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Abstrakt

The propositional tautology problem for any logic given by a continuous t-norm is coNP complete.

1. Foreword

This paper is a preliminary and incomplete version of [5]; some proofs have been omitted for the sake of
brevity, and for the same reason, it is impossible to give a full introduction to the topic. A comprehensive
treatment of the approach we follow will befound, e. g., in [4].

2. Introduction

t-algebras (or standard algebras) are a frequently used class of algebras of truth values for many-valued
logics. Each t-algebrais determined in a unique manner by a continuoust-norm on [0, 1] (hence the term).

It is known that the propositional logic BL, investigated in [4], is complete w. r. t. the tautologies of all
t-algebras. This result comes from [3]. It is also known that some t-algebras are BL-generic; [1] gives
a characterization of these. Moreover, [2] shows the tautologies of all t-algebras (or equivalently, the
propositional BL) to be coNP complete. Thus the complexity of the propositional tautology problem is
settled for BL-generic t-algebras.

Three important schematic extensions of BL, namely the logic of Lukasiewicz, of Gddel, and the product
logic, have been investigated thoroughly, and their propositional tautologies have also been proved to
be coNP complete ([4] gives further references; in particular, the coNP completeness of propositional
L -tautologies comes from [7]).

The aim of this paper isto adjust the algorithm presented in [2] and prove the following claim:
Theorem 2.1 For any t-algebra, the propositional tautology problemisin coNP.
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Once established, thistheorem settles the question of complexity of propositional tautol ogiesfor an arbitrary
t-algebra, in combination with an earlier result:

Theorem 2.2 For any t-algebra, the propositional tautology problemis coNP hard.

This comes from [2] for t-algebras starting with an L (proved via reduction of propositional L-tautologies,
prefixing a negation to each propositional variable) and from [4] for t-algebras not starting with an L
(proved viareduction of propositional Boolean tautol ogies, prefixing adoubl e negationto each propositional
variable).

Throughout the paper we use heavily the Mostert-Shields decomposition theorem for continuous t-norms,
originating in [6], and employ some rather informal notation based on it. The statement of the theorem is
that the “backbone” of any continuoust-normisformed by a countable closed subset I of [0, 1] (we usethe
term ‘cutpoints' for the elements of ), and on each of the closures of the open intervals which form the
complement of I, thet-norm isisomorphic to either Lukasiewicz, Godel, or product t-norm (on [0, 1]). For
this reason each t-algebrais an ordinal sum of copies of Lukasiewicz, Godel, and product algebras, which
we habitually call segments and denote with symbolsL, G, and IT. We stress that each copy of Godel counts
as one segment, thus, e. g., [0, 1]y.aaemn 1S at-algebrawith three segments, namely a sum of a copy of the
Lukasiewicz algebra, a copy of the Godel algebra and a copy of the product algebra; the type of the sum is
Lo GaII. We disregard the exact positioning of the set I within [0, 1].

3. Finiteordinal sums

[2] gives an NP algorithm recognizing BL-couterexamples. In fact, it shows more than that: by a trivia
maodification, for any finite sum of L-segments only, the set of its non-tautologiesisin NP,

To prove our claim for finite ordinal sums, we generalize the algorithm of [2] to recognize non-tautologies
(i.e., formulas for which there is a counterexample evaluation) in an arbitrary fixed t-algebra which is a
finite ordinal sum. Fix A assuch at-algebra, and let n beits cardinality (i. e., the number of segmentsin the
sum). For apropositiona formulap, let m = 2|p|, where || isthe number of occurrences of propositional
variablesin ¢ (som isan upper bound on the number of the subformulas of ).

What follows is, we claim, an NP algorithm which for an input formula o decides whether there is an
evauation e in A s. t. e(p) < 1. It is a modification of the algorithm of [2]: we drop, for the moment,
the step which guesses the cardinality of the sum, since A is fixed. The generalization, which adds a
check for G-segments and TT-segments, comes in the checkl nt er nal () step, which will be discussed
subsequently.

