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1 Introduction

When an optimization task cannot be solved in an analytical form, one has to search for an
approximate solution. Often, such a solution depends on a large number of variables. Feasi-
bility of high-dimensional approximation is limited by the so-called ”curse of dimensionality”
[3] (i.e., an unfeasibly fast growth of the computational load with the number of variables).

Many high-dimensional problems have been effectively solved using nonlinear approxima-
tion methods such as neural networks (see, e.g., [27], [4], [28]). Their efficiency has motivated a
theoretical analysis of desirable computational capabilities of nonlinear approximators, guar-
anteeing that their complexity does not increase too fast with the dimensionality of the
problem.

Some insight into properties of sets of multivariable functions admitting such an effective
approximation has been obtained by Maurey (see [26]), Jones [12] and Barron [1], [2]. They
constructed approximants with rates of convergence of the order of O(n−1/2), which in con-
trast to curse of dimensionality rates of the order of O(n−1/d), do not depend on the number d
of variables of the functions to be approximated. Maurey-Jones-Barron upper bound is quite
general, as it applies to nonlinear approximation of the variable-basis type, i.e., approximation
by linear combinations all of n-tuples of elements of a given set of basis functions (in contrast
to classical linear approximators, which use linear combinations of the first n elements of a
basis with a fixed ordering). The variable-basis approximation scheme has been widely inves-
tigated (see, e.g., DeVore and Temlyakov [7] and the references therein): it includes splines
with free nodes, trigonometric polynomials with free frequencies, as well as feedforward neural
networks.

The upper bound of the order of O(n−1/2) on variable-basis approximation has been
improved and extended by several authors (see, e.g., Darken et al. [6], Girosi [10], Gurvits
and Koiran [11], Makovoz [21], [22], Kůrková, Savický and Hlaváčková [18]). Makovoz [21]
improved Maurey’s argument (see [26]) by combining it with a concept from metric entropy
theory and proved that for a class of neural networks that is widely used in applications,
Maurey-Jones-Barron’s upper bound cannot be improved to O(n−α) for α > 1/2 + 1/d.
A similar tightness result was earlier obtained by Barron [1], who used a different proof
technique. For the special case of orthonormal variable-bases, Mhaskar and Micchelli [23],
Kůrková, Savický and Hlaváčková [18] and Kůrková and Sanguineti [16] have derived tight
improvements, the order of O((n− 1)−1/2) of Maurey-Jones-Barron’s bound.

In this paper, we extend Makovoz’s method of comparison of covering numbers, to more
general bases. We investigate tightness of the upper bound O(n−1/2) for a basis satisfying
two conditions: (1) polynomial growth of its covering number and (2) sufficient “capacity”
of the basis, in the sense that its symmetric convex hull has either an orthonormal subset or
an orthogonal one that for each positive integer k contains at least kd functions with norms
greater or equal to 1/k. We show that for such bases, Maurey-Jones-Barron’s upper bound
cannot be improved beyond O(n−(1/2)) or O(n−(1/2+1/d)), resp. We apply these tightness
results to perceptron neural networks.

The paper is organized as follows. Section 2 describes basic concepts and notations con-
cerning approximation by variable-basis functions and presents Maurey-Jones-Barron’s upper
bound O(n−1/2) in terms of a norm, tailored to a type of basis. Section 3 contains estimates
of covering numbers of balls in such norms. Section 4 explores tightness of the upper bound
O(n−1/2). In Section 5 the results are applied to neural networks.

2 Rates of variable-basis approximation

Let (X, ‖.‖) be a normed linear space (when it is clear from the context which norm is used,
we shall simply write X), Br(f, ‖.‖) denotes the ball in the norm ‖.‖, with radius r and
centered at f ∈ X, i.e., Br(f, ‖.‖) = {h ∈ X : ‖h−f‖ ≤ r}. We write shortly Br(‖.‖) instead
of Br(0, ‖.‖). We call a subset of a Hilbert space orthogonal (orthonormal) if its elements are
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pairwise orthogonal (orthonormal, resp.). R denotes the set of real numbers and N+ the set
of positive integers.

