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1 Introduction

Variable metric (VM) methods, see [3], [9], for unconstrained minimization, are the
most popular iterative methods for medium-size problems. Starting with an initial
point z; € RY, they generate a sequence z; € R", k > 1, by the process z;,; =
Ty, + trdy, where d € RY is a direction vector and t; > 0 is a stepsize.

Our original intention was to develop a limited-memory VM method for nonsmooth
unconstrained optimization. We have tested many low storage methods, designed for
the smooth case, see [5], [7], [13], [1], [L1], but the results were disappointing. We were
hardly able to solve any of the tested problems.

To test these methods better, we abandoned the nonsmooth case. From now on
we assume that the problem function f : R — R has continuous second derivatives
on the level set {x € RN : f(z) < f(x1)} and denote fr = f(x1), gr = Vf(xr),
Sk = Xpy1 — Tk, Yr = Grr1 — g and G = span{gy, ..., g}, k> 1.

In this paper we investigate the line search methods with

dk = —Hkgk, S = tkdk, (11)

k > 1, where Hj is a symmetric positive definite matrix and the stepsize ¢, is chosen
in such a way that ¢, > 0 and

fer1 — fr < ertrgl dy, G de > eagl dy, (1.2)

k> 1, where 0 < 1 < 1/2 and 1 < &3 < 1.
The first important property of the line search method is the global convergence
defined by relation
liggglﬂgﬂ = 0. (1.3)

The following theorem, see [3], [9], characterizes the global convergence of the line
search method.

Theorem 1.1. Let the objective function f : RN — R be bounded from below and have
bounded second derivatives. Consider the line search method satisfying (1.1)-(1.2). If

o) o) TH 2
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then (1.3) holds.

The second important property of the line search method is the superlinear rate of
convergence defined by relation

lim [ — 2|/ |og — 2] = 0, (1.5)

where * is the limit of the sequence {z}32;. The following theorem, see [2], [3],
characterizes the superlinear rate of convergence of the line search method.



Theorem 1.2. Consider the line search method satisfying (1.1)-(1.2) and such that
ty = 1 whenever this value fulfils (1.2). Let vy, — a*, where x* satisfies the second
order sufficient conditions for the local minimum of f. If

Jim |(By = Gy )sil/|se] = 0, (1.6)

where G, = G(xy) is the Hessian matriz and By = Hk_l, then an index kg > 1 exists
such that t, =1, k > ko, and x, — =* superlinearly.

Condition (1.6) can also be written in another form. Since we can write y;, =
Jri1 — Gr = [fol G(ag 4 Esg)d€]sy, k > 1, and since x5 — a* implies s, — 0, one has
lyr — Grskl/|sk| < | fol Glag + Esp)dé — G(ag)|| — 0 (||.|| denotes the spectral norm,
unless explicitly indicated otherwise) and (1.6) is equivalent to

Jim | Brsk — el /[sk] = 0. (1.7)

We paid special attention to reduced-Hessian methods (e.g. [4], [5], [7], [17]) ini-
tially, because of some theoretical properties, significant for global convergence proof.
We give some modifications and improvements in Section 2, but only briefly, because
they affected our numerical results only insubstantially. During the seeking for a suit-
able limited-memory method we discovered a new family of VM methods, which we
describe in Section 3. We call it the shifted Broyden family, because of its close relation
to the well-known Broyden class, see e.g. [3]. We give the derivation of the new family,
description of particular methods, the global convergence theory, some conditions for
the superlinear rate of convergence and numerical results.

Section 4 is devoted to the related limited-memory methods. It contains theory,
practical aspects, description of particular methods, the global convergence theory and
numerical results.

2 Modifications of the reduced-Hessian method

2.1 Theoretical background

Let ¢ > 0, let A denote an N x N symmetric nonsingular matrix, let 7 denote an
N xm matrix, m < N, such that matrix (Z, W) is orthogonal (which yields Z7Z = I)
for some N x (N — m) matrix W, and let Py = range(7), P = null(Z7) and A =
{A: p€Pyqc Pt = Ap € Pz, Aq = (q}. Each vector p € RY can be uniquely
written as p = pz + pw, where pz € Pz, pw € P#.

Lemma 2.1. Let p € RN, g € Py. Then pz = ZZTp, pw = (I — ZZ0)p, Z7Vq = q.

Proof. Let g € P;. Then ¢ = Zu for some u € R™, thus ZT¢ = u and ¢ = ZZ74.
Let p € RY. From p = pz + pw and since py € Pz and py € PZ, we have ZZTp =
27 pg =pz,pw =p—pz == Z2Z")p. 0



Lemma 2.2. The following properties of A are equivalent:
(a) A€ A, (b) A7 e AT (c) A =AY,
where

A, =22YAZ7" + (I — 227). (2.1)
If A e ACZ then the reduced matriz ZT AZ satisfies (ZTAZ)™' = ZT A1 7.

Proof. (a) = (¢): Let Ae A%, pe RN, p=ps+pw. Then ASp = ZZT Ap, +
Cpw = Apz + Apw = Ap by (2.1) and Lemma 2.1, thus ACZ = A.

(¢) = (b): Let A = ACZ. Using (2.1), we obtain AZ = ZZTAZ,or 7 = ATV Z 7T AZ,
thus I = Z17 = (ZTA71Z)(ZTAZ). Therefore matrix ZTAZ is nonsingular and
(ZTAZ)™' = ZTA='Z holds. Moreover, the relation Z = A™*ZZT AZ implies A= 7 =
Z(ZTAZ)™" and if p € Pz then one has p = Zu for some u € R™, which yields
Alp = AV Zu = Z(ZTAZ) ' € Py If ¢ € P£, then Ag = (q by (2.1), thus
A™lg=("1q.

(b) = (a): Since we have proved (a) = (b), it suffices to replace A by A™%. O

Theorem 2.1. Let v( >0, 6, € R, p; € Pz, ¢ € Pz, e =1,...,n, n > 1 and suppose
that the matriz P = S0, 8;piql is symmetric, YA + P is nonsingular and A € ACZ.
Then yA+ P € A}C.

Proof. One has (YA+P) = ZZT(yA+P)ZZT +~((I-ZZ7) = yAS+ 30", Sipiq! =
vyA+ P by (2.1) and Lemma 2.1, thus yA+ P € A}C by Lemma 2.2. O

Theorem 2.2. Let () be an orthogonal m x m matriz, let Z' be an N x m' matriz,
m' < N, such that Py D Py and (7Y 7' = I holds. Then ACZQ = ACZ c AS,.

Proof. The first relation follows from (2.1), Lemma 2.2 and (ZQ)(ZQ)T = ZZT. Let
p € Pz,p=pzr+pw,q€ Pg and A € ACZ. Then ¢ € P# and Aq = (g. Since
Pz C Py, we have Ap = Apz + (pw € Pz by A € ACZ, thus A € A5, O

Theorem 2.3. Let Q be an orthogonal N x N matriz and A € AS,. Then QAQT € AEQZ.

Proof. By (2.1) one has (QAQT)EQZ =QZ7TQTQAQTQZZTQT +((I-QZZTQT) =
QAQT, thus QAQT € Aéz by Lemma 2.2. O

Utilizing this general theory, we denote by index k relevant quantities in iteration k.
In the principal variant of the reduced-Hessian method, see e.g. [4], the subspaces Py,
and G are identical for every k.

Suppose that the initial VM matrix is H; = (I € ACle and that H, € A%k. In
iteration k, we first replace Z by some Zyy 1, Pz,., D Pz, which yields Hy € A%Hl
by Theorem 2.2. Then we apply some Broyden VM update H, — Hy.1 (see [3], [9]),
which has the form Hyyy = y(Hp + 0% vipipr ), v > 0, v € R, p; € Pz, 1 <1<k
(every update can contain together with any vector p also Hyp or H; 'p by definition
A% and Lemma 2.2). Setting (x+1 = Y£Ck, one has Hypq € ASE+ by Theorem 2.1,

Zr41 Zr41
thus always Hj, € A%k, kE>1.



This property H € ACZ (omitting index k) is important, because then we can
equivalently replace H by Hg = Z(Z'HZ)ZT + ((I — ZZ7) in all computations
by Lemma 2.2, thus we can proceed with the reduced matrix Z7 H Z instead of H so
that we have all iterates the same (in the precise arithmetic). Moreover, we see from
equality ZT(H +épqt) 7 = ZTHZ 4+ 6(ZTp)(ZT¢)T that we can simply update reduced
matrix ZTHZ using reduced vectors ZTp, Z7q instead of updating matrix H using
vectors p, g.

2.2 Matrix damage caused by discarding some basis vector

The situation will be quite different in the limited-memory version of the reduced-
Hessian method. We suppose that A € ACZ and that we need to discard some column
z of the basis matrix Z = (Z, z). Note that Z is usually multiplied from the right by
some orthogonal matrix in advance (to adapt Z to stored vectors g;, or better to s,
see [5]), but this fact is not significant here and has no influence on validity A € A5
by Theorem 2.2.

Usually, only the reduced matrix ZZ AZ is formed, but we will investigate a mod-
ification of matrix A — A caused by the discarding of column z, with A€ ACZ, to

be able to utilize general theory. Naturally, we assume ZTAz = ZTAZ. Then one
has A = AC = z27"Az 7" + (I -2z = AC by Lemma 2.2 . Note that for

A= (T+Y0, &qiql, 7 > 1, the replacement A — A_ corresponds to the projection
gi — Z ZVq¢;, i > 1. The following theorems describe properties of matrix A.

