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Abstract:

We describe a system which represents hybrid computational models as communities of cooperating
autonomous software agents. It supports easy creation of combinations of modern artificial intelli-
gence methods, namely neural networks, genetic algorithms and fuzzy logic controllers, and their
distributed deployment over a cluster of workstations.
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1 Introduction

Hybrid models, including combinations of artificial intelligence methods such as neural networks, genetic
algorithms or fuzzy logic controllers, seems to be a promising and currently studied research area [6].

We have designed a distributed multiagent system called Bang, that provides a support for an easy creation
of hybrid AI models by means of software agents. As an ‘agent’ we understand an entity, which is autonomous,
reacts to its environment in pursue of its own agenda [8]. The agent can be adaptive, or intelligent in a sense
that it is able to gather information it needs in some sophisticated way. Moreover, our agents are mobile and
persistent.

In the next section we introduce the basic ideas of Bang, section 3 outlines some agents designed in our
system and already being used, than the conclusion follows, where the current state and future work are de-
scribed.

2 Bang

Bang [1] is a library for various artificial intelligence methods and environment for hybrid AI models develop-
ment. It consists of the population of agents living in an environment. The environment provides the necessary
support for Bang’s run such as creation of agents, giving them information necessary to survive and be able to
communicate (e.g. where are other agents), distribution processes to their computational nodes (parallelism,
load balancing). It also delivers messages and transfers data.

2.1 Implementation

The current version of implementation is called Bang3. It is a group of environments for hosting common
agents. By narrowing the interfaces between an agent and an environment, respectively utility functions and an
agent, we hope to allow running one agent in several environments and to have utility functions independent
on the environment implementation.

The minimal, single-threaded, single-process, non-distributed, synchronous-only environment is called Di-
vine Offering. It is the most simple implementation of Bang environment able to run Bang3 agents. It is easy
to use as a computation library for other programs and for batch mode data processing when the suitable model
is found. It is also easily portable to a large variety of computer platforms.

The ultimate Bang3 environment, called Stronghold, is in progress. It is distributed, multi-threaded and
multi-process. It is able to run each agent in a separate process when this is desired for easy debugging or to
run more agents in one process when the highest performance is the concern.

An agent in the Bang3 is a living object. You can think of it as a object with its own thread, memories
and desires. An agent communicates with other agents using messages in a XML-derived language. We call it
“send a message”, because you prepare a message in some language and then pass it to the other agent. In fact
the implementation decides, independently of your code, whether to send messages somewhere or to simply
call the other agent’s method.

In fact an agent is represented by a C++ class derived from the parent Agent class. When a message arrives
an appropriate member function (trigger) is called.

To simplify message handling we provide an extended syntax (see figure 2.1), that allows an easy mixing
C++ code with a simple notation of XML-derived messages (trees). Our Perl preprocessor scans your source
code and generates pure C++.

2.2 Communication language

There is a need of an inter-agent communication language. The language should cover constructs for commu-
nication between agents as well as system messages and be able to describe arbitrarily structured data.

Nowadays a lot of agent communication languages appear. We were inspired by KQML [7] (de facto
standard for an agent communication) and ACL [3]. Let’s also mention XSIL [10] and PMML [4], languages
using XML for sending structured data through net.
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/* launcher code */
DefReturn OK() ( ok )
DefReturn UGH() ( ugh )

Trigger( request launch $CString::AgentName )
{

if(!CreateAgent( AgentName )) OK;
else UGH;

}

/* caller example */
CMsg mesg = BuildMsg( request launch $AgentName );
CMsg ret = Sync(pLauncher, mesg);

{ Switch ( ret ) {
Case ( ok ) : {

puts("Ok from Launcher");
}
Case ( ugh ) : {

puts("Ugh from Launcher");
}

}} //end switch

Figure 2.1: Extended syntax example.

Our language is based on XML. A message is represented by a tree of tagged nodes. The type of the mes-
sage is given by the root of the tree. There are several types of messages, namely<request>,<query>,<inform>,<ok>
(positive answer),<ugh> (negative answer, error indication).

Some messages are comprehensible to all agents (answering to them is implemented by the parent Agent
class), mostly system messages like kill (yourself),move (to another computer), and some useful messages like
ping (Are you alive?), other only to a special group of agents (e.g. neural nets).

3 Agents in Bang

Now we introduce some agents, that have already been designed by means of Bang. First of all, there are some
agents implementing fundamental components of the system. Second, there are also some AI applications,
namely an implementation of a general genetic algorithm and algorithms for learning of RBF networks [9, 2].