Let G be a subset of (X, ‖.‖). For c ∈ R, cG = {c g : g ∈ G} and, for c positive,
G(c) = {wg : g ∈ G,w ∈ R & |w| ≤ c}. The closure of G is denoted by cl G. G is dense in
(X, ‖.‖) if cl G = X.

The linear span of G is denoted by span G; spannG denotes the set of all linear combina-
tions of at most n elements of G, i.e., spannG = {∑n

i=1 wigi : wi ∈ R, gi ∈ G} . The convex
hull of G, denoted by conv G, is the set of all convex combinations of its elements; convn G

denotes the set of all convex combinations of n elements of G, i.e., convn G =
{∑n

i=1 aigi :

ai ∈ [0, 1],
∑n

i=1 ai = 1, gi ∈ G
}

.

In linear approximation the approximating functions belong to a linear subspace, which
is often generated by the first n elements of a given linearly ordered set. For example, the
set of all polynomials of order at most n − 1 is generated by the first n elements of the set
{xi−1 : i ∈ N+}. Such an approximation scheme can be called fixed-basis approximation,
while in variable-basis approximation the approximating functions are linear combinations of
all n-tuples of elements of a given set G. In this case, the approximating set is the union of
all finite-dimensional subspaces generated by all n-tuples of elements of G, i.e., it corresponds
to the set spannG of all linear combinations of at most n elements of G. Variable-basis
approximation scheme includes splines with free nodes, trigonometric polynomials with free
frequencies and feedforward neural networks (see, e.g., [7] and the references therein).

In practical applications, vectors of coefficients of the linear combinations of basis functions
are bounded in some norm ‖.‖∗ on <n. So for c > 0, they belong to the set {∑n

i=1 wi gi :
gi ∈ G, ‖w‖∗ ≤ c}, where w = (w1, . . . , wn) ∈ <n. Since all norms on <n are equivalent,
there exists c′ > 0 such that ‖.‖l1 ≤ c′ ‖.‖∗, where ‖.‖l1 denotes the l1 norm on <n. Hence
{∑n

i=1 wi gi : gi ∈ G, ‖w‖∗ ≤ c} ⊆ convn G(c c′). Indeed, if f =
∑n

i=1 wigi, where ‖w‖∗ ≤
c, then f can be expressed as f =

∑n
i=1

|wi|
‖w‖l1

sgn(wi)‖w‖l1 gi, where sgn(wi) = wi

|wi| . As
∑n

i=1
|wi|
‖w‖l1

= 1 and, for all i = 1, . . . , n, |wi|
‖w‖l1

∈ [0, 1] and |sgn(wi)‖w‖l1 | ≤ c c′, f ∈
convn G(c c′). Thus it is useful to investigate approximation by sets of convex combinations
of variable-basis functions.

Often a class of approximating functions is represented as the union of a nested sequence
{Mn : n ∈ N+} of sets of functions of increasing complexity. The rate of approximation
of a function f ∈ X is measured by the decrease of {‖f − Mn‖ : n ∈ N+}. Density of⋃

n∈N+
Mn in (X, ‖.‖) guarantees that, for each f ∈ X, the sequence {‖f −Mn‖ : n ∈ N+}

converges to 0. To obtain a desired approximation accuracy for n small enough, the rate of
approximation has to be sufficiently fast. A major limitation in multivariable approximation
is the “curse of dimensionality” [3], a slow rate of approximation of the order of O(n−1/d),
where d is the number of variables (see, e.g., [25, pp. 232-233]).

In fixed-basis approximation, the nested sets Mn are n-dimensional subspaces, while in
variable-basis approximation, Mn correspond to spann G or convn G. Since spann G is the
union of all at most n-dimensional subspaces spanned by n-tuples of elements of G, it is
much larger than a single linear subspace and so it might allow faster rates than rates of
linear approximation. Similarly, approximation by convn G(c) might allow better rates for
sufficiently large c.

Description of sets of functions of d variables that do not exhibit the curse of dimensionality
in variable-basis approximation can be derived from the following theorem by Maurey (see
[26]), Jones [12] and Barron [2].