Theorem 2.4. Let ¢ > 0 and suppose that A is positive definite. Then matriz A = ACZ
is positive definite and A € ACZ. If p € Py, then pl'Ap = pT Ap.

Proof. It follows from equality ZTZ = I that ACZ = (ACZ)CZ = ACZ = A, which implies
A€ ACZ by Lemma 2.2. Let p € RN, p = pz + pw, pz € Pz, pw € 772. We obtain

PP Ap=ptZ 2" AZ Z"p+(pT (I-22")p = pL Apz+C(pz+pw)Tpw = pLApz+(ph pw
by Lemma 2.1, which for p € Pz (i.e. pw = 0) yields the desired equality. Let p # 0.
Then the positive definiteness of A follows from p? Ap > pgApZ > 0 for py # 0 and

from pL Ap = Cmepm > 0 for pz =0, i.e. pw # 0. O
Theorem 2.5. Let ( >0, A€ A, Z =(Z,2) and A = ACZ. Then

A—A=wT + 207 + (o — C)ZZT, (2.2)
where w = ZZT Az, a = 2T Az. Moreover, one has Tr(A—zzl) =a—( and HA—AH% =

(o — ()* + 2|w|* (Frobenius matriz norm).

Proof. By Lemma 2.2 one has A = ZZTAZZT + ((I — ZZT) and using ZZT
270 4 2T gives (2.2). The relation Tr(A — A) = o — ( follows from Z7Z =
which implies w”z = 0 and |z| = 1. Observe that we obtain further ||A — A||%
=T+ 20T+ (o — )22l = 2l? + (o — )2

=~

O |

Note that we tested some possibilities of decreasing this matrix damage, without
substantial improvement of the results.



2.3 Basis vector adding strategies

Usually, the new basis vector z is formed and added to Z in iteration k, if |gw| > €alg|,
where we write ¢ = gry1 and €4 > 0 is an adding tolerance (typically e4 = 107*). Then
we set z = gw/|gw|. The main disadvantage is that the new vector can be left out,
while the old ones remain unchanged in the basis (sometimes even in many consecutive
iterations).

One way out from this situation is represented by the following strategy: when
lgw| < e4lg|, we sometimes discard some column z of Z = (Z,z) in advance to have
value |gw| sufficiently large, where |gw| = |g — gz|. In view of Z ZT = 277 — 22T and
2 € Pz we easily obtain |gw|* = |[g—Z Zg|* = |gw + (27 9)z|* = |gw|* + (27 ¢)?, which
can be advantageously utilized for the choice of z.

The following method of basis vector adding seems to be more hopeful, because we
always add the new vector to the basis. First we set z = ¢x11/|gr41| and determine
an orthogonal matrix @) as a product of plane rotations, for which vector (ZQ)*z has
the first m — 1 elements equal to zero. Denoting by 2/, + = 1,...,m the columns
of ZQ, we then set 2" = 2/ — (z12/ )z 1 z and 7 = (2),...,2 _, 2" /|z"], %) for

Y “m—1°""m
z0 0, Z = (2,...,2, _,,2) otherwise. Obviously (ZQ)7ZQ = I = ZT7 and
Pz D Pzg = Pz and we can pass from basis Z to Z by Theorem 2.2. Note that in
practice we leave out z/ not only when 2!/ = 0, but also when |2/ | < e4, similarly as
we leave out g1 in the usual method of basis vector adding.
Surprisingly, the plane rotations caused extreme growth of rounding errors here;
these errors were approximately the same, when we replaced the plane rotations by

Householder transformations, see [6].

2.4 Basis vector discarding using QR transformation

The choice of basis vectors to discard in this method should increase stability. The
discarded vectors are replaced by their projection (see Section 2.2). Since the algorithm
respecting the error analysis is rather complicated, we present only a simplified version.
Note that there are other ways how to increase stability, but this is very robust.

Let H=(I+UMUT, U= (uy,...,uy), m > 1, tank U > 0. Initially, we have
M = diag(&1, ..., Vi), Where uq, ... u, and &, ..., v, are computed using standard
VM updates, see [3], [9]. Using QR transformation (e.g. Householder transformation
with pivoting, see [6]), we can write

U:Q(];g;), (2.3)

where () is N x N orthogonal matrix, R is r X r nonsingular upper triangular matrix,
whose diagonal elements are arranged in descending order (which minimizes column
norms of (s, i.e. discarding errors, see below) and r € [1,m] is chosen so that (N —r) x
(m — r) matrix Cy could be neglected. Denoting U = Q(RT,0)T and P = R}, one
has Q(CT,0)T = Q(RT,0)TR™1C, = UP. Assuming Cy = 0, we obtain U = U(I, P) by
(2.3), thus we can reduce H to the form H = (I+U M U, where M = (I, PYM(I, P)T,
and continue in VM updating, which does not change this form of matrix H represen-
tation, as we see from relation i + vuu® = (I + (U, u)diag(M,v) (U, u)T.



We show that this neglecting (5 corresponds to the vector projection, caused by
some basis vector discarding, as was shown in Section 2.2. First we can define Z =
UR™" = Q(I,0)7, since obviously range(U) = range(Z) and Z*Z = (1,0)QTQ(1,0)" =

I. By (2.3), we now can write the corresponding projection in the form

I 0 I 0 R C, R Oy
ZZTU:Q(O O)QTU:Q(O 0)(0 CQ)ZQ(O 0 )

The advantages of this method are easy computing of discarding errors and good
stability, the disadvantage is the greater number of arithmetic operations in comparison
with the reduced-Hessian method; this number can be reduced using a suitable strategy
of choice r. Unfortunately, although the method can minimize the discarding errors,
these errors were in practice very soon too great to be neglected, i.e. numerical results
were not substantially better than in the reduced-Hessian method.

2.5 Methods without basis vector discarding

These methods are similar to the reduced-Hessian method except that the basis vector
discarding is replaced by an orthogonal transformation, which preserves VM matrices
eigenvalues and a certain number of direction vectors. We present only two versions:
the first one preserves the maximum number of these vectors and appears to be more
efficient, the second one preserves only the latest direction vector and seems to be more
advantageous for small number of basis vectors.

Let H € ACZ (see Section 2.1), where ( > 0, Z = (z1,...,2m), m < N. Initially, we
simply process the reduced-Hessian method until we need discard some basis vector.
Let g = gr41 and s = s, be the latest values of gradient and basic points increment (in
iteration k).

In the first version, we further suppose that we have the last increment vectors
matrix (indices of vectors s; are changed) S = (s1,..., s,,) such that ZTS is an upper
triangular matrix; this property can be easily achieved, see e.g. [7]. First we replace
matrix Z by 7' = ZQ1 = (21, .., 4,,) 2 (21, Z) such that 5?2{ = 0 (thus s; € Pz) and
3?22’ =0,1 < j <t <m, where (7 is an orthogonal matrix, product of plane rotations
(the first row of Z1'S is combined with the other ones). In this connection we correct
the reduced matrix according to relation (ZQ)TH(ZQ,) = QT (ZTHZ)Q;.

For gw # 0, where gw = g — Z Zg, we then set z = gw/|gw|, Z = 2] otherwise.
Further we set v = 2z, —z and Qy = I — 2vvT/|v|? for v # 0, Q; = [ otherwise,
and replace H by H = Q,HQT; it can be achieved by replacing Z’ by Q,Z', without
changing the reduced matrix (7)1 HZ' = (Q,7) 1 (Q.HQT)(Q27"). Obviously, it holds
Q2Z = Z in view of ZTv =0 (thus also Q2s; = s, j > 1). Combining this with

(21 — E)TZ’ B 1— 2Ty B
|12/_2|21(21_Z):Zi_2 1/(21_2)227
1

one has Q27" = (z,25,...,2). Lastly we replace Q27" by Z, = (2},...,2,.,2) =

’7m 277m?
()27'Qs5 for some orthogonal ()3 and again correct the reduced matrix. It is easy to see

that H € ACZ+ by Theorem 2.2 and Theorem 2.3.
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In the second version, we only set H = QHQT and Z, = QZ, where @ is an
orthogonal matrix, such that ¢ € Pz, , Qs = s and that the angle between g and Qg
is minimized, see Lemma 2.3 (if g € Pz, the choice ) = [ is suitable). Again we have
H ¢ ACZ+ by Theorem 2.3.

Finally, in both these versions, we update H to H,, or equivalently Z_{HZ.F to
Z_{H_|_Z_|_ (see Section 2.1). Obviously, for update belonging to the Broyden class,
see [3], [9], one has H, € ACZ+ by (1.1) and Theorem 2.1 and we can go to the next
iteration.

Lemma 2.3. Let s € Pz, s #0, g € Pz and Q = I — 2vvT /|v]?, where v = gw — 0wy

with wy = g7 — (g"s/|s*)s and 0 = |gw|*/ (Jwz|* + |wzl\/lwz 2 + lgw]?) for wz #0,
v = g — as — 35 otherwise, where 3% = (|s]*|g]* — (s79)?)/(|s[*|3]* — (s75)?), a =
(sTg — 3sT8)/|s|? and 3 € Py is some vector, linearly independent of s.

Then orthogonal matriz () satisfies Qs = s, g € Poz and v mazximizes quantily
g Qg/lg|?* subject to these conditions.

