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Datum staženı́: 03.06.2024
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Abstract

The method proposed is based on neighbours distances from a given (unknown) point, i.e. on a simple
transformation En → E1. With this transformation the curse of dimensionality is straitforwardly eliminated
in the first step. It is shown that the sum of reciprocals of (n-1)st power of  these distances is convergent
and can be used for Bayes ratio estimation. The classification quality was tested and compared with
other methods using simulated multivariate data from gammma telescope. Essential advantage of the
approach is the fact, that no tuning parameters exist. The amount of computation is proportional to the
training set size, i.e. the dimensionality times the number of training samples.
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Introduction
Multivariate data classification is rather difficult task especially due to two main reasons. The
first is often presence of large noise which makes the classes worse distinguishable. The
second is so called curse of dimensionality which causes that the volume of computations
grow fast, exponentially, with task dimension. One would understand that volume of
computation would grow with amount of data (dimensionality times number of samples)
quadratically or even with third power but exponential grow is too fast.
There is huge amout of literature dealing with this problem using several approaches:
•  Bayes principle and statistical distribution density estimation [1],  [2],  [3] including fast

but not too reliable naive approaches [6]
•  neural networks of different kinds from single layer back propagation networks, radial

basis function neural nets, neural nets with switching units etc. [4],  [5],  [7] sometimes
optimalized by genetic algorithm [8]

•  methods based on classification trees or random forests [9]
•  and others [10].
All these approaches can be classified in two other classes, the methods suitable for tasks with
small training data set, and methods which use or rely on large amount of data in the training
set, i.e. large density of points in the corresponding space. The classifiers of the first kind rely
on good approximation of probability density function over all region of interest, whereas the
classifiers of the other kind can approximate the density function around each point of
interest, the point to be classified, by a constant. In these methods it is supposed that with
respect to volume density of points of the training set in the space the probability density
function changes only slightly.
In this contribution a classifier of a second kind, i.e assuming large training set, is designed
where the amount of computation grows linearly with the volume of the training data, i.e.
proportionally to the data dimension and also proportionally to the number of samples in the
training set. The classifier is based on rather naive approach reminding nearest neighbour or
N-th nearest neighbour method and effectively uses suitable transformation 1RRn → , in fact

1EEn →  , dependent on the dimension n.

The Task
Let be given n dimensional data, each sample in form of a row vector x = (x1, x2, ... xn) ∈  Rn.
All these data form the feature space. These data come from two sources, then these data are
of two classes. The class c = 1 is usually called the signal (s) and by 0 (sometimes -1) we
denote the background (b). The task is, given the vector x decide of what class it is, zero or
one.
The optimal way to partition the feature space into signal and background regions is to choose
the Bayes discriminat function. This function is simply ratio of the probability P(s|x) that a
given sample is a signal event and the probability P(b|x) that it is a background sample. It is
written in form [1], [2]
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Each cut on the value of discriminant function correponds to a discriminating boundary in the
feature space. The quantities P(x|s) and P(x|b) are likehood functions for signal and
background, respectively. P(s) and P(b) are corresponding prior probabilities.
We have no other information than the training set of samples for which the class c of each
individual sample is known.  Thus we have the training set XT of  mT  n+1 dimensional
samples xT = (x1, x2,... xn, c) ∈  Rn×{0, 1}. From it we have to derive all the information we
need. As we know nothing about the task set or testing set X of sample vectors we cannot use
any concrete likehood functions for signal and background with exception that we consider
both class equally possible and P(x|s) = P(x|b). It corresponds to state of minimal
information. On the other hand if the training set is large, we have rather good information
about prior probabilities P(s) and P(b).