Theorem 2.1 Let (X, ‖.‖) be a Hilbert space, G its bounded subset, sG = supg∈G ‖g‖, and
f ∈ cl conv G. Then, for every positive integer n,

‖f − convn G‖ ≤
√

s2
G − ‖f‖2

n
.
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Note that this theorem gives an upper bound of the order of O(n1/2) for any number d of
variables of functions in X. Some authors even called it ”dimension-independent”, which is
misleading since with d increasing, sets cl conv G might be more and more constrained (see
[18]).

As convn G ⊆ spann G, the upper bound from Maurey-Jones-Barron’s theorem also applies
to rates of approximation by spann G. However, when G is not closed under multiplication
by scalars cl conv G is a proper subset of cl span G. Thus density of spanG in (X, ‖.‖) does
not guarantee that Theorem 2.1 can be applied to all elements of X. However, replacing G by
G(c) = {wg; w ∈ R, |w| ≤ c, g ∈ G}, for any c > 0, we get convn G(c) ⊆ spannG(c) = spannG
and so we can apply Theorem 2.1 to all elements of ∪c∈R+cl conv G(c). This approach can
be formulated in terms of a norm tailored to a set G.

Let (X, ‖.‖) be a normed linear space and G be its subset, then G-variation (variation with
respect to G), denoted by ‖.‖G, is defined as the Minkowski functional of the set cl conv (G∪
−G), i.e.,

‖f‖G = inf
{
c ∈ R+; f/c ∈ cl conv (G ∪ −G)

}
.

G-variation is a norm on {f ∈ X : ‖f‖G < ∞} ⊆ X. It has been introduced in [15] as an
extension of the concept from [1] of variation with respect to half-spaces (which was motivated
by neural networks). G-variation depends on the norm ‖.‖ on X but to simplify the notation
we write ‖.‖G, assuming that it is clear with respect to which norm G-variation is defined.

As conv (G ∪ −G) = conv G(1), we have ‖f‖G = inf{c ∈ R+ : f ∈ cl conv G(c)} and
the unit ball in G-variation, B1(‖.‖G), is equal to cl conv (G ∪ −G). For G orthonormal,
G-variation is equal to the l1-norm with respect to G [16]. For functions of one variable,
variation with respect to half-spaces coincides, up to a constant, with the notion of total
variation studied in integration theory [1].

The following upper bound is a reformulation of Maurey-Jones-Barron’s theorem in terms
of G-variation [15].

Theorem 2.2 Let (X, ‖.‖) be a Hilbert space, G its bounded subset, sG = supg∈G ‖g‖. Then,
for every f ∈ X and every positive integer n,

‖f − spann G‖ ≤
√

(sG ‖f‖G)2 − ‖f‖2

n
.

This upper bound on distance from spann G can be applied to various types of variable-
basis approximation, such as splines with free nodes, trigonometric polynomials with free
frequencies, as well as feedforward neural networks (see, e.g., [17] and the references therein).

The worst-case error in approximation of functions from a set B by elements of an ap-
proximating set M is formalized by the concept of deviation of B from M , defined as

δ(B,M) = δ(B, M, (X, ‖.‖)) = sup
f∈B

‖f −M‖ = sup
f∈B

inf
g∈M

‖f − g‖.

Maurey-Jones-Barron’s theorem implies an upper bound on deviation of a ball in G-variation.

Corollary 2.3 Let (X, ‖.‖) be a Hilbert space, G be its bounded subset, and sG = supg∈G ‖g‖.
Then, for every every positive integer n,

δ(B1(‖.‖G), convn (G ∪ −G)) ≤ sG√
n

.

In Section 4 we shall investigate tightness of the upper bound from Corollary 2.3. Assuming
that a faster rate is possible, we shall derive a contradiction with properties of covering
numbers of the unit ball in G-variation for some bases G that include those frequently used
in neural networks.
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3 Estimates of covering numbers of balls in G-variation

In this section we derive estimates of covering numbers of balls in G-variation using tools
from metric entropy theory and properties of generalized Hadamard matrices.