Proof. The condition g € Pgz is equivalent to Qg = QTg € Py. Let Qg = ¢ for some
q € Pz. Then [¢] = |Qg| = |g| and ¢ = g — 2(g"v/[v[*)v. Since ¢ # g by g & Pz, it
must be g7v # 0 and v is proportional to ¢ — ¢; we can set v = ¢ — ¢. On the other
hand, let v = g — ¢ for some ¢ € Py such that |¢| = |g|. It is easy to see that Q¢ = q.
The condition Qs = s is equivalent to v’s = 0; a general solution of this equation
can be written as v = M(g —p), M = I — ssT/|s|*, p € RN. Denoting u = Mp and
w = Mg, this yields v =w —u. Since¢g=g—-—v=u+g—wand w—g= Mg — g is
proportional to s, one has v € Pz. Observing that Ms = 0, this gives 0 = u’s = w’s,
thus 0 = u!(w — ¢g) = wl(w — g). Combining it with ¢ = v — (w — ¢), we get
gl = ul? + Jw— gJ? = Jul? + (|0 — g + [w]?) — Jwf? = [ul? + lgI?  |’. Consequently,

the condition |q| = |¢| is equivalent to |u| = |w|.

We want to minimize 2|g|*(1 — ¢"Qg/191*) = 2¢"(9 — ¢) = lg — ¢* = |u — w|?
under the conditions g € Pgz and Qs = s examined above. By u € Pz and |u| = |w)|
we obtain |u — w|? = |ul? — 2ulwy + |wz|? + [ww]? = (Jw| — |wz])?* + 2(|ullwz| —
ulwyz) + |ww|?, which is for wy # 0 minimized, when u is proportional to wy, i.e.
u = (Jw]/|wz])wz by Ju| = |w|. Since wy = Mgy = g7 — (¢g7s/|s]*)s and ww = gw,

we obtain v = w — u = ww + wz — (|w]/|wz))wz = gw — Owz with § = |w|/|wz| —1 =

(v]wz|? + lgw|? = |wz])/|wz]|, which can be rewritten in the desired form.

If wy =0, the quantity |u — w| = v/2|gw| is independent of u or ¢q. If we then set
v=g—q=g— as— 33, the conditions |¢| = |g| and vTs = 0, equivalent to g € Pgz
and s = s, give the desired relations (since we have two conditions, we need two
parameters; note that we cannot choose g7 as §, because wz = 0 implies that gz is
proportional to s). O

It is interesting that numerical results were comparable with the reduced-Hessian
method, in spite of the VM matrix damage caused by the orthogonal transformation.



3 Shifted variable metric methods

Variable metric methods, see [3], [9], use symmetric positive definite matrices Hy,
k > 1; usually Hy = [ and Hgyq is obtained from v Hy (7, > 0 is a scaling parameter)
by a rank-two VM update to satisfy the quasi-Newton condition (in generalized form)
Hiy1yr = orSk, where pp > 0 is a nonquadratic correction parameter (see [9]).

In shifted VM methods, matrices H; have the form

k > 1, where (;, > 0 and Aj are symmetric positive semidefinite matrices; usually
Ay = 0 and Agyq is obtained from ~pAp by a rank-two VM update to satisfy the
shifted quasi-Newton condition

Apt1Yr = 065k, Cog1 = OkO, (3.2)

where
gk = Sk — OrYk (33)

and o > 0 is a shift parameter. Obviously, relations (3.1)-(3.3) imply that matrix
Hy 4 satisfies the quasi-Newton condition Hyy1yr = 0kSk.
In the subsequent analysis we use the following notation

ar =yt Hyyr, @ =yl Apyr, ax = yiye, bn = srys, by = 3iyy, By = Hi',

k > 1. To simplify the notation we frequently omit index & and replace index k + 1 by
symbol +. Although we use the unit values of 45 and p; in almost all cases, we will
consider also non-unit values in the subsequent analysis as it is usual in case of VM
methods (see [9]).

In this section we concentrate on shifted analogy of the Broyden class, see [3], [9],
which we call the shifted Broyden family. Involving the scaling and the nonquadratic
correction and using the same argumentation as in standard VM methods, we can write

the shifted VM update for b > 0 (which implies § # 0, y # 0) in the form

1 35T AuuTA = a T
~Ay :A+£2—L+Q(35—Ay) (gé—Ay) (3.4)
¥ 0 b a a \b b

(if a = 0, i.e. Ay = 0, we simply omit the last two terms, because their limit value
is zero for Ay = limg_o&q, @ = limg_o &gy, ¢'y # 0), where 7 is a free parameter
(verification of ALy = ps for this update is straightforward). There are two important
special cases. For n = 0 we obtain the shifted DFP update, for n = 1 the shifted BFGS
update
L prp 033" Ayy™A 1 pras (9
S EATT R At

) 38T syTA+ AysT
b b '

o~ Ql



3.1 Basic properties

Theorem 3.1. Let A be positive semidefinite, n > 0 and ca < b. Then matriz Ay
given by (3.4) is positive semidefinite.

Proof. Since oa < b, relation (3.3) implies b=3Ty = b— ot > 0 and the positive
semidefiniteness of matrix A, follows for @ = 0 from (3.4), otherwise from the quasi-
product form of (3.4)

L, = (1 _ (\fs + #Ay)yT)A(I _ y(\gﬁs + #Ay)T) +§§§T, (3.5)

~y

which can be readily verified, using straightforward arrangements and comparing cor-
responding terms. O

Note that there are other useful quasi-product forms of (3.4), e.g.

1 B T T 0 776 T
;A+—( —py )A(J—yp )+;w2a2Ayy A4, (3.6)
1 ~
p:ig+_(1_ﬁ)Ay, w =1+ (o/7)b/a.
b a w

which becomes a product form for n = 0 and which can also be easily verified.

From now on we will suppose that > 0. In view of Theorem 3.1, the shift
parameter should satisfy inequality 0 < o < b/a. Therefore, it is advantageous to
introduce relative shift parameter p = oa/b € (0,1) and by (3.3) we can write

o= ubl/a, b=3ly=b—ca=>b(1-p). (3.7)

Note that if we set v = (;/( (this case is however not so efficient as that with
v = 1) and use Woodbury formula (H + UZWUT)_1 =B—-BUM™" + UTBU)_IUTB
as in [9], we can derive update relation for By from (3.4), because then by (3.1)

1 1 1 1
—Hi=—((4I+A)=CI+-AL =H+ (—A+—A).
Y Y Y Y

3.2 Determination of the shift parameter

Determination of the shift parameter o (or u) is a crucial part of the shifted VM
method. Since (4 = po by (3.2), the choice of o influences the lowest eigenvalue of
matrix H,. Therefore o should not be close to zero when matrix A is not sufficiently
positive definite. On the other hand, the norm of A, can increase explosively when o
tends to b/a (see below).

In the simplest shift parameter determination strategy the value of p remains the
same in all iterations. The values from the interval

0.20 <y < 0.25 (3.8)

(e.g. the choice y = 0.22) are suitable in this case. If g > 1/2, then the convergence is
usually lost (the shifted DFP method is an exception). In spite of the fact that we do
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not know all causes of this phenomenon, our following restricted analysis of the shifted
BFGS method with A = UU?, where U is a rectangular matrix, gives a useful formula
for determination of parameter .

Lemma 3.1. Denoting v = pu/(1 — p), ¢ = vi/1 —0*/(a|s]?), V = I — sy /b and
V = 1—35yT/b, there holds |V =VI||/|IV|| = 6. Moreover, let vector u € RN, yTu # 0,
be scaled to satisfy y"u =b. Then

u— 5|

Jul

G+ st <o =204, (3.9)

Proof. One has

oy =Sy = bfayy’ — (1= syt _ V(SyT B ny) _ 3(8 B éy)yT
b(1 — 1) b a b p

by (3.3) and (3.7). Observing that b < a|s|* by the Schwartz inequality and that
Vs — (b/a)y|* = v3(]s]? — b*/a) = |s|*¢?, this implies

IV =VI?= (V= V)V = V)| = (v/b)* |s = (b/a)yl* lyy"|| = ¢%als|*/b".

Matrix VTV has one zero eigenvalue, N — 2 unit eigenvalues and Tr(VIV) =N -2+
s|?/0%. Thus ||V||* = a|s|?/b%, which yields the first assertion.
Let yTu = b. By (3.3) and (3.7) we get Vu=u—3/(1 —p) = u—s—v[s—(b/a)y].

Since we have v|s — (b/a)y| = ¢|s|, the rest follows from inequalities

a

Ols| + |u —s| < o(Jul + [u = s[) + [u = 5] = glu| + (1 + )|u — ],
Pls| = lu—s| = (lul = |u —s]) = |u—s| = ofu[ = (1 + ¢)[u—s]. -

Now we turn back to the shift parameter determination. Value ||V —V||/||V||, equal
to ¢ by Lemma 3.1, represents a relative deviation of V from V. The shifted BFGS
update Ay = AVUUTVT + 9357 /b, see (3.5), multiplies columns of U by \/7‘7 In
the BFGS update, see [9], which can be written in the form H, = vV HVT 4 pssT /b,
multiplication by /7 V instead of \/7‘7 is performed. Thus if A ~ H and ||A]| is
great compared to HQ§§T/?) — 0331 /b|| and if we want to have the shifted BFGS and
the BFGS update not too different, ¢ should not be great.

When we chose p close to unity in our numerical experiments, we often found a
strongly dominant column of U (usually the first one), whose norm increased steadily.
Denoting u the dominant column, u = (b/uly)u for uly # 0, we have s ~ {u for
some ¢ € R by (L.1), thus s ~ @ and by (3.9) we get |[Vul/|u| = |[Vu|/|a] ~ ¢.
Therefore for \/7¢ > 1 we can expect exponential growth of the norm of this col-
umn and probably also convergence loss. We can reason similarly in case of a clus-
ter of dominant linearly dependent columns of U. Setting /y¢ = 1, we obtain

o= 1/ (1 + /Ay 1 — 0%/ (a 3|2)). This value can serve as a reasonable maximum

of p and should be multiplied by coefficient £ > 0 with the properties
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o if UTy = 0 then ¢ = 1 because VU = U and it is not necessary to decrease 4,

e if a = |UTy|? > 0 then ¢ < 1 to moderate possible convergence loss.

