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2002
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ABSTRACT

The recently proposed core function of absolutely continuous distributions are re-introduced
and their moments are proved to exist. The core moments can be used as numerical char-
acteristics of distributions. Particularly, it is shown that the �rst core moment de�nes a
point (we call it the center of gravity) characterizing the central tendency of the distribution
besides the mode, mean and median. The core function can be interpreted as the likelihood
score for the center of gravity. The second core moment expresses the information of the
distribution.

Key words: Core function; Moments; Numerical characteristics of distributions; Esti-
mation.

1. INTRODUCTION

Let F be the distribution function and f the density of a continuous random variable
X supported by interval S � R: The commonly accepted numerical characteristics of dis-
tributions are the absolute moments

mk = E(Xk) =

Z
S
xkf(x) dx; k = 1; 2::: (1)

and the central moments �k = E(X�m1)
k. The integrals may not converge, however, even

for regular distribution.
In Table 1 we present the densities of three parametric families ff�; � 2 �g where

� = f(�; �) : �; � 2 (0;1)g and the values of their absolute moments mk(�) together with
the ranges of the values of the parameters which they exist for.

Table 1. Absolute Moments of Three Parametric Families

F� f� mk(�) exist for

1 ���

�(�)x
����1e��x

��
�k=� �(��k=�)

�(�) k < ��

2 ��(2�)
�2(�)

x���1

(x�+1)2�
�(�+k=�)�(��k=�)

�2(�) k < ��

3 �
B(1=2;��1=2)

1
(1+� ln2 x)�

�(k+1=2)�(��k�1=2)
�(1=2)�(k�1=2) k < �� 1

2
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Parents of families (with parameters � = � = 1) are the standard extreme value II (1),
standard log-logistic (2) or standard log-Cauchy (3) distributions, respectively. For these
simple distributions there is even no mean. The same is true in the case of symmetric

Cauchy distribution. Table 1 illustrates the fact that the traditional moments are of no
use for both characterizing distributions and for estimation of parameters not only in some
exceptional cases but for large regular families. The in�niteness of moments is rather
mysterious, since the aim of them is to characterize densities with a unit area under the
curve. A straightforward consequence is that there is no common agreement in statistic
which is the point characterizing central tendency of a distribution: the mean, mode or
perhaps median ?

A common opinion in the information theory says that the information of continuous
distributions is closely connected with continuous analogy of the Shannon entropy, the
di�erential entropy

h(F ) =

Z
S
� ln f(x) f(x) dx; (2)

which is sometimes interpreted as an expected value E(� ln f(x)) [Cover and Thomas
(1990), p. 13]. Actually, (2) has some properties that agree with the intuitive notion of
what a measure of information should be, but it has a serious defect; unlike the discrete
entropy it can be negative. The often quoted example of a distribution with negative dif-
ferential entropy is the uniform distribution with jjSjj < 1, but it should be said that (2)
can be negative in the case of any parametric distribution with a suÆciently small scale
parameter. On the other hand, in mathematical statistics it is the Fisher information that is
widely used. For parametric distribution F�; � = (�1; :::; �m), the Fisher information about
parameter �k; 1 � k � m is given by

Jkk(�) =

Z
S

�
@ ln f�(x)

@�k

�2

f�(x) dx (3)

and represents the mean information about �k carried by one observation taken from F�.
However, there is no common agreement about which value represents the information of a
distribution without parameters.

Recently, a core function of an absolutely continuous probability distribution has been
introduced by Fabi�an (2001). Although it had not been known in its general form, it was
known in many particular cases as a simple and relevant characteristic of distributions. In
Section 2 of the present paper, the core function is brie
y re-introduced in a somewhat
di�erent way and in slightly di�erent terms from that in the cited paper. In Section 3,
moments of the core function have been proved to exist for any regular distribution. Ap-
parently, it is the core moments and not the absolute or central moments that are to be used
to characterize distributions. Particularly, in Section 4 we study the �rst two core moments
and show that the �rst core moment de�nes a point generally characterizing the central
tendency of the distribution and the second core moment expresses the mean information
of distributions including distributions without parameters. Methods of an estimation of
these new characteristics of distributions are discussed in Section 5.