Recall that, for ε > 0, the ε-covering number of a subset K of a normed linear space
(X, ‖.‖) is defined as

covε(K, ‖.‖) = min
{
m ∈ N+ : K ⊆ ∪m

i=1Bε(fi, ‖.‖), fi ∈ K, i = 1, . . . , m
}

if the set over which the minimum is taken is nonempty, otherwise covε(K, ‖.‖) = +∞. A
subset {f1, . . . , fm} of K is called ε-separated if for each distinct pair fi, fj of its elements,
‖fi−fj‖ ≥ ε. The ε-packing number of K, packε(K, ‖.‖), is defined as the maximal cardinality
of a 2 ε-separated subset of K. When it is clear from the context which norm is considered,
we shall simply write covε(K) and packε(K) instead of covε(K, ‖.‖) and packε(K, ‖.‖), resp.
By the definitions and the triangle inequality, packε(K, ‖.‖) ≤ covε(K, ‖.‖) ≤ packε/2(K, ‖.‖).

To estimate deviations of balls in G-variation, we need the following lemmas. The first
one is an elementary estimate of covering numbers of balls in a norm on Rd, following directly
from a volume ratio argument.

Lemma 3.1 Let d be a positive integer, ‖.‖ be a norm on Rd and, ε > 0. Then (1/ε)d ≤
covε(B1(‖.‖)) ≤ (2/ε)d

.

Proof. Let vol denote the Euclidean volume in Rd, then for every ε > 0, vol(Bε(‖.‖)) =
εd vol(B1(‖.‖)). By the definitions of ε-covering and ε-packing numbers,

packε(B1(‖.‖)) vol(Bε(‖.‖)) ≤ vol(B1(‖.‖)) ≤ covε(B1(‖.‖)) vol(Bε(‖.‖)).

Hence, packε(B1(‖.‖)) ≤ (1/ε)d ≤ covε(B1(‖.‖)). As for every K ⊂ <d, packε(K) ≤
covε(K) ≤ packε/2(K), we have covε(B1(‖.‖)) ≤ packε/2(B1(‖.‖)) ≤ (2/ε)d

. Thus, (1/ε)d ≤
covε(B1(‖.‖)) ≤ (2/ε)d

. 2

The second lemma summarizes some relationships among covering numbers of the sets G,
G ∪ −G, and convn G.

Lemma 3.2 Let (X, ‖.‖) be a normed linear space, G its bounded subset, sG = supg∈G ‖g‖,
and let ln1 denote the l1 norm on <n. Then, for every positive integer n and every ε > 0,
(i) covε(1+sG)(convn G) ≤ (covε G)n covε(B1(‖.‖ln1

), ‖.‖ln1
);

(ii) covε(1+sG)(convn G) ≤ (covε G)n (2/ε)n;
(iii) covε(G ∪ −G) ≤ 2 covε G.

Proof.
(i) Let B be an ε-net in B1(‖.‖ln1

) with respect to ln1 and A be an ε-net in G with respect to
‖.‖. Let C be a subset of convn G formed by all elements

∑n
i=1 bi gi, where (g1, . . . , gn) ∈ An

and (b1, . . . , bn) ∈ B, i.e., C =
{∑n

i=1 bi gi : (g1, . . . , gn) ∈ An , (b1, . . . , bn) ∈ B
}

. We show

that C is ε (1+sG)-net in convn G. Let
∑n

i=1 b̄i ḡi ∈ convn G. Since B is an ε-net in B1(‖.‖ln1
)

with ln1 norm, there exist (b1, . . . , bn) ∈ B such that
∑n

i=1 (bi− b̄i) ≤ ε. As A is an ε-net in G
with ‖.‖, there exist (g1, . . . , gn) ∈ An such that for every i = 1, . . . , n, ‖gi − ḡi‖ ≤ ε. Thus

∥∥∥
n∑

i=1

bi gi −
n∑

i=1

b̄i ḡi

∥∥∥ ≤
∥∥∥

n∑

i=1

bi gi −
n∑

i=1

bi ḡi

∥∥∥ +
∥∥∥

n∑

i=1

bi ḡi −
n∑

i=1

b̄i ḡi

∥∥∥

=
∥∥∥

n∑

i=1

bi (gi − ḡi)
∥∥∥ +

∥∥∥
n∑

i=1

(bi − b̄i) ḡi

∥∥∥ ≤
n∑

i=1

|bi| ε +
n∑

i=1

|bi − b̄i| ‖gi‖

≤ ε + ε sG = ε(1 + sG).
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As card C = (card A)n cardB, (i) holds.
(ii) follows directly from (i) and Lemma 3.1.
(iii) holds since for A an ε-net in G, −A in an ε-net in −G. 2

