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Abstract

In this report we show that the square of nearest neighbour distance (NND) can be
approximated by Erlang distribution for large number of service lines and n-1 used
lines, which includes case of n = 1, too.
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Introduction
To compute the nearest neighbour distance (NND) is rather simple but tiresome task
especially for large n, the space dimension. The other task is what the statistical distribution of
the nearest neighbour distance. For n = 1 it is simply exponential distribution. In this report
we show that the square of NND can be approximated by Erlang distribution for large number
of service lines and n-1 used lines, which includes case of n = 1, too.

Erlang distribution
Erlang distribution [1], [2] was derived by Erlang in 1902 for description and evaluation of
traffic in telephone switchboards. The simplest task considers N service trunks (more
generally service lines) available. The telephone calls (tasks) come with intensity of x
Erlangs, i.e. in average x tasks in time unit; x is positive real number. It is supposed that
arrivals and terminations are independent events and then one can use Poisson distribution for
call arrivals. It is also assumed that a statistical equilibrium exists that is that the number of
calls in progress remains the same, i.e. the number of new call arrival equals to the number of
terminations. If there is no free trunk the call is cleared; there is no queue to await a free path.
In given time r calls are in progress, r=0, 1, ... N.

State 0
(empty)

State 3
(3 trunks occupied)

State 2
(2 trunks occupied)

State 1
(1 trunk occupied)

λ0

λ1

λ2

µ1

µ2

µ3

Fig.1. State model of three trunk system.

The system considered could be represented by state diagram [1], see Fig. 1. There is model
of N = 3-trunk system that has four states corresponding to 0 - 3 trunks occupied. At each
state we have a probability of a call arrival λr and the probability of a call termination µr .
Since we assume we are in equilibrium the numbers of call arrivals must equal the number of
call terminations and so the probability of a call arrival must equal to the probability of call
termination.
The basic formula for probability density of Erlang system of total N trunks, r trunks occupied
and with load of x Erlangs is
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Sometimes so called scale factor α is introduced so that  x = αy. For unlimited sources, i.e.
number of trunks available N = �, it holds
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In this case the distribution function is
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Note that Erlang distribution is a particular form of gamma distribution [2].
Numerical characteristics of Erlang distribution are as follows [2] (we suppose x = αy)

Expected value  E(x) = r/α , variance 2/)( αrxV = , skewness  rg /21 = , kurtosis

rg /632 += .
Moreover it holds [2]:
Lemma 1: The sum of r independent exponentially distributed variates with parameter α is
equal to an Erlang (gamma) distributed variate with parameters α and r, i.e. let )exp(α≈iY
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The nearest neighbour distance
There are some tasks that use either the nearest neighbour or its distance from particular given
point in En. One application is the distribution density estimation by the nearest neighbour or
5th nearest neighbour approach used in Bayes classifiers [3], [4]. We limit ourselves the
distance of the nearest neighbour, to Euclidean space only, and to homogenous distribution of
points randomly placed in En.

E1 case
In this simplest case let in the interval of length l0 be placed n0 points randomly but with
homogenous distribution. The average distance of two successive points is simply 00 / nld p =
and it is known that these neighbour intervals have exponential distribution with parameter

pd . The NND has also exponential distribution but with parameter 1d , 2/1 pdd = .

It can be easily found that of all neighbour intervals 1/3 is not „used“ for NND, 1/3 is used
twice as for both neighbours the other end point of particular neighbour interval is just the
nearest neighbour, and 1/3 neighbour intervals are used once.

En case
Following idea of Lemma 1 we can take the n-dimensional Euclidean space as composed
from n one-dimensional spaces. Considering randomly distributed points in En from the
homogenous distribution, the marginal one-dimensional distributions are homogenous. Then
for each of them the distribution of the nearest neighbour distance has exponential
distribution. From the Lemma 1 then holds that nearest neighbour distance distribution in En
is Erlang distribution with unlimited sources E(r,α), where r = N-1.
Another possible point of view to En is that to each dimension in this space let us assign one
state in the sense of Erlang mass service system [1], [2], see Fig 1.
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Numerical experiments
In all numerical experiments were used approximately 32000 or 1000 points in unit cubes in
E1, E2, E3, spaces. For E10  3000 points was used.