Probability density estimation
In our case the vectors x are points in Rn space, but let us consider it as an En space. Let us
consider vectors - points of one class c only. The number nv of these points in some small
volume v in Rn recomputed to unit volume gives a "concentration" of samples of given class
in that place of Rn space. If V is the volume of convex closure of all data points in the training
set, mT is the number of all training samples, then the estimation of the probability that the
sample of class c is in v is given by the ratio
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In limit for ∞→Tm  and 0→v  (v shrinks to some fixed point  x in Pn) it is just probability
density pc(x) in point  x  of the multivariate distribution of samples of given class c. In fact,
pc(x) for c = 1 and c = 0 are just prior probabilities P(s) and P(b), respectively, in the point x
in Rn. For x∈  XT we simply associate this sample to the class of the same sample from the XT .
The task is now, given x ∉  XT find the prior probabilities P(s) and P(b).
Throughout this contribution let us assume that we deal with standardized data, i.e. the
individual coordinates, columns of XT, are standardized to zero mean and unit variance and
the same standardizating constants (empirical mean and empirical variance) are applied to all
other (testing) data.

All training samples approach
Let be given point x ∉  XT and some points xTi, i = 1,2...k,  xTi ∈  XT of class c nearest to the
point x. The Eucleidian distance of these points let be di = d(x, xTi ) and the largest of them be
r. There is a ball of volume V = const.rn  in Rn. We can conclude that probability density
estimation in the point x can be proportional to k/Vk as in the k-th nearest neighbour method
[6]. The greatest advantage of using either distance di  or volume Vi is simple mapping Rn →
R1 and thus no problem with curse of dimensionality arises. The particular value of  k/Vk

depends on k. For k = 1 the estimation will be very poor and dependent on random position of
x to the nearest xTi. The larger k the better but on the other hand the ball is rather large and the
density inside is approximated as it woud be homogenous and does not reflect more detailed
structure of probability density function and more detailed structure of n-dimensional (n>1)
Eucleidian space even if the probability density function is homogenous [11].
A better approach can use average values of  i/Vi for several i´s. Let us use i = 2,3,...k
excluding, in fact, the influence of the nearest xTi as its influence is most problematic. Then
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where C is proportionality constant. This can be used directly for probability density
estimation but now we will continue in another way using rather ad hoc jump.
Having in mind nonequidistant (nonequivolumous) sizes of individual balls of volumes Vi, it
seems more appropriate to use the true distance of the point No. i instead of some "weight" or
"distance" expressed by numerator i in each fraction of (1). Thus
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C and C‘ are constants. Under assumption that the series 11 −n
id converges with size of di for

n>1 we have no reason to limit ourselves to nearest k points and we can use all points in the
training set using k = mT. At the same time the ordering of individual components is not
essential and we need not sort the samples of XT with respect to their di as when using (1).
The method is based on the
Theorem
Let for any x ∈ En, some r, 0 < r ≤ n and any k exists ε > 0 such that ε+>+ 1/1
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 is convergent.

Proof is based on elementary use of D’Alembert convergency criterion.

Application
According to the theorem and with respect to the fact that for r = n-1 the ratio

ε+>−−
+ 1/ 11

1
n
k

n
k dd   [11], the convergency of (2) is guaranteed. It can be found that only several

nearest neighbours would suffice. On the other hand one must in any case search whole
training set to find all nearest neighbours necessary.
Very essential advantage of the approach is the fact, that no tuning parameters exist. No
neighbourhood size, no convergency coefficients etc. need to be set up in advance to assure
convergency. In practical procedure we simply sum up all components 11 −n

id and at the same

time we store the largest one corresponding to the nearest point and in the end we subtract it
thus excluding the nearest point. This is made for both classes simultaneously getting
numbers A0 and A1 for both classes. Their ratio gives value of discriminant function, here the
Bayes ratio [1], [2] for particular point x∈ En
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Then for a threshold (cut) θ chosen, if θ>)(xR  then x belong to class 1 else to class 0.

Evaluation criteria
Remind that each cut on the value of discriminant function correponds to a discriminating
boundary in the feature space. In practice it means that, depending on the cut value, some
samples are denoted as signals, the others as background. In both of this classes there are
usually well recognized samples (signal sample as signal, background sample as background).
At the same time there are two sets of wrongly recognized samples.
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Suppose that we have the testing set of samples of known classs so that this class can be
compared with recognized class (associated by the classification algorithm). Now we can
define:
Signal efficiency, SigEff, as a ratio of number of signal events after the classifier, i.e. number
of properly recognized signal events, divided by the number of all signal events coming to the
classifier.
Background error, BackErr, is a ratio of number of background events after the classifier, i.e.
erroneously recognized backgrounds as a signals divided by number of all background events
coming to the classifier.
Enrichment factor

E = SigEff / BackErr .
All these variables are functions of the cut value.
Another approach uses samples sorted according to value of R(x), the value of response of the
classifier. Let in the same order be ordered the values corresponding to background (0 or -1)
and signal (+1). These values let us denote vi, i is order number, i = 1, 2, ... m, where m is the
number of samples. The estimation quality can be measured by value
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which is maximal for ideal ordering all backgrouds first, then all signals or minimal for
reversed ordering. Modifications are possible not including all samples using different
summation interval.