In [21, Lemma 3] there was derived a lower bound on covering numbers of balls in A-
variation, for A satisfying a weakened orthogonality condition. More precisely, it was shown
that cov1/

√
m B1(‖.‖A) ≥ 2c m, where m = card A and c is a positive constant. The proof

of this exponential lower bound in [21, Lemma 3] exploits a result from [19] (see also [20, p.
489, Lemma 2.2]) on the exponential growth of the number of vectors in {−1, 1}m that differ
in more than m/8 entries. The following lemmas improve the bound from [21, Lemma 3],
allowing more sizes of diameters of covering sets. Their proofs follow similar steps as [21] but
they use stronger tools, namely properties of generalized Hadamard matrices.

Recall that a Hadamard matrix of order m is a set of pairwise orthogonal vectors in the
Hamming cube {−1, 1}m with a particular ordering. The concept of Hadamard matrix has
been generalized in [13] by allowing a certain tolerance in the orthogonality condition: for
ε ∈ [0, 1], an ε-Hadamard matrix of order m is an ordered set of vectors in {−1, 1}m with all
inner products of any two distinct rows in absolute value less than or equal to mε.

Let R(ε, m) denote the maximal number of rows of an ε-Hadamard matrix of order m. If
ε = s/m, then |u · v| ≤ s. The weakened orthogonality condition can also be described in
terms of Hamming distance, denoted by h and defined as the number of coordinates at which
two vectors differ. It is equal to 1/2 of the l1 norm, i.e., h(u, v) = (1/2)

∑m
i=1 |ui − vi| for

u, v ∈ {−1, 1}m. It is easy to check that, for each two distinct vectors u, v in an ε-Hadamard
matrix of order m, the Hamming metric satisfies h(u, v) ≥ m (1− ε)/2 . If ε = s/m, then
h(u, v) ≥ (m− s)/2.

The third lemma gives a lower bound on covering numbers of the unit ball in variation
with respect to an orthogonal set.

Lemma 3.3 Let (X, ‖.‖) be a Hilbert space, A its orthogonal subset, cardA = m and

ming∈A ‖g‖ ≥ a. Then for any integer s such that 1 ≤ s < m and δs = a
m

√
dm−s

2 e,

covδs(B1(‖.‖A)) ≥ R
( s

m
,m

)
.

Proof. Let A = {g1, . . . , gm} and Ms be an (s/m)-Hadamard matrix of the order m

with R
(

s
m ,m

)
rows. To verify that the set A(Ms) =

{
1
m

∑m
i=1 uigi : u ∈ Ms

}
is

2δs = 2a
m

√
dm−s

2 e - separated, we have to show that for any two distinct vectors u, v ∈ Ms ,∥∥∥ 1
m

∑m
i=1 uigi − 1

m

∑m
i=1 vigi

∥∥∥ ≥ 2δs. By the definition of an (s/m)-Hadamard matrix, we

have h(u, v) ≥ m−s
2 and so the cardinality of the set I of coordinates at which u and v dif-

fer is at least d(m− s)/2e. Thus
∥∥∥ 1

m

∑m
i=1(ui − vi)gi

∥∥∥ = 2
m

∥∥∥∑
i∈I gi

∥∥∥ ≥ 2a
m

√⌈
m−s

2

⌉
. Since

card A(Ms) = R
(

s
m ,m

)
and A(Ms) ⊂ B1(‖.‖A), we obtain covδs(B1(‖.‖A)) ≥ R

(
s
m ,m

)
. 2

A similar lower bound can be derived even if the orthogonality condition on the set A is
relaxed to ε-nearly orthogonality. A subset A = {g1, . . . , gm} of a Hilbert space (X, ‖.‖) is
called ε-nearly orthogonal if

∑m
j=1, j 6=i |gi · gj | ≤ ε, i = 1, . . . m.