Fig. HD2^1Erl.ps. Comparison of Erlang distribution with NND distribution in E2.

Fig. E200-1-x.ps. Comparison of Erlang distribution with NND^2 distribution in E2.
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 Fig. E200-2-x.ps. Comparison of Erlang distribution with NND^2 distribution in E3.

Fig. E200-9-x.ps. Comparison of Erlang distribution with NND^2 distribution in E10.

Nearest neighbour ball volume with respect to the index
Very interesting question in problem studied is dependence of the 1st, 2nd, 3rd,... nearest
neighbour ball size (or the 1st, 2nd, 3rd,... nearest neighbour distance to the n-th power) wrt.
the index of the corresponding nearest neighbour. Usually it would be supposed that this
dependence would be strictly linear. It can be shown, that it is not true for any Euclidean
space dimension n > 1.
For low dimensions the difference between the distances to the same power as is the space
dimensionality n and linear dependence was computed. The distance to the same power as is
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the space dimensionality n was used as it is proportional to the volume of a ball in that space.
For n = 1 only error curve was obtained, no systematic dependence is seen.

Fig. D^1E1avg-lin.ps. The difference between nearest neighbour No. 1...100 distances and
linear dependence in E1. The curve shows, in fact, errors only.

For higher dimensions there is systematic difference which shows that volume of balls
corresponding to the 1st, 2nd ... nearest neighbour in given Euclidean space does not grow
linearly but with a little larger speed. It is best seen in Fig. D^10E10avgMed for E10.

Fig. D^2E2avg-lin.ps. The difference between nearest neighbour No. 1...100 squared
distances and linear dependence.
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Fig. D^3E3avg-lin.ps. The nearest neighbour No. 1...10 distances to the third power and linear
dependence.

Fig. D^10E10avgMed.ps. The nearest neighbour No. 1...10 distances to the tenth power:
average, median and minimum.

Sum of inverted volumes
Interesting thing is if the following sums are convergent or not
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From the preceding part it is seen that n
id  as well as 1−n

id  for n > 1 grow rapidly than

proportionally to i, i.e. rapidly than denominators of divergent harmonic series 1/i, which is
considered as an threshold between convergent and divergent serii. Practical considerations
show that the convergence is sufficient.

NND to n-th power increment
In the following figures are shown the increments of some powers of distances of first ten
nearest neighbours in E10. Mostly the means are shown of 32000 samples. In each figure the
first column shows the corresponding power of the nearest neighbour distance the others are
differences.

Fig. D^1incrE10.bmp. The nearest neighbour No. 1...10 distance differences in E10.
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Fig. D^2incrE10.bmp. The nearest neighbour No. 1...10 distances squared differences in E10.

Fig. D^9incrE10mean.bmp. The nearest neighbour No. 1...10 distance to the 9th power
differences in E10.
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Fig. D^9incrE10medi.bmp. The nearest neighbour No. 1...10 distance to the 9th power
differences in E10 - medians.

Fig. D^9incrE10xx.bmp. The nearest neighbour No. 1...10 distance to the 9th power
differences in E10. The bold line shows mean, the others are individual randomly selected
cases.
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Fig. D^10incrE10.bmp. The nearest neighbour No. 1...10 distance to the 10th power
increments in E10.

It is interesting that for (n-1)th power in En the differences are in average (mean) nearly
constant. There is also the fact that the differences of the n-th power of 1st, 2nd, 3rd ...
neighbours distance, i.e. volume of correspondig “betweenballs” grow monotonously. As
each “betweenball” corresponds to just one point in the space En then the density of the space
is from this point of view graduallu lessens, the space gets more and more thin with distance
from any of our fixed point.

Conclusions
The target of this study was to get clear answer if the series (1) can be considered as
convergent or not. It was shown that there is a convergence but it is not very fast in Euclidean
space with randomly distributed points with homogenous distribution. Very positive fact is
that the convergence does not depend on space dimensionality n.
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