2. CORE FUNCTION
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Let for every ; 6= S = (a; b) � R, �S be a class of distributions on Borel sets of real
line R absolutely continuous with respect to the Lebesgue measure � on R. Let X be a
random variable with distribution P 2 �S , distribution function F and density f = dF=d�
satisfying the relation

f(x) =

8><
>:
> 0 if x 2 S
= 0 if x 2 R� S:

(4)

Let the derivative f 0(x) = df(x)=dx be well-de�ned. f is supposed to be regular in the sense
of H�ajek and �Sid�ak, which means that the integral

IF =

Z
S

�
f 0(x)
f(x)

�2

f(x) dx (5)

is �nite and positive [cf. van der Waart (1998)]. The open interval S is the support of
distribution F and the sample space of random variable X.

2.1 Core Function of Simple Distributions

Let Y be a random variable with distribution Q 2 �R, distribution function G and
density g. The core function of random variable Y or of distribution Q with \full support"
S = R is the score function

TG(y) = �g
0(y)
g(y)

: (6)

Let us select some simple real functions de�ned on S = R with di�erent behaviour in
in�nity: unbounded functions (denoted in the sequel by U1 and U2), bounded functions (B1
and B2) and the mixed types (UB and BU). Considering them to be the core functions of
some distributions, we computed the corresponding densities by the use of (6). The results,
called here simple distributions, are given in Table 2.

Table 2. Core Functions and Densities of Simple Distributions

Type TG(y) g(y) Distribution

U1 sinh y 1
2K0(1)

e� cosh y no name

U2 y 1p
2�
e�

1
2
y2 normal

UB 1� e�y e�ye�e
�y

extreme value I

BU ey � 1 eye�e
y

Gumbel

B1 tanh y
2

ey

(1+ey)2 logistic

B2 2y
1+y2

1
�(1+y2)

Cauchy

In the table, K0 denotes the Bessel function of the third kind. All densities except U1 are
the standardized forms of densities of well-known distributions.
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2.2 Core Function of Composite Distributions

Let �S = f' : R ! Sg be a set of continuous bijective mappings. Let us speak for
simplicity about distributions F and G instead of 'P and Q with distribution functions F
and G'.

De�nition 1. Any distribution F 2 �S which is expressed in a form F = G'�1 where
G 2 �R and ' 2 �S will be called a composite distribution. Distribution G will be called
its prototype.

Denoting  = '�1, the density f of the composite distribution F = G is obviously given
by formula

f(x) = g( (x))  0(x): (7)

The following de�nition is equivalent to De�nition 2 in Fabi�an (2001).

De�nition 2. Core function of a composite distribution F = G is

TF (x) = TG( (x)) = �g
0( (x))
g( (x))

: (8)

The general forms of core functions and densities of composite distributions F with
prototypes in Table 2 are given in Table 3.

Table 3. Core Functions and Densities of Composite Distributions

Type TF (x) f(x)

U1 1
2(e

 (x) � e� (x)) 1
2K0(1)

e�
1
2
(e (x)+e� (x))  0(x)

U2  (x) 1p
2�
e�

1
2
 2(x)  0(x)

UB 1� e� (x) e� (x)e�e
� (x)

 0(x)

BU e (x) � 1 e (x)e�e
 (x)

 0(x)

B1 e (x)�1
e (x)+1

e (x)

(1+e (x))2
 0(x)

B2 2 (x)
1+ 2(x)

1
�(1+ 2(x))  

0(x)

Since  (�) is a continuous monotonous mapping  : S ! R, the types of both core functions
and densities of composite distributions remain the same as the types of their prototypes.

According to the following proposition, the core function of a composite distribution F
can be expressed without referring to its prototype by means of f and  only.

Proposition 1. [Fabi�an (2001)]. Let F = G 2 �S . Denote by f its density and by TF
its core function. It holds

TF (x) =
1

f(x)

d

dx

�
� 1

 0(x)
f(x)

�
: (9)
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Proof. Set u =  (x). By (8) and (7)

TF (x) = � 1

g(u)

dg(u)

du
= � 

0(x)
f(x)

d

dx

�
� f(x)

 0(x)

�
dx

du

and du=dx =  0(x): 2

2.3 Core Function of Parametric Distributions

Let � 2 R and � 2 (0;1) be the usual location and scale parameters. Random variable
Y with distribution G 2 �R induces a family

Y(�;�) = �+ �Y

with density g�;�(y) = ��1g(u) and core function TG�;�(y) = TG(u) where

u =
y � �

�
: (10)

(10) will be called a location and scale kernel.
Thanks to properties of  (�) there exist a random variable X(�;�);

X(�;�) =  �1(Y(�;�)):

Obviously X = X(0;1):

De�nition 3. Let F = G and � be the location of G. Parameter � of distribution F given
by

� =  �1(�) (11)

will be called a transformed location.