Lemma 3.4 Let (X, ‖.‖) be a Hilbert space, A be its ε-nearly orthogonal subset such that
cardA = m and ming∈A ‖g‖ ≥ a, and let ε ≤ √

a. Then for each integer s such that 1 ≤ s < m

and εs =
√

a2−ε
m

√
dm−s

2 e,

covεs(B1(‖.‖A)) ≥ R
( s

m
,m

)
.
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Proof. As in the proof of Lemma 3.3, define the set A(Ms) =
{

1
m

∑m
i=1 uigi; u ∈ Ms

}
.

To show that it is 2εs = 2
√

a2−ε
m

√
dm−s

2 e - separated, we estimate from below the distance

‖ 1
m

∑m
i=1 uigi − 1

m

∑m
i=1 vi gi‖ for any pair of distinct vectors u, v ∈ Ms. Let I denote the set

of coordinates in which u and v differ, k = card I, and ζi = 1
2
√

k
(ui − vi), i ∈ I. Then ζi =

± 1√
k

, and
∥∥∥ 1

m

∑m
i=1(ui − vi)gi

∥∥∥ = 1
m

∥∥∥∑
i∈I gi

∥∥∥ = 2
√

k
m

∥∥∥∑k
i=1 ζi gi

∥∥∥. Moreover,
∥∥∥∑k

i ζi gi

∥∥∥
2

=∣∣∣∑k
i=1

∑k
j=1 ζi ζj gi gj

∣∣∣. Since
∑k

i=1 ζ2
i = 1, it is sufficient to derive a lower bound on the

function ∆(ζ1, . . . , ζk) =
∣∣∣∑k

i=1

∑k
j=1 ζi ζj gi gj

∣∣∣ on the unit sphere S1 in l2 norm of Rk. Let

DI be the k × k matrix defined by DI ij = gi gj . Then ∆(ζ1, . . . , ζk) ≥
√
|λmin(DI)| in S1,

where λmin(DI) denotes the minimun eigenvalue of DI . As |λmin(DI)| ≥
∣∣∣mingi∈A ‖gi‖2 −

∑
i∈I, i 6=j |gi · gj |

∣∣∣ ≥ a2 − ε, we obtain 1
m

∥∥∥∑m
i=1(ui − vi)gi

∥∥∥ ≥ 2
√

k (a2−ε)
m ≥ 2

√
a2−ε
m

√⌈
m−s

2

⌉
.

2

The next lemma follows immediately from Lemma 3.3 combined with the lower bound on
R (s/m,m) from [13, Theorem 3.4].

Lemma 3.5 Let (X, ‖.‖) be a Hilbert space, A its orthogonal subset such that cardA = m
and ming∈A ‖g‖ ≥ a. Then for any integer s such that 1 ≤ s ≤ m− 2,

covδs(B1(‖.‖A)) ≥ 2m−1

B(λm,s,m)
,

where λm,s = dm−s−2
2 e, B(λ,m) =

∑λ
i=0

(
m
i

)
and δs = a

m

√
dm−s

2 e.

Using the binary entropy function H(p) = −p log2(p)− (1− p) log2(1− p), 0 < p < 1, we
obtain the following lower bound.

Lemma 3.6 Let (X, ‖.‖) be a Hilbert space, A be its orthogonal subset of cardinality m ≥ 3,
such that ming∈A ‖g‖ ≥ a. Then

cova/(2
√

m)(B1(‖.‖A)) ≥ 2b m−1,

where b = 1−H( 1
4 ).

Proof. For s = bm
2 c, δs from Lemma 3.5 is equal to a

m

√
dm−s

2 e = a
m

√⌈
m−bm

2 c
2

⌉
≥

a
m

√⌈
m−m

2
2

⌉
≥ a

m

√
m
4 = a

2
√

m
. Thus cova/(2

√
m)(B1(‖.‖A)) ≥ covδbm/2c(B1(‖.‖A)). By

Lemma 3.5, covδbm/2c(B1(‖.‖A)) ≥ 2m−1 /B
(
λm,bm/2c,m

)
. As λm,bm/2c =

⌈
m−bm

2 c−2
2

⌉
=⌈

m
2 −2

2

⌉
≤ m

4 , we can use the estimate B(λ,m) ≤ 2mH(λ/m), which is valid for λ < m/2 [8, p.