The choice ¢ = \/1 —aja = \/C&/a represents a simple possibility how to satisty these
conditions. Moreover, this value of p effectively damps down a possible growth of ||U]]
- better than the scaling parameter v in py above; for this reason we omit v in py.
Multiplying g1 (without v) by €, we obtain finally
l—a/a

ILI/ _=
L+4/1=02/(a

. 3.10
" (3.10)

This value of p has the following interesting property.

Theorem 3.2. Let A =0. Then matric Hy = (41 + Ay with value (3.10), where A
is given by (3.4), is optimally conditioned.

Proof. If A = 0, formula (3.4) (where we omit the last two terms) gives H, =
(+1+ 0357 /b, which yields H' = (1/¢)[I — 357 /(ob+ |5]*)] by (3.2). Thus |H4|| =
olo +13[7/0), [[HZY = 1/¢ = 1/(e0), ry = |Hy|[|HF = 1+ [3]*/(0b). By (3.3),
(3.7) and denoting again v = /(1 — p), we obtain

~ ~ 2 N 2
a |s—p(b/a)y a b
st T, | T e Ut
I 2 b )_ e (ﬁ 2_)
_ 1+V62(|3| (0P = 202+ 20)) = 14 s + (v +2) (s = 1),

which gives the equation for the local minimum of function x4 (v)

a, 1
gl (1-7) =1
with the positive root v = 1/4/1 — b%/(als|?). By a = 0, this leads to (3.10). O

Formula (3.10) gives good results with update (3.4) without any corrections, with
the exception of the first five to ten iterations, when it must be corrected, e.g. in the
following way

{4 = min (maX (x/l — a/a/(l +/1—=0%/(a 5|2)) ,0.2) ,0.8) ) (3.11)

because our reasoning leading to (3.10) was simplified and the shifted VM methods
effectivity is very sensitive to the shift parameter determination in the first iterations.

3.3 The shifted DFP method

It Ay =0and v, = pr =1, k > 1, then the shifted DFP method with

~ T T
515 Aryryy Ax
Ak-l—l = Ak —I_ ~ k - — k .
by, ap

kE>1, (3.12)
has an interesting property.
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Theorem 3.3. Consider the sequence of matrices Ay, k > 1, satisfying (3.12) with
A1 =0 (if k =1 we omit the last term) and a, # 0, k > 2. Then
5T
Aﬂﬁﬁghkzy (3.13)
k

Proof (by induction). For & = 1, (3.13) holds by assumption. Suppose that (3.13)
holds for index & — 1. Then

Sk-187, SE_1¥k .
Ay = ———yp = —= Sk-1,
br—1 br—1
SO B
A B B bt (Biaws)® . o _ S
k41 = —= = — — = k—18k—1 = —=—
br—1 by, (S b, by,
by (3.12), thus (3.13) is proved for index k. O

Consider now that the line search is perfect, i.e. 5% gry1 = 0, k > 1. Then

~T T T T
55 9k+1 = S5 Gkt — Crp1¥p Ght1 = —Cr1¥p Gh1s

k> 1, by (3.2) and (3.3). Thus using (1.1), (3.1) and (3.13), we can write for k& > 1

< T
SES
diy1 = —Hip1 901 = —Cop1 041 — —2grg1 = Crpr <—9k+1 +

Yigh )
—SL ).
br

k

(3.14)

We can interpret (3.14) as the shifted conjugate gradient method.

It Ay = 0 1is chosen, regardless of whether v, = g = 1 holds, & > 1, the shifted
DFP method for a; # 0, k > 2, always generates a sequence of matrices of rank
at most one. This follows from A, = (91/??1)§1§1T and from the product form of the
shifted DFP method (3.6)) for n = 0, which shows that the rank of the updated
matrix cannot increase. Therefore, this method does not accumulate information from
previous iterations sufficiently, which probably causes its lower efficiency.

Very surprising results were obtained with the modified shifted DFP method which
uses a modified quasi-Newton condition

A-I-y =s+ flAyv
where 0 < £; < v (suitable values are & < +/2). In this case, the update has the form

1 55T 1
SA = A4 2T AT AL @:—Q—é) (3.15)
gl 7 b a gl
This method can be much more efficient than the standard shifted DFP method, as
shown in Section 3.6.

The choice & =7(1—a/a), i.e. &a=1/a is another interesting variant of the method.
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3.4 Global convergence
In this section we use the following assumptions.

Assumption 3.1. The objective function f : RN — R is uniformly convex and has
bounded second derivatives (i.e. 0 < G < MG(2)) < AMG(7)) < G < 0o, = € RY,
where A(G(x)) and X(G(z)) are the lowest and the greatest eigenvalues of the Hessian
matriz G(x)).

Assumption 3.2. Parameters gy and uy, of the shifted VM method are uniformly pos-
itive and bounded (ie. 0 < p < gp <7 <00, 0 < pu <y <FE <1 k2>1)

Lemma 3.2. Let s # 0, the objective function satisfy Assumption 3.1 and parameter
satisfy Assumption 3.2. Theny #0,5#0,b>0,b6>0,a/bc[G,G] and b/|s]* > G.

Proof. Setting G' = [ G(z + &£s)d¢, one has y = g4 — ¢ :NGIS and Assumption 3.1
gives b = [ sTG(x + €£s)sdé > 0, which yields y # 0. Thus b > 0 by Assumption 3.2
and (3.7), which implies & # 0. Furthermore, setting ¢ = (G)'/2s, we obtain

&_
b sTy  ¢7q

T TGI 1 TG -
v'y _ g q:/q ($T+€8)qd£€[Q7G]

0 q9°q
by Assumption 3.1. Similarly, b/|s|? = sTG's/sTs = [ sTG(x 4 €s)s/sTsdé > G. O

Theorem 3.4. Let the objective function satisfy Assumption 3.1. Consider any shifted
variable metric method satisfying (3.1)-(3.3) and Assumption 3.2, with the line search
method fulfilling (1.1)-(1.2). If there is a constant 0 < C' < oo such that

TI’Ak_H S TI’Ak + C, k Z 1, (316)
then (1.3) holds.

Proof. Since a/bc [G, G

] by Lemma 3.2, Assumption 3.2 implies (41 € [(, (], k > 1,
by (3.2) and (3.7), where ( = o

i/ G and ¢ = o7/G. Using (3.16), one has
[ Hysr || < CGor + [App ]| S 4 TrAp S C+ DA +CE<C(k+1), k> 1,
where C' = max(¢ + TrA;, C). By (3.1), this gives

costp, & (O Ho)®  githgegege o L 0
ghoegt Higr — gigr gfHige = IHi = Ck™ 7
Thus 372, cos?0;, = oo and (1.3) follows from Theorem 1.1. O

Theorem 3.5. Let the objective function satisfy Assumption 3.1. Consider the shifted
variable metric method (3.4) satisfying Assumption 3.2 and v, < 1, k > 1, with the
line search method fulfilling (1.1)-(1.2). If there is a constant C' < oo such that

aj .

3 — Ay
by,

, )

m < C%m? + 1 Awl? k>, (3.17)
k

then (1.3) holds.
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Proof. From (3.4) and (3.17) we obtain (if a = 0 we omit the two terms containing a)

LA, = Ted + €i|§|2 Zagl+ 2|25 - Ay‘ <A+ 21+ S

~ alb vb b

Since [5* = [s]* — (2 — p)b?/a < |s]* by (3.3), (3.7) and Assumption 3.2, we have
b/15)> > (1 — w)b/|s|* > (1 — m)G by (3.7), Assumption 3.2 and Lemma 3.2. Using

inequality v < 1, we obtain

E o+C

ey
which implies (1.3) by Theorem 3.4. O

TrA; <ATrA+ = | |2+7—| P<TrA+ (o+C)= <TrA+

e

Theorem 3.5 forms a basis for the hybrid globally convergent shifted VM method.
We choose a constant €' and parameters 1, k > 1, which satisfy (3.17). Note that we
can always choose n > 0 (the choice of 5 is irrelevant for @ = 0). Since choice n = 0
satisfies (3.17), the shifted DFP method is globally convergent. Also the modified
shifted DFP method with & > 0 is globally convergent owing to Theorem 3.4 and
b/|3]> > (1 — @G (see the proof of Theorem 3.5). In this connection, our numerical
experiments show that these methods are less sensitive to the choice of parameter o.

Formula (3.17) shows that the uniform boundedness of a/bis crucial for the global
convergence. If a/b is bounded, we can choose C' in such a way that a/b < (. Then

Cla/b)3]* + Ay _ [(a/b)3° + |Ay® _ I(a/b)3]* + Ay 1
(a/b)s = Ay[> ~ la/b)s — Ayl* ~ 2(|(a/b)3* + |Ayl?) 2

so a reasonable value of  can be used.

3.5 Conditions for the superlinear rate of convergence

Lemma 3.3. Consider any shifted variable metric method satisfying (3.1)-(3.3) and
Assumption 3.2, with the line search method fulfilling (1.1)-(1.2) and such that t), =1
whenever this value satisfies (1.2). Suppose that xy — «*, where x* satisfies the second
order sufficient conditions for the local minimum of f (i.e. g(a*) = 0 and G(x*) is
positive definite). If |og — (x| — 0 and

Jim |3 — Agyel/[y| = 0,
then an index ko > 1 exists such that o, =1, k > kg, and x, — ™ superlinearly.