3.1 System agents

While environment does services necessary for the system to work, useful and less critical services are provided
by system agents. So there is a possibility of replacing a system agent with another one and thus make system
more configurable. We will mention two of the most important system agents: Yellow and White Pages.

Yellow Pages are the manager of all running agents. Each agent immediately after creation should inform
Yellow Pages about its name, identification number and capabilities. Yellow Pages are then able to find all
agent with desired capabilities.

White Pages are manager of all agent states. This allow our agent to be persistent. It stores a state of
the agent with some information about its capabilities and types. (Type is e.g. MLP, capabilities is what it is
learned for, e.g. recognition of text).

Another system agents are in development phase, e.g. load balancing agent, monitoring the load and system
configuration of the computers in the clusters and advising what computers are free and suitable for desired
computation.
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Figure 3.1: Implementation of genetic algorithm.

3.2 Genetic algorithm

The central point of the GA implementation in our system is the Genetix agent (see figure 3.2). It is the
abstraction of the GA-based solvers, concentrating the common things and leaving all the problem specific
code to the others. Genetix cooperates with several other agents: the fitness function calculating agent for
evaluating the solution of the given problem; the genetic operators agent for modifying the solution candidates;
the selector agent for easy change of the selection mechanism; and optionally with the agent tuning the GA
operators rates.

Let us try to implement a GA-based solving method of some our problem into Bang. First we need to
choose data representation of the problem solution candidates (e.g. vectors of bits or matrices of floats etc).
Next we need an operator package agent operating on the chosen data representation. Then, the selector agent
is needed, in most cases the roulette wheel agent is suitable. We also can connect to the Genetix the agent
tuning the operator rates during the learning process, but in most cases setting them manually in the user-dialog
window is sufficient. Now we have the generic GA working on the chosen data representation. The final
step is to (program and) connect the fitness function computing agent, which by giving marks to the solution
candidates directs the Genetix towards our desires.

In Bang we have a modular and open implementation of GA allowing for easy extending and code reusing
and minimizing and simplifying the task of creating the new problem GA-based solver.

3.3 RBF networks

There is a variety of learning methods for RBF networks, and in addition there are several variants of RBF
units including a choice of a radial function. We have decided to implement the RBF network as a combination
of the network agent and a family of learning agents. The network agent represents the network itself, we will
call it the RBF Agent. It is very poor at learning knowing only some simple or straightforward methods. But
it is intelligent in the way that it lets other agents do the real work. On the other hand, the learning agents do
not make any decisions about what algorithm to use for learning, but they are very good at solving the learning
problem using their own method. They can be connected to the RBF Agent and do its partial learning.

In figure 3.3 we see our agents cooperating on learning of an RBF network. Trainset is a special agent
implementing the interface to a training set. All agents can be connected to the GUI and configured through it.

In the tree-step learning method, the problems of vector quantization and least squares turn up. Therefore
we have agents for solving these particular problems. These agents are independent of a RBF network. It means
that they can be used by whatever agents that need to solve an instance of the vector quantization problem or
the least squares problem.

Another type of agents is represented by the gradient method for the 2nd step and the gradient learning.
The former is designed for setting parameters of RBF units (widths, norm matrices). It uses the gradient
method for a minimization of the error function. The latter solves the learning problem by modification of the
back propagation algorithm. They can be both used only for RBF networks, nowhere else. But they can be
configured for several purposes, they can learn all parameters, or only some of them.
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Figure 3.2: Agents cooperating on an RBF learning. Dotted arrows represent a flow of messages, solid arrows
binary data interchange.

The Genetix (described earlier) can be also useful here, using appropriate fitness agent and genetix opera-
tors. It can be used for learning all RBF network parameters or only for some of them determining the rest by
another method.

During experiments a combination of the three-step method and the gradient learning turned up to be very
powerful. Since the three-step method is rather quick, it can be used for initialization of parameters for much
slower but much more precise gradient learning.

The system described is open in the sense of adding new agents and learning methods. Any existing agent
can be replaced by a different agent with the same interface. So the learning system is hoped to be further
developed and improved.

4 Conclusion

We described the distributed multiagent system called Bang, as an open system useful for an easy creation of
autonomous software agents with respect to a design of hybrid AI models.

The system is still being developed. We have already some agents realizing particular AI methods, let us
mention genetic algorithm, group of RBF learning methods and MLP with Back Propagation [5].

In our future work we will focus on mirroring agents, parallel execution, automatic scheme generating and
evolving. Also the concept of an agent working as the other agent’s brain by means of delegating the decisions
seems to be promising. Another thing is the design of load balancing agent able to adapt to changing load of
host computers and to changing communication/computing ratio.
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