Using � , we can write family X�;� as

X(�;�) = X( (�);�) =  �1( (�) + � (X))

density and core function of which are

f�;�(x) = f (�);�(x) = g�;�(y) 
0(x) = ��1g(u) 0(x); (12)

TF�;�(x) = TF (�);�(x) = TG�;�(y) = TG(u); (13)

where u is given by

u =
 (x) �  (�)

�
: (14)

In the case of a composite distribution, (14) is an equivalent of the location and scale kernel
(10). It will be called a transformed location and scale kernel. It should be perhaps noted
that transformed location � is not a location parameter in the usual sense [cf. Bickel and
Lehmann (1975)].

Example 1. Gamma distribution has density

f
;�(x) =

�

�(�)
x��1e�
x:
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Reparametrizing it, one obtains

f�;�(x) =
��

�(�)

�
x

�

��
e��

x
� � 1

x

where � = �=
 is the transformed location parameter and � is a shape parameter. It holds
that f�;�(x) = g�;�( (x)) 

0(x) where  (x) = lnx and where

g�;�(y) =
��

�(�)
e�(x��)e��e

x��

is the density of the prototype distribution.

In Table 4 there are explicit forms of some mappings  : S ! R and corresponding trans-
formed location and scale kernels (14).

Table 4. Transformations  : S ! R and the Forms of Corresponding Kernels u

S  (x)  0(x) u

R x 1 x��
�

R sinhx coshx 2
� sinh

x��
2 cosh x+�

2

(0;1) lnx 1
x ln

�
x
�

�1=�
(0; 1) ln x

1�x
1

x(1�x) ln
�
x(1��)
(1�x)�

�1=�
(0; 1) � ln(� lnx) �1

x lnx ln
�
ln �
lnx

�1=�
(�1; 1) tanh�1 x 1

1�x2
1
� tanh

�1 x��
1�x�

(�1; 1) tan �
2x

�
2 (cos

�
2x)

�2 1
�

sin �
2
(x��)

cos �
2
x cos �

2
�

Transformations in 2-4 rows in Table 4 were originally introduced by Johnson (1949) and
generalized for arbitrary support by Fabi�an (1997, 2001).

In the sequel, (�S) will denote the set of distributions with support S originating from
the distributions of set �R by a mapping  �1 : R ! S: For the sake of simplicity we
introduce parameter t by relation

t =

8><
>:
� for simple distribution G�;�

� for composite distribution F�;� = G�;� :
(15)

Finally, we note that distribution Ft;� can be further provided by other (shape) parameters
c 2 (0;1)m�2 to obtain general family F� with � 2 � where

� = f(t; �; c) : t 2 S; � 2 (0;1); c 2 (0;1)m�2g:

If we speak somewhere about a distribution Ft;� with parent F , we suppose that the parent
contains, if necessary, the shape parameters.
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2.4 Basic Theorem

Consider a distribution F�. Let us remind that likelihood score of F� for parameter

 2 � is s
(x) = @

@
 ln f�(x). Theorem 1 (Fabi�an 2001) creates a basis for an interpretation
of the core function.

Theorem 1. Let Ft;� 2 �S : It holds

@

@t
ln ft;�(x) =

1

�
 0(t) TFt;�(x):

Proof. Since
@

@t
ln ft;�(x) =

1

ft;�(x)

dft;�(x)

du

@u

@t

and ft;�(x) = ��1g(u) 0(x) by (12) and @u
@t = ��1 0(t) by (14), it holds that

@

@t
ln ft;�(x) =

1

�
 0(t)TG(u) =

1

�
 0(t)TFt;�(x):

2

The core function of a distribution with partial support S 6= R and with parameter t
(for example: exponential, Weibull, log-logistic, Johnson's UB , log-normal) is thus the inner
part of the likelihood score for t.