44]. As the entropy function H is increasing on the interval (0, 1/2), we have

cova/(2
√

m)(B1(‖.‖A)) ≥ 2m−1

2
mH

(
λm,bm/2c

m

) ≥ 2m−1 2−mH(1/4) = 2m (1−H(1/4))−1 = 2mb−1,

where b = 1−H(1/4) ' 0.085. 2

In some cases of interest (see Section 5), the unit ball in G variation has no orthonormal
subset, but it has an orthogonal subset that contains for each positive integer k “sufficiently
many” elements with norms greater than or equal to 1/k. In [17] there was defined the concept
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of a set not quickly vanishing with respect to a positive integer d as a subset A of a normed
linear space (X, ‖.‖) such that A = ∪k∈N+Ak, where, for each k ∈ N+, cardAk ≥ kd and for
each h ∈ Ak, ‖h‖ ≥ 1/k. The last lemma in this series follows directly from Lemma 3.6.

Lemma 3.7 Let (X, ‖.‖) be a Hilbert space, A be its orthogonal subset not quickly vanishing
with respect to a positive integer d, and r > 0. Then, for every positive integer k ≥ 3,

covεk
(B1(‖.‖ 1

r A)) ≥ 2b kd−1,

where εk = 1
2 r kd/2 + 1 and b = 1−H(1/4).

4 Tightness of the upper bound O(n−1/2)

We shall investigate tightness of Maurey-Jones-Barron’s upper bound from Corollary 2.3 by
assuming that there exists a better bound and deriving its consequences on the behavior of
certain covering numbers of balls in G-variation. These numbers must be “small” when such
a hypothetical better bound exists and ε-covering number of G grows at most polynomially
with 1/ε. On the other hand, when a ball in G-variation contains either an infinite orthonor-
mal or an orthogonal set not quickly vanishing with respect to d, such covering numbers
must be “large”. So it is not possible to improve Maurey-Jones-Barron’s upper bound when
covering numbers of G grow polynomially and G contains an infinite orthogonal subset with
“sufficiently large” norms.

For f, g : N+ → N+ , g(k) = O(f(k)) means that there exists c > 0 such that, for all but
finitely many k ∈ N+, g(k) = c f(k). Analogously, g(k) ≤ O(f(k)) means that there exists
c > 0 such that, for all but finitely many k ∈ N+, g(k) ≤ c f(k). First, we consider the case
when a ball in G-variation contains an infinite orthonormal set.

Theorem 4.1 Let (X, ‖.‖) be a Hilbert space and G be its bounded subset such that
(1) there exists a polynomial p such that, for every ε > 0, covε(G) ≤ O(

p
(
1/ε

))
;

(2) there exists r > 0 such that Br(‖.‖G) contains an infinite orthonormal set A.
Then

δ(B1(‖.‖G), convn(G ∪ −G)) = O(n−
1
2 ).

Proof. Assume that there exist α > 1/2 and c > 0 such that, for all but finitely many
n ∈ N+,

δ(B1(‖.‖G), convn (G ∪ −G)) ≤ c

nα
. (4.1)

Set sG = supg∈G ‖g‖ and η = (1+sG)c
nα . We shall derive a contradiction by comparing an

upper bound on covηB1(‖.‖G) (obtained from the assumption (1) and this hypothetical upper
bound) with a lower bound on the same covering number (obtained from the assumption (2)
and Lemma 3.6).