/1 algorithmfor finite sumA

{

cut poi nt Vari abl es() Introducevariableszy < --- < z, for the cutpoints of A (thus z, isintended
for 0 and z,, isintended for 1).

i nterval Vari abl es() Foreachi = 0,...,n — 1 introduce variables z; = yio < yi1 < -+ <
yim = zi+1 We cal these the variables belonging to i. By convention, two variables which are equal are
interchangeablein all contexts (thusalso z;, z;+1 belongtoi,i =0,...,n — 1).

Since the values of all subformulascould belong to a single segment and each subformulacould evaluate to
adifferent element of the segment, it is vital to have enough variablesbelongingto eachi = 0,...,n — 1.
Notethat thisis so, since each i containsm + 1 = 2|p| + 1 variables, of which two represent the cutpoints,
while the total number of subformulasis at most 2|p| — 1; so the number of variablesis sufficient for any
type of evaluation.

SetC ={z0,...,2n} U{yijli=0,...,n—1, j=0,...,m}.
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guessAssi gnnment () Guessan assignment f of variablesin C' to subformulasof ¢ (an “evaluation” of
subformulas of ¢ with variablesin C), s. t. f(y) isnot z,,.

checkExt er nal () Check external soundnessof f: if u,v € C, f(v1) = u, f(p2) = v, then

o if 1 &y isasubformulaof ¢ and, for somei, u < z; < v, then f(p1&p=2) = flp1) = u;
o if o1 — ¢y isasubformulaof p andu < v then f(p1 —= p2) = 2zy;

e if o3 — ¢y isasubformulaof ¢ and for somei, u < z; < v, then f(p2 = ¢1) = f(p1) = u.

checkl nt ernal () Check internal soundness of f for each segment. Consider the i-th segment. For
each subformula &y S.t. f(p1) = yi; and f(p2) = yir, if f(p1&p2) = yu (that is, all three variables
involved belong to 7), put down an equation y;; * ¥, = s, and for each subformulag: — @2 s t. f(p1) =
yij and f(p2) = yir, where j > k, if f(¢1 — ¢2) = ya, put down an equation y;; = yi, = yur. Check
whether these equations, together with the sharp inequalities ;o < - -+ < yim, have asolution in the i-th
segment of the sum, s. t. y;0 and y;,, evaluate to the lower and upper cutpoint of the segment, respectively.

}

Thelast check in the above algorithm isthe same asfinding a solution in the L ukasiewicz, Godel, or product
t-algebra (depending on the type of the i-th segment in A), s. t. y;0 and y;,, are evaluated by 0 and 1,
respectively. [2] presents an NP algorithm which performsthis check for L-segments, so it remainsto show
how to perform it for G-segments and for II-segments.

Observation 1 The solvability of the above system of equationsand sharp inequalitiesin G can be checked
inlinear time (w. r. t. |p|).

For the product t-algebra we use the following lemma.

Lemma 3.1 The abovementioned system of equations and sharp inequalities is solvable in II iff it has a
solution in an algebra of type L&L such that y;o iSOpqp, and y;1, . . ., yim areevaluatedin (h, 1], where h
isthe non-extremal cutpoint.

Proof: Follows from the isomorphism of the cut product algebrawith L. Anm + 1-tuple0 = ag < -+ <
ap, = lisasolutionin IT iff, introducing acut ¢ so that ay < ¢ < ay and using an isomorphism g to map
a1,..., 0, iNto (h, 1] in LeL, Of 4y, together with g(a4), ..., g(a») formasolutionin L&L. QED

Thus, to check solvability in the product t-algebra, we first eliminate al equations involving y;0; the
soundness of any such equation can be, and indeed has been in part, checked “externally”; for the remaining
cases, check, for any u, v belonging to i, that if u x v = y;0 then either u or v isy;o, that if u = v = ¥y,
(and u > v) then v is y;0, and that © = y;0 = y;0. Then we consider the remaining equations and sharp
inequalitiesin L, introducing a new inequality 0 < y;1, and check solvability of this system of equations
and inequalities using the NP agorithm for solvability in L, referred to in [2].