Results
The metod was tested on the same data as was used in study [13]. Also, the third and next
lines of the Table 1 are cited from this source and then we do not describe the different
methods in detail. The same is true for Fig. 1 and Fig. 2, where behaviour of new method is
shown by full line.

TABLE 1
    Method loacc  hiacc E{0.5}  σ{0.5}  σ{max}  SigEff for

σ{max}

    New method 0.452 0.778 15.7 8.3984 9.345 0.364

    Random Forest 0.448 0.851 13.5 8.17 8.72 0.334
    Nearest Nb. 0.448 0.816 13.2 8.03 9.12 0.317
    Kernel 0.443 0.803 14.1 8.43 8.64 0.39
    C5.0 CART 0.419 0.816 13 7.94 8.5 0.233

    NNSU 0.472 0.731 17.5 9.74 9.82 0.483
    NeuNet 0.405 0.84 12.7 7.82 8.08 0.58
    MRS 0.348 0.779 11.4 7.16 7.31 0.431
    MLP 0.3 0.767 10.9 6.93 7.22 0.576
    GMDH 0.28 0.736 10.2 6.55 6.77 0.574

    Comp. prob. 0.332 0.728 10.6 6.78 6.83 0.585
    Direct Sel. 0.306 0.636 9 5.91 7.52 0.153
    LDA 0.195 0.638 8.2 5.47 5.8 0.71
    SVM 0.124 0.586 7.1 4.81 5.76 0.784
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The table gives the quality numbers loacc, hiacc, significance σ, and enrichment factor E
with the following meaning:
loacc is the average signal efficiency obtained by interpolating the curve at the points 0.01,
0.02, and 0.05 for background error;
hiacc is obtained in a similar way by averaging signal efficiency at the points 0.1 and 0.2
background error;
enrichment factor E is defined by E = SigEff/BckErr, the value given is that obtained at signal
efficiency =  0.5;

significance σ is defined by SBS += 2σ , where S = SigEff.Ns and
B = BckErr.Nb ; Ns  and Nb are the number of signal and background events that would be
obtained  by selecting events in samples with Nb = 10 000 and Ns = 500; we give the value of
σ obtained at SigEff = 0.5, and the maximum value along the curve, along with the value of
SigEff where it is found (in many cases this is at a low, unacceptable SigEff).
Results are also shown graphically in Fig 1, the Neyman-Pearson diagram or decision quality
diagram [13].

Fig 1. Decision quality diagram Signal efficiency (gamma acceptance) vs. Background error
(hadron acceptance) for new method - full line. Left part for high signal efficiency, left for
low background error. As background the diagrams from [13] were used.

Conclusion
The strongest and, at the same time, the weakest part of methods based on neighbours
distances from a given (unknown) point is notion of distance, i.e. a simple transformation
En → E1. With this transformation the curse of dimensionality is straitforwardly eliminated in
the first step. The problem is what to do with two ordered set of distances, one for signal and
the other for background. In this contribution it was shown that at least in statistical sense the
(n-1)st power of  these distances has stable behaviour and the sum of reciprocals of (n-1)st
power of  these distances is convergent.
The method proposed seems to be very good but not the best possible as seen in Table 1 and
figures. Very essential advantage of the approach is the fact, that no tuning parameters exist.
No neighbourhood size, no convergency coefficients etc. need to be set up in advance to
assure convergency. The other advantage is the speed. In the learning phase only
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standardization constants are computed. In the recall phase for each sample to be classified
the learning set is searched once and for each sample in the training set one element of sum
(2) is computed. The amount of computation is thus proportional to training set size, i.e. the
dimensionality times the number of training samples.
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