3. CORE MOMENTS

Following Fabi�an (2001), the core functions can be used for a de�nition of alternative
moments of continuous probability distributions.

De�nition 4. Let F 2 �S with core function TF . The k�th order core moment of F is

Mk(F ) = ET kF =

Z
S
T kF (x) dF (x); k = 1; 2; ::: (16)

Proposition 2. Let G 2 �R, ' 2 �S and F = G'�1: It holds that Mk(F ) = Mk(G)
whenever one of these integrals exist.

Proof see Fabi�an (2001).

Proposition 3. Core moments of regular distributions exist.

Proof. Due to Proposition 2, it suÆces to examine only distributions with support S =
R. Let G 2 �R and T = TG be its core (score) function. By (6), the density of G is
g(y) = ce�Q(y) where Q(y) =

R
T (y) dy and c is an integration constant. Let us denote

gk(y) = cT k(y)e�Q(y). It is to prove a relation
R1
q gk(y) dy <1 for some q > 0:

The derivative of gk is

g0k(y) = ce�Q(y)T (y)k�1[kT 0(y)� T 2(y)]:

If there exists such y1 that it holds that [kT
0(y)� T 2(y)] < 0 for y > y1; gk is a decreasing

function and we can �nd such y2 that for y > y2 it holds that gk(y) < ckk.

7



Set q = max(1; y1; y2). For y > q it holds that gk(y)=ck
k < 1 and

1

ckk
gk(y) =

�
� d

dy
e�

1
k
Q(y)

�k
< � d

dy
e�

1
k
Q(y):

Thus,
R1
q gk(y) dy < ckke�

1
k
Q(y)j1q < 1: The existence of y1 follows from the existence of

�nite M2(F ), guaranteed by regularity condition (5). 2

Proposition 4. Core moments are independent of the transformed location and scale
parameters.

Proof. By (13) and (12),

Mk(F�) =

Z
R
T kG(u)g(u)�

�1 0(x) dx =
Z
R
T kG(u)g(u) du:

2

Core moments thus describe the shape of distributions. In Table 5 are given values of core
moments for parametric families listed in Table 1.

Table 5. Core Moments of Families from Table 1

F� M2(F�) M3(F�) M4(F�)

1 � �2� 3�(� + 2)

2 �2

2�+1 0 3�4

(2�+1)(2�+3)

3 �(2��1)
�+1 0 12�3(2��1)(2�+1)

(�+1)(2�+4)(2�+6)

Core moments of families from Table 1 not only exist but, in contrast with moments (1),
are expressed only by means of parameters and not of functions of parameters. Moreover,
they depend only on shape parameter (in accordance with Proposition 4). We conjecture
that they are the true numerical characteristics.

4. CENTER OF GRAVITY AND INFORMATION OF

DISTRIBUTIONS

Proposition 5. For any F 2 �S ; it holds that

M1(F ) =

Z
S
TF (x) dF (x) = 0: (17)

Proof see Fabi�an (2001).

According to this proposition, core moments are the central moments around the point
x� : TF (x

�) = 0. This point appears to be generally di�erent from the mean, mode or
median.

De�nition 5. Let F 2 �S . Point x� : TF (x
�) = 0 will be called the center of gravity of

distribution F:

By (6) and De�nition 4, the center of gravity y� of distribution G is the mode or, in
the parametric case, the location � according to (10). The center of gravity of a composite

8



distribution F�;� = G�;� is, according to (14), � =  �1(�). Parameter t introduced in
(15) is thus the center of gravity of the distribution. It remains to determine the center of
gravity of composite distribution F = G without parameter t: it is apparently the point
x� =  �1(y�): The notion of the center of gravity is thus independent of the fact whether
the distribution is parametric or without parameters.

Now we are prepared to give an interpretation of the core function:
The core function of a regular continuous distribution is the likelihood score for the center

of gravity of the distribution (whether expressed as a parameter or not). Remembering that
the in
uence function of the estimated parameter is proportional to the likelihood score
for this parameter [Hampel et al. (1986)], we suggest: The core function of a regular
distribution describes the local in
uence of value x 2 S on the position of the center of
gravity or, if suitably normed, it is the in
uence function of the center of gravity of the

distribution.

It is interesting that the square of the core function has a reasonable interpretation as
well.