Finally, it isobviousfrom the construction of the algorithm that the output is‘yes' (on at |east one branch) iff
theformulay hasacounterexampleevaluationin A, i. e., isnot an A-tautology. Thusthe set of A-tautologies
isin coNP.

4. Infinite ordinal sums
Itisknown ([1]) that at-algebrais BL-generic iff it isan ordinal sum starting with an L and with infinitely

many copiesof L. Sincethe tautologies of BL are coNP complete, so are the tautol ogies of each BL-generic
t-algebra.
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Also, it is easy to see that t-algebras which are ordinal sums not starting with an L and having infinitely
many copiesof L are SBL-generic. To follow this observation, recall that a counterexample evaluation in T1
can be locally embedded into L&L. Now let A be at-algebrawith infinitely many copies of L, not starting
with an L. Assume ¢ is hot an SBL-tautology, and let B be an SBL-algebrain which ¢ does not hold. We
may assume that B is afinite sum of L’s and IT's only (thus starting with a IT). Then the counterexample
evaluation can be locally embedded in A, mapping theinitial IT segment of B to any two L-segments of A
(not necessarily adjacent), each of the following L-segmentsof B to arbitrary L segmentsof A, and each of
the following IT-segments of B to any two L-segments of A, all in increasing order w. r. t. the ordering of
theintervalsin [0, 1].

Theorem 4.1 The propositional logic SBL is coNP complete.

Proof: If ¢ isnot an SBL-tautology, then it has a counterexamplein afinite ordinal sum whose first element
isnot an L. Thus we may modify our algorithm by prefixing steps guessing the cardinality of the sum and
itstype. Let k be the number of propositional variablesin ¢.

/1 algorithmfor SBL

{

guessCardinal ity() Pickatrandomanatura n,0 < n < k + 1.

Lemma4.2 Let k bethe number of propositional variablesinaformula . If p hasan evaluatione(p) < 1
in any t-algebra, then it hasan evaluation e’ (¢) < 1 inat-algebrawhichisan ordinal sumwith cardinality
atmost k + 1.1

guesslLayout () Assigntoeachi = 1,...,n oneof the symbolsL, G, II, signifying the type of the i-th
segment of the sum, in such away that the first symbol is not an L. We use the term * constructed sum’ and
the symbol C' to denote this finite sum.

cut poi nt Vari abl es()
i nterval Vari abl es()
guessAssi gnment ()
checkExt ernal ()

checkl nternal ()

}
This modification is an NP agorithm recognizing SBL counterexamples, so the propositional tautology
problem for thelogic SBL isin coNP. QED

It remains to discuss the complexity of tautologies of an arbitrary infinite ordinal sum with only finitely
many (possibly no) copies of L.

Fix such an algebra A, denote p the number of its L-segments, and define its representation S4: a finite
sequence of length p + 1, each element S [i] determining the type of the subsum between two consecutive
L-segments (S4[0] before the first L-segment and S4[p] after the last L-segment in 4). S4[i],i = 0,...,p
is one of the following:

e () if the subsumisvoid;

IThisisjust avariant of asimilar result in [2].
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e oo if there are infinitely many G-segments (thus there is an infinite aternating subsum of G’s and
Il's);

e (for finite number p; of G-segments) a sequence S“[i] of length p; + 1, determining the number
of TI-segments between each two consecutive G-segments (also before the first and after the last
G-segment). The j-th element of the sequence, j = 0, ..., p; isanatural number in the range [0, oo].