Proof. If &* satisfies the second order sufficient conditions for the local minimum of f,
then Assumption 3.1 is fulfilled in a neighbourhood of «*. Let 1, k > k¢ be sufficiently
close to #* so Assumption 3.1 is satisfied. Then (; > ( (see proof of Theorem 3.4) and

| Brsk — yr| < Bl [sk — Hiyr| < sk — Hiyr|/C = 55 + (0% — Co)yre — Aryrl /€
by (3.1) and (3.3). Since |yx| = |f01 Gz + Esp)spdé] < G|sy|, we obtain

B — s — — A sp — A
¢ Sk Y| < 15k + (o — Ck)y kY| < |3k kY| Flog — Gl — 0
Glspl || ||
and we can use Theorem 1.2 with condition (1.7). O
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Theorem 3.6. Let the assumptions of Lemma 3.3 be satisfied. Consider the shifted
variable metric method (3.4) with v, = o), = 1 and 9, >0 > 0. If

a ag .
b/ \ by,

and TrAy < C, k > 1, for some ' < oo, then the shifted variable metric method
converges to x* superlinearly.

Proof. Using (3.4) with v = p = 1, we can write (if @ = 0 we omit the last two terms)

~|2 A 2
Ted, —Tra = B0 1AvE
b a a

which can be rewritten in the form

N N_A 2 1 _ _
TeA, — TrA = g2 (u) 4= (1 _ n+n3) (i|g|2 _ |Ay|2)
b |y a b/ \b

fora # 0, or TrAL —TrA = (|5—Ay|/|y|)? a/b otherwise. Now application of Lemma 3.3
and assumption (3.18) completes the proof if we realize that nafb > na/b > nG by
(3.7), Assumption 3.2 and Lemma 3.2 and that boundedness of {TrA;} together with
TrAg, — TrAp >0, £ > 1 imply TrAg; — TrA; — 0. O

The conditions used in Theorem 3.6 are relatively strong. First, we require |0y —
(k| = [Ce1—Ck| — 0, which can be achieved by a suitable shift parameter determination
strategy. Secondly, matrices Ay have to be bounded. This condition is not necessary
for the global convergence. Third, the inequality (3.18) should hold.

Theorem 3.7. Consider the shifted variable metric method (3.4) with 77(?) —a) < b
(e.g. 1 = 1) and set o = a|s|*/b?* and B = a|Ay|?/(2ab). Ifa =0 or 3? < o — 1 then
(3.18) holds for any u € (0,1). Otherwise, if

L+ —at+1-F<p<l or 0<p<l—y/f—a+l-p, (3.19)

then (3.18) holds.

Proof. Since assumption 77(?1— a) < bimplies 1 — 1y +na/b >0, it suffices to examine
the inequality |Ay|* < |3]*@/b for a # 0. By (3.7) and (3.3) we have b = b(1 — ) and

b
)

Using these relations, we can write condition |Ay|* < 3|2 @/b as the following quadratic
inequality

2 b2 b2 b2
= [sl" = 2u=+ P = —(a=2u +4%).

a

|3 =

p'=2u(1 = B)+a 23>0,
which is satisfied if the discriminant is negative, i.e. 14+3? —a <0, or if (3.19) holds. O
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Note that @ > 1 always holds by the Schwartz inequality and that for @ > 1 (which
occurs when vectors s, y are linearly independent) we can always find p < 1 satisfying
the first inequality in (3.19).

It is very difficult to utilize the above conditions in general. One reason is that
(3.19) frequently gives values close to unit, which are unsuitable. Therefore our condi-
tions for the superlinear rate of convergence can conflict with the numerical stability or
with conditions for the global convergence. Nevertheless, the superlinear rate of con-
vergence appears in some cases. We have investigated this phenomenon (i.e. condition
(1.7)) numerically and found that approximately 10% of cases indicate such behaviour.
Moreover, the following computational experiments show a surprisingly good efficiency

of the shifted VM methods.

3.6 Computational experiments

The shifted VM methods were tested using a collection of 92 relatively difficult problems
with optional dimension chosen from [10], [12] and [15] (problems given in [10] can be
downloaded from http://www.cs.cas.cz/ luksan/test.html). We have used the
dimension n=>50 and the final precision |g(z*)] <107%. The results of our experiments
are given in three tables, where NIT is the total number of iterations (over all 92
problems), NFV the total number of function evaluations and NRS the total number
of restarts. ‘Fail’ denotes the number of problems which were not solved successfully
(usually NFV reached its limit). ‘Ratio’ denotes the number of iterations with n <1
(for hybrid strategy with controlled n). We chose o = v =1 for shifted VM methods.

The first row of Table 1 gives results for the shifted BFGS method with choice
(3.10) of the shift parameter g and corrections (3.11) in the first six iterations; this
choice is also used in the next tables. The next six rows demonstrate an influence of
the constant parameter y on the efficiency of the shifted BFGS method (the value 0.22
is in range (3.8)). We see that the convergence is lost when y > 1/2. The last four
rows contain results for the standard BFGS method with various scaling strategies:
1 — scaling suppressed, 2 — preliminary scaling (see [16]), 3 — interval scaling (see [9]),
4 — controlled scaling (see [8]). This table demonstrates the high efficiency of the
shifted BFGS method. It is much more efficient than the standard BFGS method
with usually used preliminary scaling. Better results were obtained only by using the
standard BFGS method with interval and controlled scaling. However, the convergence
theory is not yet developed for these scaling strategies (see e.g. [14]).

Table 2 gives results for various choices of parameter 5 (7 = 0 corresponds to the
shifted DFP method). We can see that the shifted DFP method is rather inefficient
(but better than the unscaled standard DFP method (DFP/1 in Table 3). The shifted
BFGS method is very efficient, although global convergence was not proved for it in
this paper. But experiments with the hybrid strategy described in Section 3.4 (in the
last three rows, C is the constant in (3.17)) show that value n < 1 appears rarely (for
C = 10 only in 1.12% cases). This fact shows that the shifted BFGS method is very
robust and reliable for practical computations.

The first five rows in Table 3 contain results for the modified shifted DFP method
(n = 0) with various choices of the relaxation parameters £; or & (see (3.15)). The last
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four rows contain results for the standard DFP method with various scaling strategies:
1 —scaling suppressed, 2—preliminary scaling, 3—interval scaling, 4—controlled scaling.
This table demonstrates that a reasonable choice of relaxation parameters (e.g. £ = 0.3
or {&; = 1/a) highly increases efficiency of the shifted DFP method. Moreover, the
shifted DFP method is much more efficient than the standard DFP method with usually
used preliminary scaling. Better results were obtained only by using the standard DFP
method with interval and controlled scaling.

Method NIT NFV NRS Fail

SBFGS | 11256 12178 -
po=0.22 | 12252 13992 6 -
p=0.32 112277 15093 3

po=0.42 | 12966 18429 4 2
pw =048 | 16044 28357 6 3
p=0.50 | 31388 65080 5 22

p=0.52 | 24669 103575 49 44

BFGS/1 | 14075 22238 14
BFGS/2 | 14939 16335 3 1
BFGS/3 | 9731 10963 2 -
BFGS/4 | 7912 9322 2 -
Table 1
Method NIT NFV NRS Fail Ratio (%)
n=0.0 | 46010 48237 92 8
n=0.5 | 13262 14096 3 -
n=1.0 | 11256 12178 1 -
n=15 | 11117 12410 5 -
n=2.0 | 11403 13137 5 1
C=0 12412 13383 2 - 11.61
=2 11612 12570 2 - 2.77
C =10 | 11373 12310 2 - 1.12
Table 2
Method NIT NFV NRS Fail

SDFP : & =0.0 | 46010 48237 92 8
SDFP : & =0.1 | 18707 19844 12 -
SDFP : & =0.3 | 15360 16726 71

SDFP : & =0.5 | 16315 19244 9 1

SDFP : & =1/a | 15393 16189 5 -

DFP/1 79464 83895 6 35

DFP/2 94608 96309 4 42

DFP/3 11836 15196 4 1

DFP/4 11836 14834 1 1
Table 3
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4 Limited-memory methods

All methods investigated in this section belong to shifted VM methods; they satisfy
(3.1)-(3.3) and (3.7) with (positive semidefinite) matrix Ay = UyU!, where Uy, k > 1,

is a rectangular matrix, and use the VM update
Appr = Vi AV (4.1)

k > 1, where V; has the form I + prqgf for the type 1 methods, or I+ phyl + pisl By,
where By = H ', for the type 2 methods. Thus we need to store only matrix Uy, which
can be updated using relation

Ur+1 = V7 ViU, (4.2)
k > 1. In the subsequent analysis we use the following notation
ar = yi Hyyr, bk = sfy, ¢x = s} Brsg, b = agey, — b,
ar = yi Axyr, by = st BeApyr,  ¢r = st BeAxBysg, 6, = apcp — b},
ar = Y3 Y, by = s} Bryr,

k > 1. Note that the Schwartz inequality implies é, > 0 and &, > 0. To simplify
the notation we again frequently omit index k, replace index k + 1 by symbol 4+ and
consider also non-unit values of 4 and g; in subsequent analysis as it is usual in case
of VM methods (see [9]).