A common sense of the notion information is that the information contained in an more
or less expected observation is low and, on the contrary, the unexpected observation carries
on a lot of information. In the next two propositions, a relationship between the �rst two
core moments and the information is established.

Proposition 6. Let F 2 �S . The center of gravity is the least informative point of the
distribution.

Proof. Let X be distributed by F = G . For a given  there exists a large class (�S) �
�S of composite distributions with given  . The density of F is f(x) = g( (x))  0(x). Term
 0(x) is common to all F 2 (�S) and, therefore, does not carry any information about X.
All information contained in X is thus condensed in term g( (x)). This is minimal at a
point ~x : d

dxg( (x)) = 0: By using (7), one obtains ~x : d
dx(f(x)= 

0(x)) = 0, which reduces
using (9) into ~x : �TF (x) = 0: The solution of the last equation is just the center of gravity
~x = x�: 2

Proposition 7. Let Ft;� 2 �S be a parametric distribution with parent F and Jtt(�) be
the Fisher information (2) for its center of gravity t. Then

Jtt(�) =
1

�2
 0(t)2M2(F ); (18)

Proof. By (3) and Theorem 1

Jtt(�) =
1

�2
 0(t)

Z
s
T 2
F�
(x)f�(x) dx:

By (13) and (12), Z
s
T 2
F�
(x)f�(x) dx =

Z
R
T 2
G(u)g(u) du:

Using Proposition 2 we obtain (18). 2

Corollary: Fisher information JF of a parent distribution F without parameters is JF =
 0( �1(0))M2(F ).

Consider now function iF (x) = T 2
F (x). It is a non-negative function, attaining its

minimum iF (x
�) = 0 in the least informative point of the distribution, from which it

9



increases either quickly in the cases of distributions with unbounded cores (and sharply to
zero tending densities) - for which an outlier has an immense informative value: it indicates
the necessity of a change of the model - or slowly in cases of distributions with bounded
cores (and heavy-tailed densities) - where the values far from the 'bulk' of the data are more
or less expected. Moreover, its mean value is the Fisher information.

Our opinion is that the real function iF (x) = T 2
F (x) is the information function of

distribution F , expressing the local information about the center of gravity of F , carried
by value x. Its mean value is simply the mean information about the center of gravity of
F . We conjecture that it can be considered to represent the mean information of F .

In Table 6 we compare functions � ln f(x) and iF (x) for some simple distributions with
support S = (0;1):

Table 6. Information Functions of some Distributions

Name � ln f(x) iF (x)

Wald ln(Kx) + 1
2(x� 1=x) 1

4(x� 1=x)2

Lognormal ln(
p
2�x) + 1

2 ln
2 x ln2 x

Exponential x (x� 1)2

Extreme val. II 2 lnx+ 1=x (1� 1=x)2

Log-logistic 2 ln(1 + x)
�
x�1
x+1

�2
Log-Cauchy ln� + ln(1 + ln2 x) 4 ln2 x

(1+ln2 x)2

Note that in the cases of parametric distributions, the expressions of � lnf(x) are even
more complicated. For example, for the relatively simple gamma distribution we have
� ln f(x) = �� ln
 + ln�(�) � (� � 1) lnx+ 
x; whereas iF (x) = (�x� 
)2:

5. ESTIMATES

Let us have random sample X1; :::;Xn from distribution Ft;� with support S, parent F
and unknown parameters t; �:

5.1 Sample from Normal Distribution

Let us assume that the sample is from normal distribution ��;� with density �(x) =
1p
2��

e�
1
2
(x��
�

)2 . The variance of normal distribution is �2 =
R1
�1(x � �)2�(x) dx; Fisher

information about �

J��(�) =

Z 1

�1

�
x� �

�2

�2

�(x) dx =
1

�2
; (19)

core function is T�(x) = (x� �)=� and the second core moment

M2(�) =

Z 1

�1

�
x� �

�

�2

�(x) dx = 1:

10



By Proposition 7, J��;� = 1=�2; which is in agreement with (19). The sample characteristics

are thus the sample center of gravity �̂ and the sample information Ĵ��;� = 1=s2 where s2

is an estimate of the variance.