Thisis a handy finite representation of A. Note that using S, we may introduce indices for the segments
of A inthefollowing way:

e Any L-segment is uniquely determined by a natural number in the range[1, p|.

o A G-segment iseither determined by atuple of natural numbers (i1, i>),41 € [0,p],i2 € [1,p; ], ifitis
thei,-th G-segment after the i, -th L-segmentin A, where S4[i; ] isnot oo; or, if S4[iy],iy = 0,...,p
is 0o, the G-segmentsin the i, -th subsum may be for our purposesreferred to by atuple (i;, ANY).

e A II-segment is either determined by atriple (i1, i2,i3),i1 € [0,p],i2 € [0,p;,],i3 € N, if itisthe
i3-th TI-segment after the i,-th G-segment after the i, -th L-segment in A, where S4 [i1] isnot oo and
S4T7i1][ia] isnot oo; or, if SAi1] isnot oo but SAi1][iz] iS00, i1 = 0,...,p,is = 0,...,p;, al the
IT-segments in the subsum of II's after the i»-th G-segment after the 4, -th L-segment in A may be

referred to by atriple (i1, i», ANY); or, if S4[i;]isoo,i; = 0,...,p, al the [I-segments in the i, -th
subsum may be referred to by atuple (i;, ANY).

We shall now present an NP algorithm recognizing counterexamplesin A. As before, let the input formula
¢ begiven, k be the number of its variables, and m = 2|¢|.

/1 algorithmfor infinite sumA

{

guessCardinal ity() Pickatrandomanatura n,0 < n < k + 1.

guesslLayout () Assigntoeachi = 1,...,n oneof the symbolsL, G, II, signifying the type of the i-th
segment of the sum.

We use the term ‘ constructed sum’ and the symbol C' to denote this finite sum.
/1 fromnow on the algorithmwrks with C

checkEnbeddi ng() Check whether the constructed sum is 1 — 1 embeddable into A (as a sequence
of symbols into a sequence of symbols), in such away that a potential initial L of the constructed sum is
mapped to aninitial L in A. It isvital that initial L remainsinitial in A, since otherwise a counterexample
in the constructed sum need not be a counterexamplein A.

cut poi nt Vari abl es()
i nterval Vari abl es()
guessAssi gnrent ()
checkExt ernal ()
checkl nternal ()

}

We discuss in more detail why the checkEnbeddi ng() step does not violate the NP nature of the
algorithm.
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Lemma 4.3 The embeddability of the constructed sum C' into A can be checked by an NP algorithm
(w. r. t. the length n of C).

Proof: The (nondeterministic) algorithm constructs the embedding a by assigning to each segment of C' an
index of itsimagein A, using the abovedescribed indices.

Denote max the maximum of the numbers p, po, . . ., pp, . This number is the maximum natural number
that can occur in any index guessed by the algorithm. Note that this number is independent of the input C'.
(Although some TI-segments could have indices with arbitrarily high numbers (as the third element), we
use n as an upper bound, since C' has the cardinality n, thus a suitable embedding can be always found in
an initial n-segment fragment of the infinite subsum.)

First the algorithm guesses an index for each segment of C': indices of L-segments are natural numbers;
indices of G-segments are tuples, the first element of which is a natural number and the second element
is a natural number or the symbol ANY; indices of II-segments are either tuples, consisting of a natural
number and the symbol ANY, or triples, the first and second element of which are natural numbers and the
third element is a natural number or the symbol ANY. Any number occurring in any index must be within
[0, maz].

Subsequently the algorithm performstwo checks, to find out whether there are segmentsin A referred to by
theindices (thisis checked using S“) and whether the assignment of indicesis 1-1 and increasing (w. r. t. the
ordering of segmentsin C' and in A). Both these checks can be performed in polynomial time (the detailed
proof is omitted), thus the algorithm is NP. QED

Again, it isclear that the output of the algorithmis ‘yes' (on at least one branch) iff the formulay isnot an
A-tautology, thus A-tautologies are in coNP.
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