p�p

T
� � �����

Since ���p�vT� � v�p
T
�  � ���p�pT� � q�q

T
� � v�v

T
� � we can use Lemma ��� to obtain

�a�� �����A� �A� � �a�������s�sT��b � ��AyyTA � �q��qT� � v�v
T
� � Since �q� � q� for �� � ��

we can assume �without any change of A� that �� � � is chosen� which satis�es the
condition �� �� � by ������ and the update formula can be written in the form

�

�
A� � A �

�

�

�s�sT

�b
� AyyTA

�a
�
q�q

T
� � v�v

T
�

�a��
� qT� y � � �����

for �� �� �� If �� � �� one has v� � q� � �q� � � by Lemma ���� thus �p � Ay � �� �s��b
by ����� and from ����� we get ����A� � A� �����s�sT��b�AyyTA��a �which is the
shifted DFP update� see Section � for any choice of p��

Proceeding similarly for �a � �� thus �c �� �� we derive the following update formula

�

�
A� � A �

�

�

�s�sT

�b
� ABssTBA

�c
�
q�q

T
� � v�v

T
�

�c��
� qT� y � � �����

for �� �� � and ����A� � A � �����s�sT��b � ABssTBA��c for �� � � �and any p��
this update satis�es the shifted quasi	Newton condition by Lemma ���� Note that by

��



������ update ����� can be written in the form ����� with q�q
T
� ��a replaced by q�q

T
� ��c

for �a�c �� �� but then we can directly use ������
To construct the type � update� we can proceed in the following way� If �� �� � �thus

also �a�c �� � by �� � � we choose vector parameter q� satisfying qT� y � �� i�e� �� � ��

Then �� � 
q

�����b��a holds by ������ and by ����� we can calculate p� and p�� using
the formulas

p� �
q� � v�

��
� p� �

�

�a

�s
�

�

�a
�b

�s�Ay � �bp�

�
� �����

Otherwise� if �� � � and �a �� �� we have found above that the update �the shifted
DFP update is independent of vector p�� Thus we choose p� � � and calculate the
corresponding p�� using ������ Similarly� if �� � � and �a � �� thus �c �� � and �b � ��
the update is independent of vector p� and we choose p� � �� Then �� � � and

�� � 
q

�����b��c holds by ����� and by ����� we can calculate p�� using the formula

p� �
�q

�����c��b �s�
q

�����c��b Ay �ABs
�


�c� �����

In case �� � �� the choice of q� �or q� is irrelevant� therefore in this section we will
suppose from now on that �� �� �� thus �a�c �� ��

A simple method based on the Broyden class

Comparing ����� with ���� for 
 � � � � �or with ����� and denoting z � as�bHy�

we get �q�qT� � zzT �� � � zzT�b�� which yields q� � 
q

� � ���b� z and thus

p� �
�

b�bpb� � ��
z �����

by ������ For the BFGS update �� � � we have p� � z��b�  b
p
ac� The described

method consists in choice ����� of vector parameter p� with p� given by ������ Note
that only the case with the minus sign is suitable here�

This method gives good results when also p� is linearly dependent only on s� Hy� i�e�

when 
 � �
q

�����a��b by ������ This yields the quadratic equation �������ab��a �
�a� � � � � � �� which has one positive root

� � �

�

� �
q

� � ������ab��a� �a�
�
� �����

For this value of � and for � � � we obtain the following formulas by �����

p� �
as� bHy

b�b�pac � p� �
a� �a

��ab
s� Hy � �bp�

�a
� �����

A method with direction vector derived from the shifted Broyden class

Since d� � �H�g� � �H�y�H�g � ��s�H�Bd by ����� ���� and ����� it su
ces
to compare value ����H�Bs� which is

�
�

�
Bs �

�

�

�sTBs
�b

�s �
qT�Bs

�a��
q� �����

��



by vT�Bs � �� for update ����� and

�
�

�
Bs �

�

�

�sTBs
�b

�s �
�

�a
v� �

�

�a

�
�a
�b

�sTBs� �b
��

�a
�b

�s�Ay
�

�����

for update ����� Comparing ����� with ������ we obtain

qT�Bs
��

q� � v� � �
�

�a
�b

�sTBs� �b
��

�a
�b

�s�Ay
�
� �����

which implies

qT�Bs
��

� 
s

� �
�
��

�
�a
�b

�sTBs� �b
��
� �����

Combining ����� with ������ we can calculate q� for given � �obviously qT� y � �
and then p� and p�� using ������

A method nearest to the shifted Broyden class

Denoting �w �
q
���
�
��a��b�s�Ay

�
and comparing ����� with ����� we see that matrix

q�q
T
� should be as near as possible in some sense to matrix M� � v�v

T
� � �w �wT � We will

�nd q� satisfying the following problem

q� � arg minfkM� � qqTk�F � q � RNg� s�t� qTy � � �����

�Frobenius matrix norm� Note that we also tried to minimize kM� � q�q
T
� k� �for

q�� spanfv�� �wg� but this was much more complicated and the results were not better�
To solve this problem� we need the following two lemmas�

Lemma ���� Let M be symmetric� Consider the problem

�r � arg minfkM � rrTk�F � r � RNg� s�t� rTy � ��

If My � � then �r is the eigenvector of M 
 corresponding to the largest eigenvalue of
M 
 with the norm equal to square root of this eigenvalue�

Proof� De�ne Lagrangian function

L�r�  �
�

�

���M � rrT
����
F

�  rTy �
�

�

�
kMk�F � � rTMr � jrj�

�
�  rTy� �����

A local minimizer �r satis�es the equation

�L
�r

� jrj�r �Mr �  y � �� �����

which gives  � �rTMy � jrj�rTy��a � � by assumption� thus Mr � jrj�r by ������
From ����� we obtain

L�r�  � �kMk�F � jrj���� �����

therefore eigenvector r should correspond to the largest eigenvalue equal to jrj�� �

��



Lemma ���� The nonzero eigenvalues of matrix M � uuT � vvT have the form

� � �juj� � jvj��� 
q

�juj� � jvj���� � �uTv��

If uTv � �
 then Mu � juj�u
 Mv � jvj�v� Otherwise
 if uTv �� �
 then the eigenvector
corresponding to the largest eigenvalue �� of M can be written in the form

�uTvu� ��� � juj�v or ��� � jvj�u � �uTvv� �����

Proof� Denoting by r the eigenvector corresponding to the nonzero eigenvalue �� we
have

�uT ru � �vTrv � �r� �����

Multiplying this by u� v� we obtain the system

uTr�juj� � � � vTr�uTv � ��
uTr�uTv � vTr�jvj� � � � ��

�����

Determinant of this system is zero� since at least one of values uT r� vTr must be nonzero
by ����� and � �� �� This leads to equation �� � ��juj� � jvj� � juj�jvj�� �uTv� � �
with roots

�juj� � jvj��� 
q

�juj� � jvj���� � �uTv� � juj�jvj��
which can be rearranged to the desired form� The rest readily follows from ����� and
������ �

Now we turn back to problem ������ The two largest eigenvalues of M� are

���� � �jv�j� � j �wj���
q

�jv�j� � j �wj���� � �vT� �w�� �� � �� � � �����

by Lemma ��� and q� �
p
�� q��jq�j by Lemma ���� where the eigenvector q� of M�

corresponding to �� can be obtained by using Lemma ���� Note that it is better to
calculate the �rst form in ����� for jvj � juj and the second one otherwise� because
then the term� which we add to the square root term in the corresponding formula for
�� � juj� or �� � jvj�� is positive�

Since kM��q�qT� k�F � kM�k�F�jq�j� � ������������ � ��� by ����� and Lemma ����
we should choose parameters of update ���� in such a way to make �� as small as
possible� but the following theorem shows that the problem is more complicated�

Theorem ���� Function ���� is increasing for � � ��

Proof� Denote � � j �wj� � jv�j�� � � vT� �w� Since dv��d� � �� d �w�d� � �w�����
dj �wj��d� � j �wj��� and d�vT� �w��d� � �vT� �w���� one has by Lemma ��� for vT� �w �� �

������� � j �wj� � �j �wj� � jv�j�j �wj� � ��vT� �w�q
�j �wj� � jv�j�� � ��vT� �w�

� j �wj� � �j �wj� � ���p
�� � ���

�����

��



and ��� � � when the numerator �j �wj� � ��� is negative or zero� Otherwise� we can
equivalently multiply ����� by the positive number j �wj� ���j �wj� �����

p
�� � ��� to

obtain on the right side

j �wj����j �wj� � ����j �wj� � ���

�� � ���
� ���

j �wj���j �wj����
�� � ���

� ���
jv�j�j �wj���vT� �w�

�� � ���
� �

by the Schwartz inequality� It remains to prove the assertion in case vT� �w � �� But
then �� � jv�j� or �� � j �wj� by Lemma ��� and again ��� � � holds� �

Since �w � � for � � �� one has ���� � �� Thus Theorem ��� shows that small
positive values of � should be chosen 	 but not too small� because the shifted DFP
method �� � � is not e�ective� In this situation� it is useful to know ������ Denoting
�w � �w�

p
�� it readily follows from ����� that ����� � j �wj� � �vT� �w��jv�j� for v� �� ��

����� � � otherwise� It follows from ����� that ����� is close to zero �i�e� vectors v��
�w are almost proportional when e�g� ���� is close to zero�

Surprisingly� we also obtained very good results when we tried to choose simply
q� � �w� Then we have the shifted Broyden update ���� with adding term �v�vT� ���a���
matrix v�v

T
� seems to have similar properties as �as� bHy�as� bHyT in case of the

Broyden class� see ���� Note that

v� � as� bHy � 

�
�as� �bHy � �aBs� �by

�
�

A method nearest to the Broyden class

The Broyden update� see ���� can be written in the form� similar to ����

�

�
HB
� � H �

�

�

ssT

b
� HyyTH

a
�
�

a

�
a

b
s�Hy

��
a

b
s�Hy

�T
� �����

Denoting �q� � q��
p

�a�� and M	 � ����
�
HB
� � �A� � 
�I

�
� �q��qT� � where A� is given

by ������ we will seek to �nd �q� satisfying the following problem

�q� � arg minfkM	 � qqTk�F � q � RNg� s�t� qTy � �� �����

It follows from ����� and ����� that

M	 � ��I �
�

�

�
ssT

b
� �s�sT

�b

�
�
AyyTA

�a
� HyyTH

a
�
�

a

�
a

b
s�Hy

��
a

b
s�Hy

�T
�
v�v

T
�

�a��
�

where �� � 
 � ������ Using identities

ssT

b
� �s�sT

�b
� �

�
yyT

�a
� �a

r�r
T
�

b�b

�
�

AyyTA

�a
� HyyTH

a
� 


�
�a
r�r

T
�

a�a
� yyT

�a

�
�

where r� � s� �b��ay� r� � Hy � �a��ay � Ay � ��a��ay� we have

M	 � ��

�
I� yyT

�a

�
� �

�

�

r�r
T
�

�b
� 
�a

r�r
T
�

a�a
�
�

a

�
a

b
s�Hy

��
a

b
s�Hy

�T
�
v�v

T
�

�a��
� �����

��



To solve problem ������ we utilize Lemma ���� First we readily deduce from �����
that every eigenvector of M	 is a linear combination of vectors s� Hy� Bs and y� Since
M	y � � by ������ y is the eigenvector corresponding to zero eigenvalue� thus any
eigenvector corresponding to nonzero eigenvalue is perpendicular to y and therefore
belongs to

P �
n
r � r � spanfs�Hy�Bs� yg� rTy � �

o
� spanfr�� r�� r	g�

where r	 � Bs � ��b��ay� Let Z be a matrix with i columns� � � i � �� creating an
orthonormal basis in P �we still suppose �� �� �� which contradicts r� � r� � �� Then
ZTZ�I and Lemma ��� gives M	�q�� j�q�j�q� and �q��Zh for some h�Ri� which yields

ZTM	Zh � jhj�h� �����

Since j�q�j � jhj� we will calculate the eigenvector h of ZTM	Z� which corresponds to
the largest eigenvalue of this matrix�

To construct a type � update� we �rst calculate vectors r�� r� and r	� orthonormalize
them� create symmetric matrix ZTM	Z and calculate its eigenvalues and eigenvectors�
Denoting �j � j � �� � � � � i� eigenvalues of ZTM	Z arranged in descending order and h�
the eigenvector corresponding to ��� we calculate

q� �
q

�a�� �q� �
q
���a�� Zh��jh�j �����

and then p� and p�� using ������ In this connection� we have good experience with
the Jacobi iteration method of �nding eigenvalues and eigenvectors� which can also
be utilized in the orthogonalization process to attain a high precision of results �if
the columns of Q are eigenvectors of matrix RTR� where R � �r�� r�� r	� then the
columns of RQ create an orthogonal system and have norms equal to the square root
of eigenvalues of RTR� Note that the computation time required by the Jacobi method
can be neglected for large N �

Since kZTM	Z�h�h
T
� k�F � kZTM	Zk�F �jh�j� �

Pi
j�� �

�
j ���� �

Pi
j�� �

�
j by �����

as in ������ we should choose parameters of the method in such a way to make
Pi

j�� �
�
j

as small as possible�

��� Global convergence

In this section we utilize the results obtained in Section ���� To establish global con	
vergence� we can directly use Theorem ���� If condition ����� is not satis�ed for the
chosen constant C� we use some other update which ful�ls the global convergency
conditions �see below�

Note that in case �� � �� when the particular methods described in the previous
section cannot be used� condition ����� is also satis�ed under the assumptions of
Theorem ��� and �k � �� k � �� This can be seen� observing that we use update
����A� � A � �����s�sT��b � AyyTA��a for �a �� � and ����A� � A � �����s�sT��b �
ABssTBA��c for �c �� � �we recall that �a��c � � by ����� and that j�sj���b � �������G�
�see the proof of Theorem ����

We will show that the situation can be even better than in methods described in
Section �� We denote �w the value

q
���
�
��a��b�s�Ay

�
as in Section ����

��



Lemma ���� Let q� � � �w��v� with ����� � �� Then the trace of matrix A� obtained
by using update ���� cannot be greater than the trace of A� obtained by using update
�����

Proof� One has

jq�j� � ��j �wj� � ���vT� �w � ��jv�j� � �� � ��j �wj� � ���vT� �w � �� � ��jv�j�
� j �wj� � jv�j� � j� �w � �v�j� � j �wj� � jv�j��

thus �
jq�j� � jv�j�

�
��� � j �wj���� � �

�����a��b�s�Ay
���� �

which gives the desired result� �

Theorem ���� The following three methods described in Section �� satisfy the as�
sumptions of Lemma �� with �� � �� � �� the method with direction vector derived
from the shifted Broyden class
 the method nearest to the shifted Broyden class and the
method with q� � �w�

Proof� In case of the �rst method� it follows from �����	����� that

� � �wTBs�
q

��� � � �wTBs�� � � ���
q

��� � � �wTBs��

As regards the second method� q� is the eigenvector of M� � �w �wT �v�v
T
� corresponding

to the nonzero eigenvalue ��� jq�j� � �� by Lemma ���� Then

q� �
�wT q�
��

�w �
vT� q�
��

v�� �� � �� �
� �wT q�� � �vT� q�

�

���
�

qT� q�
��

� ��

Proof for the third method is obvious� �

In Section ��� we described the hybrid globally convergent shifted VM method�
from which also limited memory globally convergent methods can be derived owing to
Theorem ����

��� Computational experiments

Similarly as in Section ���� the limited	memory VM methods were tested� using the
collection of relatively di
cult problems with optional dimension chosen from ����� ����
and ����� We have used � � � � �� m � �� for N � �� or m � �� otherwise� the
�nal precision jg�x�j����
 with � of the corresponding shifted Broyden class equal to
unit and the choice ����� of the shift parameter � in all iterations �except for methods
SBC and NBC� see below� For starting iterates we use the shifted BFGS method as
in Section ���� Results of our experiments are given in three tables� for N � ��� ���
and ����� where NIT is the total number of iterations �over all problems and NFV
the total number of function evaluations� �Fail denotes the number of problems which
were not solved successfully �usually NFV reached its limit�

The �rst six rows of tables give results for various methods described in Section ��
T� ! type � method ������ SBC ! the simple method �����	������ SNSBC ! the
simpli�ed variant of NSBC with q� � �w� NSBC ! the method nearest to the shifted

��



Broyden class� DVSBC ! the method �����	����� with direction vector derived from
the shifted Broyden class and NBC ! the method nearest to the Broyden class with �
and � obtained by quadratic interpolation�

For comparison� the last three rows contain results for the following limited	memory
VM methods with �� stored vectors for N � �� or �� vectors otherwise� RH ! the
reduced	Hessian method described in ���� BNS ! the method after ��� and STRANG !
the method based on the Strang formula� see ����� Note that methods BNS and
STRANG store pairs of vectors� here � pairs for N � �� and �� pairs otherwise�

Method NIT NFV Fail
T� ����� ����� 	

SBC ����� ����� �
SNSBC ����� ����� 	
NSBC ����� ����� 	

DVSBC ����� ����� 	
NBC ����� ����� 	
RH ����� ����� 	
BNS ����� ����� 	

STRANG ����� ����� 	

Table � �N � ��� �� problems

Method NIT NFV Fail
T� ����� ����� �

SBC ����� ����� �
SNSBC ����� ����� 	
NSBC ����� ����� 	

DVSBC ����� ����� 	
NBC ����� ����� 	
RH ����� ����� �
BNS ����� ����� �

STRANG ����� ����� �

Table � �N � ���� �� problems

Method NIT NFV Fail
T� ����� ����� 	

SBC ����� ����� 	
SNSBC ����� ����� 	
NSBC ����� ����� 	

DVSBC ����� ����� 	
NBC ����� ����� 	
RH ����� ����� 	
BNS ����� ����� �

STRANG ����� ����� 	

Table � �N � ����� �� problems
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