5.2 Sample from General Distribution

For estimation of parameter �, the maximum likelihood method or some of its robust
modi�cations [Hampel et al. (1986), Jure�ckov�a and Sen (1998)] can be used. In Fabi�an
(2001), a di�erent way has been suggested: the core moment method. In a particular case
of estimating parameters t and �; it consists in the solution of a system of equations

nX
i=1

TF (ui) = 0 (20)

1

n

nX
i=1

T 2
F (ui) = M2(F ) (21)

where ui are values of the transformed location and scale kernel (14) (see Table 4) corre-
sponding to the given S: For example,

ui =

8><
>:

xi��
� if S = R and  (u) = u

ln
�xi
�

�1=�
if S = (0;1) and  (u) = lnu:

(22)

Thus the parameters are estimated so that the sample core moments match the theoretical
core moments. It has been shown in Fabi�an (2001) that the core moment estimates are
consistent and asymptotically normal, and that a suitable compromise between the eÆciency
and the robustness of the core moment estimates is easily obtainable.

For some distributions, it is possible to estimate the center of gravity without knowledge
of the scale parameter from the �rst core moment equation (20). In Table 7 we present
densities f�(x); core functions TF�(x) and the centers of gravity t of some distributions F�
and estimates t̂n of t.

Table 7. Estimates of the center of gravity of some distributions

Distribution f�(x) TF�(x) t t̂n

Normal 1p
2�
e�

1
2
(x��)2

�2
x��
� � �x = 1

n

P
xi

Lognormal 1p
2�x

e�
1
2
ln2(x=�) lnx=� � �xG = n

p
x1:::xn

Exponential ��1e�x=� x=� � 1 � �x

Extr. val. II �
x2 e

��=x 1� �=x � �xH = nP
1=xi

GIG 1
Kxe

� 1
2
(x=�+�=x) 1

2(x=� � �=x) � �x� �xH

Gumbel ex��e�e
x��

ex�� � 1 � ln( 1n
P
exi)

Lomax �
(1+x)�+1

x�1=�
x+1 1=�

P
xi=(1+xi)P
1=(1+xi)

Gamma 
�

�(�)xx
��1e�
x �( x

�=
 � 1) �=
 �x

Beta 1
B(p;q)x

p�1(1� x)q�1 p( x
p=(p+q) � 1) p

p+q �x
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In the table, GIG means the generalized inverse Gaussian distribution [Johnson, Kotz and
Ballakrishnan (1994)], � and B are the gamma and beta functions and K = 2K0(1): The
estimate of the center of gravity (the core sample mean) of lognormal distribution is the
geometric mean, the core sample mean of the extreme value II distribution is the harmonic
mean. There are some distributions with linear core functions (normal distribution with
S = R, gamma with S = (0;1) and beta with S = (0; 1)). Their centres of gravity are
the means and their sample core means are equal to the arithmetic means of the observed
values.

Denote by Jn(t) the information about the center of gravity of distribution F� contained
in a random sample X1; :::;Xn taken from F�. According to the Corollary of Proposition 7,
in the cases of distributions generated by Johnson's  , for which  0( �1(0)) = 1, information
of F� is

JF� = Jtt(�) (23)

where Jtt(�) is the Fisher information for the center of gravity. The Cram�er-Rao theorem
says that

V ar(t̂n) =
1

nJtt(�)
: (24)

Since t̂n is asymptotically normal,

Jn(t) = 1=V ar(t̂n); (25)

so that
Jn(t) = nJF� :

The Cram�er-Rao theorem can thus be interpreted in the sense that the information about
the center of gravity of a distribution F� contained in a random sample taken from F� equals
to the information of distribution F� multiplied by the length of the samples. According
to Proposition 7, a natural estimate of Jn(t) is thus, in case of a distribution with support
S = (0;1);

Ĵn(t) =
n

(�̂n�̂n)2
M2(F ):

Example 2. Let X1; :::;Xn be random sample from gamma distribution (see Example 1).
It holds (Table 7) that � = �=
 and, by Fabi�an (2001), M2(gamma) = �; so that Jn(t) =

n
(�=
)2� = n
2=�. Let n1 be the length of a sample from the exponential distribution

(� = 1; � = 1;M2 = 1), for which it can be supposed that the asymptotic relations are
approximately valid. Since Jn1 = n1; from the requirement Jn(t) = Jn1 it follows that
n = �̂n1=
̂

2.
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