The shifted VM methods presented in Section 3, particularly in the quasi-product

form (3.5), are ideal as starting methods. Setting U} = (\/ g/?ﬁ) in the first iteration,
every update (3.5) modifies U and adds one column 4/ 0/b s to Uy. Thus in this section

we will assume that the starting iterations have been executed and that matrix U has
m > 1 columns in all iterations.

The type 1 methods are simpler and have many interesting properties, but the
type 2 methods appear to be more efficient in practice. Note that the shifted DFP
method (see Section 3.3) can be an example of the type 1 method.

4.1 Type 1 methods
Setting V = I + pg’ in (4.1) one has

(1/7)As = A+ Agp" + pg" A+ (¢" Aq)pp’ . (4.3)

Denoting 7 = p’y, quasi-Newton condition (3.2) gives
w 2 (of)i—Ay = A+ (q" Ay + 74" Aq)p, (4.4)
wly = (o/nb—a = 7¢"Aq+2r¢" Ay. (4.5)

From (4.5) we obtain (¢f Ay + 7¢T Aq)? = (¢¥ Ay)? + ¢ Aq wl'y after rearrangement.
Denoting D = ¢¥ Ay + 7¢* Aq, we have

D= qTAy + TqTAq, D? = (qTAy)2 + qTAq wTy. (4.6)
Thus we can calculate vector p for given ¢ using formulas
T=(D—-q"Ay)/q"Aq,  p=(w—TAg)/D (4.7)
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by (4.4) (first we calculate D?, then 7 and p). Since D? > 0 must hold, (4.6), (4.5) and
(3.7) give the conditions (the inequality right side can be negative)

¢ Ag#0,  p<l- ﬁ (@—(¢"Ay)*/q" Aq). (4.8)

Note that @ > (¢7 Ay)?/q* Aq by the Schwartz inequality.

General type 1 method expression
Expression (4.3) can be written in another form. By (4.6) and (4.7) one has

Aq(w—7AQ)T+ (w—7Aq)q"A w—T1Aq)(w—1Aq)T
(w=r A" A gy (o= rdn(o—rdg]”

|
A A= (¢"Ay+7q"Aq)

Rearranging this and using (4.5), we obtain the following formulas

1 q" Aq wwT + ¢T Ay (Aqu + quA) —wly Agq" A
—A,—A = (4.9)
g bz
ww!  wly wy’ - yw?
T T T T T
qu( q' Ay )( q' Ay ) Aqq" A
— A A — .
pr \“F gTAq 1\ * gTAg q' Aq

In order to obtain the form closer to (3.4), the term ww! /wTy (which is (1/y)A; — A
for the shifted rank-one update, by analogy with the Broyden class, see [3]) in the
second formula can be written in the following way:

T T = = T
! Ay (G5 ay) (S5 ay)
wy b a a(o/y —afb) \b b

from which e.g. the following forms of the shifted BFGS formula can be derived

ww! 03

S

1 T 1 = = T T T T T
“A A= (ig—Ay) (ig—Ay) S (J—wy )SST( —&).
Y why  why \b b wly B2 wly wly

Note that we need not know vector ¢ for updating. All relations can be based on
the vector ¢ = UTq € R™. In that case we use only update (4.2), in the form

U—I— = ﬁ(U —I_quT )7

and rewrite the relations containing ¢ in corresponding way, e.g. D? = (yTUg§)?+|¢|*w?y.

Choice of vector parameter g

Effectivity of type 1 methods is considerably dependent on the choice of vector q. Good
results were obtained only for ¢ = Bs and ¢ = y. Since scaling of ¢ has no influence on
update (4.3), we choose ¢ = Bs+ 1y, ) € R. Then Aq = ABs+JAy =s—(Bs+vVAy
by (3.1) and

¢"Ay=b+va, ¢"Ag=c+200+ 0%, D?=(c+20b+9%a)bo/y—5 (4.10)
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by (4.6). The second condition in (4.8) has now the form (the right side can be negative)
Vo (5).T
pel-sg (6/4"Aq). (4.11)

A suitable value of ¥ can be obtained by comparison between the Broyden class
(see [3], [9]) and expression (4.9), where we set ( = o = 0 (in that case relation
(4.9) represents the Broyden update with A and § replaced by H and s). In view
of fulfilling the quasi-Newton condition, it suffices to compare only one term, e.g.
containing Hyy? H. The corresponding coefficient is (n — 1)/a for the Broyden class
and (¢T Aq — 20¢T Ay — 9*wly)/D? for (4.9). Using (4.10) and (4.5), we obtain

n—1 q" Aq — 20¢7 Ay — 9?wTy B c—9%bo/y (412)
a D? - (c+ 29b+ 92a)bp/y — &’ '
which can be rearranged in the form
n_ b+ (c+20b)o/~ (4.13)

b (c+20b+ 92a)bp/y — &

For the BFGS (n = 1) and the DFP (5 = 0) updates, relations (4.12) and (4.13) give

1
pros o [TE (1,5 i
0 2\e

It is interesting that the positive value of JB¥%3 gives very good results, while the

negative one is not suitable for type 1 methods. To calculate ¥ from (4.12)-(4.13), it

1s useful to set
X = (b/a) (L —n)/n.
Dividing (4.12) by (4.13), we obtain

__ Vho/y—c
YT bt (et 20h)e/y

This gives the quadratic equation 92 — 29y — x (v/o + ¢/b) — (v/0)¢/b = 0, which has
the roots

0= x £/ (x +7/0) (x +¢/b) (4.15)

for any y, excepting the values inside the interval with limits —y/p, —¢/b. Note that
the choice y = —v/p corresponds to the rank-one Broyden update, see [3].

An update based on the Broyden class

Any attempt to approximate the Broyden class is complicated for the type 1 methods.
Thus we present only one method, motivated by the BFGS update, with ¢ = Bs + dy.
From (4.7) we get

p=1[(o/7)s — (1 +79)Ay — TABs]/D. (4.16)
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Setting ¢ = o = 0 as above, we convert A to H and (4.16) to po = as + BHy, where
a=(o/y—7)/D, p=—(1+79)/D. Since the term of (4.3) (after rearrangement, with
A and p replaced by H and py), which contains Hyy® I, has coefficient 293 + 3% ¢T Aq
and corresponding coefficient is zero for the BFGS update, we choose g = 0, i.e.

1479 = 0. By (4.7) and (4.10) one has
0=1470=(¢"Ag— ¢ Ay +9D)/¢" Aq = (¢ + Vb +ID)/q" Aq,
which yields D = —b — ¢/1 and thus
D* +6=(b+¢/9) +ac—b* = (¢+20b+9%a)e/v”.

Comparing this with (4.10), we get ¢/9? = bo/~v and thus we can calculate vectors p, g
for any u € (0, 1), using the formulas (we again choose only positive ¥}, see comments

after (4.14))
/ (o/7)05 45— (Bs
9 — N S - _ " 4.1
> g=Bs+dy, p s (4.17)

|2
Y

by (4.16) and (3.1). Note that it is possible to have 9 = 9B (see (4.14)) simulta-
neously, by setting ¢ = 1 — ¢é/¢ due to (3.7); this choice is, however, not so efficient as

(4.17) with suitable u (e.g. given by (3.10)).

4.2 Type 2 methods

For the best known choice ¢ = Bs + Jy one has V = I + dpy’ + ps? B for the type 1
methods. To have more free parameters, we investigate the case V = I 4 p1y? + pys’ B
in this section. From (4.1) we have

| .
SAv=At p1y"A+Ayp{ + pas’BA + ABsp} + apip{ + b(p1ps + papi ) + epapy - (4.18)

Denoting 71 = 1 + pl'y, 7 = ply, the quasi-Newton condition (3.2) gives

(amy + 7)7’2)p1 + (?)7'1 +ém)ps + Ay + mABs = (0/7)3, (4.19)
ELTIQ + 2071 + 67'22 = (g/’y)?} (4.20)

Since we still assume b > 0, inequality & > 0 together with (4.20) imply that at least
one of values a, ¢ must be nonzero. We will use the following notation

vy = €Ay — bABs, vy = aABs—bAy, ¢ =6p1+vi, ¢ =6ps+ v,
and identities vy = 6, vIy = 0 and

gy =6m, 1=1,2, a(vyvl + 6ABssT BA) = é(vyv] + dAyyT A). (4.21)
Lemma 4.1. Let 6 =0. Then vy = vy =q1 = ¢ = 0.

Proof. Vectors Ay, ABs are proportional by assumption and the same proportionality
is between a, b and also between b, ¢, which gives the desired assertion. a
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General type 2 method expression

First we will suppose that @ # 0 and that vectors p; and py are chosen such that
ary + by # 0 and denote p = ap; + bps. Our approach is based on the following result.

Lemma 4.2. Let a # 0 and wy 2 ar + bry # 0. Then
wi = abo/y— 675, qai +6(p+ Ay)(p+ Ay)" = gy + ad(e/7)33" /b,

where

@ = (@ — (@ y/0)3) [(Jwrlws),  wo = 1/\/abo/7.

Proof. The first relation readily follows from (4.20). By (4.19) and (4.21) one has

wi(p+ Ay) = (am +br)(apy + bps + Ay) = a ((9/7)5 — 79(bpy + epa + ABS))
+ 7)7’2(67}?1 + 77}?2 + Ay) = alo/v)s — 725p2 — vy = a(0/7)5 — Taqa
= a(0/7)5 = 7 (lwrlwr @2+ (672/)3) = wr (e |3/ = 702 @2),  (1.22)
thus

8(p+ Ay)(p+ AY)T + g2q] = 8(|wr]3/b — Tows @2) (w1 |3/b — Tows G2)”
+ (0728/b+ |wi|w2 @2)(8725/b + Jwi|w2 @2)" = @6(0/7)35" b+ G2 - O

Before utilizing this lemma, we rewrite (4.18) in the following way

al(L/7)As — A] = py' A+ Ayp' +pavy +vapy + 5P +0pap;
= pavy +vapy + (p+ Ay)(p+ Ay)" — Ayy" A+ Spapy . (4.23)

Since §(pavd + vopl) + 2papl = qoql — vovl, we can use Lemma 4.2 to obtain
ad [(1/y)Ay — A] = d5(9/7)§§T/z) — 0 AyyTA + Gq8 — vyvl. Since Gy = ¢y for 7, = 0,
we can assume (without any change of Ay) that 7 = 0 is chosen, which satisfies the
condition wy # 0 by (4.20), and the update formula can be written in the form

1 T A TA T T
Ly —ag 250 AW g o]
~y v b a ad

. @y=0 (4.24)

for 6 # 0. If § = 0, one has vy = ¢ = ¢2 = 0 by Lemma 4.1, thus p + Ay = w; 5/?)
by (4.22) and from (4.23) we get (1/9)A; = A+ (9/~)357 /b— AyyT A/a (which is the
shifted DFP update, see Section 3) for any choice of ps.

Proceeding similarly for @ = 0, thus é # 0, we derive the following update formula

35T ABssTBA N qqt — vl

@y =0 (4.25)

1 0
SAL=A+ 2 _
~ * —I_’yb ¢ cod ’

for 6 # 0 and (1/7)Ay = A + (p/~)33" /b — ABssTBA/¢ for 6 = 0 (and any p,);
this update satisfies the shifted quasi-Newton condition by Lemma 4.1. Note that by
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(4.21), update (4.25) can be written in the form (4.24) with qq! /a replaced by ¢1q7 /¢
for a¢ # 0, but then we can directly use (4.24).

To construct the type 2 update, we can proceed in the following way. If 6 # 0 (thus
also ac # 0 by 6 > 0) we choose vector parameter ¢, satisfying ¢Jy = 0, i.e. 7 = 0.

Then 7, = £/ (g/’y)?)/d holds by (4.20), and by (4.19) we can calculate p; and ps, using

the formulas
G2 — V2 L{ Joa. -
P2 5 1 a ( y bS Y pz) ( 6)

Otherwise, if § = 0 and @ # 0, we have found above that the update (the shifted
DFP update) is independent of vector p;. Thus we choose p; = 0 and calculate the
corresponding py, using (4.26). Similarly, if 6 = 0 and @ = 0, thus ¢ # 0 and b = 0,

the update is independent of vector p; and we choose p; = 0. Then 74 = 1 and

Ty = :I:\/(g/’y)?)/é holds by (4.20) and by (4.19) we can calculate ps, using the formula

p2 = (V(e/1)e/b 5 —/(v/0)e/b Ay — ABs) [e. (4.27)

In case 6 = 0, the choice of g, (or ¢1) is irrelevant; therefore in this section we will
suppose from now on that 6 = 0, thus ac # 0.

A simple method based on the Broyden class
Comparing (4.24) with (3.4) for ( = 0 = 0 (or with (4.44)) and denoting z = as—bHy,
we get (qagl — 227)/6 = 5 22T /b?, which yields g, = £4/1 + 76/b% z and thus

n
_ 4.28
P VT o) (4.28)

by (4.26). For the BFGS update (n = 1) we have py = z/(b* + by/ac). The described
method consists in choice (4.28) of vector parameter p, with p; given by (4.26). Note
that only the case with the minus sign is suitable here.

This method gives good results when also py is linearly dependent only on s, Hy, i.e.

when ( = o (g/’y)d/?} by (4.26). This yields the quadratic equation p*(g/v)ab/(a —
a)>+ p — 1 =0, which has one positive root

p=2/(1+/1+4(c/)ab/(a - a)?). (4.29)

For this value of ¢ and for n = 1 we obtain the following formulas by (4.26)

_as—bHy _a—a _Hy—l—?)pg (4.30)
= —ae) T Tuab a ‘

A method with direction vector derived from the shifted Broyden class

Sincedy = —Hygy = —Hyy—Hyg=—ps+ H,yBdby (1.1), (3.2) and (3.3), it suffices
to compare value (1/v)Hy Bs, which is
03'Bs . ¢l Bs

0
oc—Bs+ ——5—5+ = 4.31
vy b a5 (4.31)
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by v Bs = § for update (4.24) and

T — —
QBS + = es BSS + 11)2 + £ ( i'Bs — b) (g — Ay) (4.32)
v v b a b b
for update (3.4). Comparing (4.31) with (4.32), we obtain
I'p
q25 892—02+77<b TBS—b) (bS—Ay) (4.33)
which implies
T — 2
Gy Bs U (cm )
— =4 /1+ 2 (=sTBs—b) . 4.34
3 ¢ + 5 bS S ( )

Combining (4.33) with (4.34), we can calculate g, for given 5 (obviously ¢ly = 0)
and then py and pq, using (4.26).

A method nearest to the shifted Broyden class

Denoting @ = 1/né ((d/?))g - Ay) and comparing (4.24) with (3.4), we see that matrix
q2q% should be as near as possible in some sense to matrix My = vyvd +wiw?. We will
find ¢ satistying the following problem

¢ = argmin{|| My — q¢"||% : ¢ € RV}, s.t. ¢ty =0 (4.35)

(Frobenius matrix norm). Note that we also tried to minimize ||M; — qzq2|* (for
q2 € span{vs, w}), but this was much more complicated and the results were not better.
To solve this problem, we need the following two lemmas.

Lemma 4.3. Let M be symmetric. Consider the problem
F=argmin{||[M —rrT||%: r e RV}, st. rTy=0.

If My = 0 then r is the eigenvector of M, corresponding to the largest eigenvalue of
M, with the norm equal to square root of this eigenvalue.

Proof. Define Lagrangian function
_1 TP ro_ 1 2 5.7 4 T
,C(r,l/)—4HM rr HF—I-Z/T y—4(HMHF 27 Mr—|—|r|)—|—1/r Y. (4.36)

A local minimizer 7 satisfies the equation

oL
or

which gives v = (rT My — |r|*rTy)/a = 0 by assumption, thus Mr = |r|*r by (4.37).
From (4.36) we obtain

=|r|*r — Mr+vy=0, (4.37)

Lr.v) = (IM][ = Ir[")/4, (4.38)

therefore eigenvector r should correspond to the largest eigenvalue equal to |r|?.

O
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Lemma 4.4. The nonzero eigenvalues of matriz M = vu® + voT have the form

= (Jul + [o]?)/2 % y/(Jul? = [o]?)?/4 + (uTv)?.

IfuTv =0, then Mu = |ul*u, Mv = |v|*v. Otherwise, if ulv # 0, then the eigenvector
corresponding to the largest eigenvalue Ay of M can be written in the form

(uTv)u 4+ (A — Jul*)v or (A = [o])u + (o). (4.39)

Proof. Denoting by r the eigenvector corresponding to the nonzero eigenvalue A, we
have

(uTr)u + (v rjv = Ar. (4.40)
Multiplying this by w, v, we obtain the system

ulr(lul2 =) + ofr(ulo = 0,

r(Jo)2 = A) = 0.

Determinant of this system is zero, since at least one of values v’ r, vTr must be nonzero

by (4.40) and A # 0. This leads to equation A% — A(|u|* + |[v|?) + [u|?|v|* — (uTv)? =0

with roots

(Jul? + [o]2)/2 £ /(ul? + [o]2)2/4 + (uT0)? = [u2|o]2,

which can be rearranged to the desired form. The rest readily follows from (4.40) and
(4.41). O

Now we turn back to problem (4.35). The two largest eigenvalues of M, are

/24 1/(Joal? -

by Lemma 4.4 and ¢ = VA1 qo/|qo| by Lemma 4.3, where the eigenvector go of M,
corresponding to Ay can be obtained by using Lemma 4.4. Note that it is better to
calculate the first form in (4.39) for |v| > |u| and the second one otherwise, because

Mg = (|U2|2 + |

G224+ (0T)2, M A >0 (4.42)

then the term, which we add to the square root term in the corresponding formula for
A — Jul* or A\ — |v|2 is positive.
Since [|Ma—qaql |3 = || Ma]|% — |q2|* = (A2 4+ A2) = A2 = )2 by (4.38) and Lemma 4.3,

we should choose parameters of update (3.4) in such a way to make Ay as small as
possible, but the following theorem shows that the problem is more complicated.

Theorem 4.1. Function \s(n) is increasing for n > 0.

Proof. Denote o = |[0]* — |vy]?, 3 = vaw Since dvy/dn = 0, dw/dy = w/(2n),
d|w|*/d (vI10)?/dny = (v1w)?/n, one has by Lemma 4.4 for v # 0

2 (0] — Jvaf?)]id (vz®)* _ oo ald]’+252 (4.43)

U2 = [0a]?)? + 4(0] )2 Va? +452

A~ A~

22Xy (n) =
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and A, > 0 when the numerator o|w|* + 2/3? is negative or zero. Otherwise, we can

2 —|—2ﬂ2)/\/0z2 +4/3? to

w

equivalently multiply (4.43) by the positive number | |* + («
obtain on the right side

20,14 20,52 4 A4 A2 92 20802 (0T ~N2
PO Ll O et e N L el L) G
a? + 432 a? + 432 a? + 432

by the Schwartz inequality. It remains to prove the assertion in case vl = 0. But
then Ay = |v3]* or Ay = |@0|* by Lemma 4.4 and again A, > 0 holds. O

Since w = 0 for n = 0, one has Ay(0) = 0. Thus Theorem 4.1 shows that small
positive values of i should be chosen - but not too small, because the shifted DFP
method (n = 0) is not effective. In this situation, it is useful to know A;(0). Denoting
w = /,/7, it readily follows from (4.43) that \,(0) = |w]* — (v]w)?/|vs|* for vy # 0,
Ay(0) = 0 otherwise. It follows from (4.42) that A,(0) is close to zero (i.e. vectors vs,
w are almost proportional) when e.g. Ay(1) is close to zero.

Surprisingly, we also obtained very good results when we tried to choose simply
¢2 = . Then we have the shifted Broyden update (3.4) with adding term —vyv? /(aé);
matrix vyvd seems to have similar properties as (as — bHy)(as — bHy) in case of the

Broyden class, see [9]. Note that

v2:as—bHy—C(&s—?)Hy—l—st—Ey).

A method nearest to the Broyden class
The Broyden update, see [9], can be written in the form, similar to (3.4)

1 osst  Hyy'H 1 /a a T
—HP =H+ =" — (- —H)(— —H) . 4.44
v —I_’y b a +a b’ Y)\p" Y ( )

Denoting ¢, = ¢2/Vad and Mz = (1/7) (Hf — (A + QJ)) + q2q7 , where A, is given
by (4.24), we will seek to find ¢, satisfying the following problem

G = argmin{||Ms — q¢" || : ¢ € RV}, s.t. ¢ty =0. (4.45)

It follows from (4.44) and (4.24) that

T ~T A TA H TH T T
M3:A0]+£<£_Sf )—I— y% 1 —|—Q<g5—Hy)<g3—Hy) —|-v2112
v\ b b a a al\b a

where A\g = ( — (o/7)o. Using identities

ssT 5l (ny AWT) AyyTA  Hyy"™H (Arzrg ny)
=0 —da , - - =(¢la—— =],

a a

b )

a bb

aa a

where r1 = s — (b/a)y, r» = Hy — (a/a)y = Ay — (a/a)y, we have

T T T T T
Ms = Ao (]—yy ) - ﬁ“gl +eal2z | ﬁ(ﬁs—ﬂy) (%—Hy) 0%y
Y

7 aa al\b b aé
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To solve problem (4.45), we utilize Lemma 4.3. First we readily deduce from (4.46)
that every eigenvector of Mj is a linear combination of vectors s, Hy, Bs and y. Since
Msy = 0 by (4.46), y is the eigenvector corresponding to zero eigenvalue; thus any
eigenvector corresponding to nonzero eigenvalue is perpendicular to y and therefore
belongs to

P = {r : r €span{s, Hy, Bs,y}, rTy = 0} = span{ry,ra,r3},

where r3 = Bs — (?)/&)y. Let Z be a matrix with 7 columns, 1 <7 < 3, creating an
orthonormal basis in P (we still suppose 6 # 0, which contradicts ry = ry = 0). Then
ZT7 =1 and Lemma 4.3 gives M3¢, = |42|*q2 and g, = Zh for some h € R*, which yields

ZTMsZh = |h|*h. (4.47)

Since |ga| = |h|, we will calculate the eigenvector h of ZT M3Z, which corresponds to
the largest eigenvalue of this matrix.

To construct a type 2 update, we first calculate vectors ry, ry and r3, orthonormalize
them, create symmetric matrix Z7 MsZ and calculate its eigenvalues and eigenvectors.
Denoting \;, j = 1,...,1, eigenvalues of ZT M37 arranged in descending order and &,
the eigenvector corresponding to Ay, we calculate

G2 = \/5@2 = \/)\1&5 Zh1/|h1| (448)

and then py and py, using (4.26). In this connection, we have good experience with
the Jacobi iteration method of finding eigenvalues and eigenvectors, which can also
be utilized in the orthogonalization process to attain a high precision of results (if
the columns of @ are eigenvectors of matrix RT R, where R = (ry,74,73), then the
columns of R(Q) create an orthogonal system and have norms equal to the square root
of eigenvalues of RT R). Note that the computation time required by the Jacobi method
can be neglected for large V.

Since || ZTMsZ — hih] ||} = || ZT M5 Z|[3 — |ha]* = Yoy A2 = M = Y20, A2 by (4.47)

J=2" y
as in (4.36), we should choose parameters of the method in such a way to make >7%_, )\?

as small as possible.

4.3 Global convergence

In this section we utilize the results obtained in Section 3.4. To establish global con-
vergence, we can directly use Theorem 3.4. If condition (3.16) is not satisfied for the
chosen constant ', we use some other update which fulfils the global convergency
conditions (see below).

Note that in case 6 = 0, when the particular methods described in the previous
section cannot be used, condition (3.16) is also satisfied under the assumptions of
Theorem 3.4 and 44 < 1, & > 1. This can be seen, observing that we use update
(1/7)Ar = A+ (0/7)33"7 /b — Ayy" Afa for a # 0 and (1/7)A = A+ (0/7)337 /b~
ABssTBA/cfor ¢ # 0 (we recall that a+¢ > 0 by (4.20)) and that |3]2/b < 1/[(1-7)G]
(see the proof of Theorem 3.5).

We will show that the situation can be even better than in methods described in
Section 3. We denote w the value \/ﬁ ((d/?))g — Ay) as in Section 4.2.
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Lemma 4.5. Let go = anb+Bvy with o*+3% < 1. Then the trace of matriz AL obtained
by using update (4.24) cannot be greater than the trace of Ay obtained by using update

(5.4).
Proof. One has

2 = @*[0]* + 20 8vy 1 + B¥oa]* < (1= B%)[d]* + 2080y 0 + (1 — o) [va|*
= [0]* + [0a]” = B0 — avs|* < [0 + oo,
thus
(192l = I02f?) /6 < |6[2/6 =y |(a/b)3 — Ayl .
which gives the desired result. O

Theorem 4.2. The following three methods described in Section 4.2 satisfy the as-
sumplions of Lemma 4.5 with o* + 3% = 1: the method with direction vector derived
from the shifted Broyden class, the method nearest to the shifted Broyden class and the
method with g3 = .

Proof. In case of the first method, it follows from (4.33)-(4.34) that

« :L?)TBS/\/SQ—I—(L?)TBS)?, 8= 5/\/52+(12)TBS)2.

As regards the second method, ¢, is the eigenvector of My = ww! 4 vyv! corresponding

to the nonzero eigenvalue Ay, |q2|*> = Ay by Lemma 4.3. Then

AT T
w-qz . V3 42
w 4+ 2

. (6" + (0F P _ qlas
)\1 )\1 29

= = 1.
\2 M

062—|—62:

q2 =

Proof for the third method is obvious. O

In Section 3.4 we described the hybrid globally convergent shifted VM method,
from which also limited memory globally convergent methods can be derived owing to
Theorem 4.2.

4.4 Computational experiments

Similarly as in Section 3.6, the limited-memory VM methods were tested, using the
collection of relatively difficult problems with optional dimension chosen from [10], [12]
and [15]. We have used p = v = 1, m = 10 for N = 50 or m = 20 otherwise, the
final precision |g(2*)| <107° with 5 of the corresponding shifted Broyden class equal to
unit and the choice (3.11) of the shift parameter g in all iterations (except for methods
SBC and NBC, see below). For starting iterates we use the shifted BFGS method as
in Section 3.6. Results of our experiments are given in three tables, for N = 50, 200
and 1000, where NIT is the total number of iterations (over all problems) and NFV
the total number of function evaluations. ‘Fail’ denotes the number of problems which
were not solved successfully (usually NFV reached its limit).

The first six rows of tables give results for various methods described in Section 4:
T1 — type 1 method (4.17), SBC — the simple method (4.29)-(4.30), SNSBC — the
simplified variant of NSBC with ¢ = w, NSBC — the method nearest to the shifted

28



Broyden class, DVSBC — the method (4.33)-(4.34) with direction vector derived from
the shifted Broyden class and NBC — the method nearest to the Broyden class with p
and n obtained by quadratic interpolation.

For comparison, the last three rows contain results for the following limited-memory
VM methods with 10 stored vectors for N = 50 or 20 vectors otherwise: RH — the
reduced-Hessian method described in [5], BNS — the method after [1] and STRANG —
the method based on the Strang formula, see [13]. Note that methods BNS and
STRANG store pairs of vectors, here 5 pairs for N = 50 and 10 pairs otherwise.

Method NIT NFV Fail
T1 19743 20798 -
SBC 23980 24971 2

SNSBC | 18618 19546 -

NSBC 16486 17522 -

DVSBC | 15575 16497 -
NBC 16725 17929 -
RH 22378 26801 -
BNS 25038 27792 -

STRANG | 23754 26273 -

Table 1 (N = 50, 89 problems)

Method NIT NFV Fail
T1 91722 96736 1
SBC 76960 79074 1
SNSBC | 68289 71921 -
NSBC 76205 79371 -
DVSBC | 74779 78738 -
NBC 64288 67877 -
RH 82267 93477 1
BNS 86690 97598 1
STRANG | 86062 90957 1

Table 2 (N = 200, 88 problems)

Method NIT NFV Fail
T1 23190 23627 -
SBC 22124 22321 -
SNSBC | 17792 18009 -
NSBC 20236 20652 -
DVSBC | 18364 18580 -
NBC 19298 20060 -
RH 21712 33314 -
BNS 18564 24747 1
STRANG | 20195 21231 -

Table 3 (N = 1000, 22 problems)
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