By (4.1), the triangle inequality, and Lemma 3.2 (ii) and (iii), we get

covηB1(‖.‖G) ≤ covη/2convn (G ∪ −G) ≤ (2 covη/(2(1+sG))G)n

(
4(1 + sG)

η

)n

,

which gives an upper bound on covering numbers of balls in G-variation

cov(1+sG)c/nα(B1(‖.‖G)) ≤
(

8
c

)n

nαn(covc/2nαG)n. (4.2)

On the other hand, using assumption (2) set Ar = (1/r)A, where A is orthonor-
mal and Ar ⊂ B1(‖.‖G). By Lemma 3.6, for each positive integer m ≥ 3 we have
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cov1/(2r
√

m)(B1(‖.‖G)) ≥ 2b m−1. Set m̄ = (1/2η r)2. If m ≤ m̄, then η = (1 + sG)c/nα ≤
1/(2r

√
m) and so covη(B1(‖.‖G)) ≥ cov1/(2r

√
m)(B1(‖.‖G)). As for every real number x ≥ 2,

bxc ≥ x− 1 ≥ x/2, we have 2b bm̄c−1 ≥ 2b m̄/2−1. Thus, we obtain the following lower bound

2cd n2α−1 ≤ cov(1+sG)c/nα(B1(‖.‖G)), (4.3)

where cd = (b/2)
(
2 (1 + sG) c r

)−2
.

The inequalities (4.2) and (4.3) give for all but finitely many n ∈ N+

2cd n2α−1c ≤
(

8
c

)n

nαn(covc/2nαG)n. (4.4)

Taking the logarithm of both sides of (4.4), we get

cd n2α − 1 ≤ 3n− n log2 c + α n log2 n + n log2

(
covc/2nαG

)
. (4.5)

For α > 1/2, the left-hand side of this inequality has order of infinity 2α > 1. Hence, the
right-hand side must have order larger than 1. Its first two terms have order 1 and its third
term has order smaller than every real number larger than 1. Hence, if (4.5) holds, the third
term of the right-hand side must satisfy O(n2α) ≤ n log2 (covc/2nα G). Setting ε = c/2nα,

we get O(
2(c/2ε)β )≤ covε G, where β = (2α− 1)/α > 0 (as α > 1/2). This contradicts the

assumption (1). 2

Even when no ball in G-variation is “large enough” to contain an infinite orthonormal
subset, there might exist a ball containing an orthogonal subset, not quickly vanishing with
respect to a positive integer d (see Section 5 for examples of such sets).

Theorem 4.2 Let d a positive integer, (X, ‖.‖) be a Hilbert space and G be its bounded subset
satisfying the following conditions:

(1) there exists a polynomial p such that for every ε > 0, covε(G) ≤ O
(
p
(

1
ε

))
;

(2) there exists r > 0 such that Br(‖.‖G) contains a set of orthogonal elements which is not
quickly vanishing with respect to d.
Then

δ(B1(‖.‖G), convn(G ∪ −G)) ≤ O(n−α) implies α ≤ 1
2

+
1
d
.

Proof. Assume that there exists α > 1
2 + 1

d such that, for all but finitely many n ∈ N+,

δ(B1(‖.‖G), convn(G ∪ −G)) ≤ c

nα
. (4.6)

Set sG = supg∈G ‖g‖ and η = (1+sG)c
nα . As in the proof of Theorem 4.1 we shall derive a

contradiction by comparing an upper and a lower bound on η-covering number of the unit
ball in G-variation.

By (4.6), the triangle inequality and Lemma 3.2 (ii) and (iii), we get

covηB1(‖.‖G) ≤ covη/2convn(G ∪ −G) ≤ (2covη/(2(1+sG))G)n

(
4(1 + sG)

η

)n

.

Hence we obtain an upper bound

cov(1+sG)c/nα(B1(‖.‖G)) ≤
(

8
c

)n

nαn(covc/2nαG)n. (4.7)

Let A be an orthonogonal set not quickly vanishing with respect to d such that Ar =
(1/r) A ⊆ B1(‖.‖G). By Lemma 3.7, for every positive integer k ≥ 3 and εk = 1

2 r k
d
2 +1

,
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we have covεk
(B1(‖.‖A)) ≥ 2b kd−1. Hence covεk

(B1(‖.‖G)) ≥ covεk
(B1(‖.‖Ar

)) ≥ 2b kd−1. If

k ≤ k̄ =
(

1
2η r

) 2
d+2

, then η = (1 + sG)c/nα ≤ εr and so covη(B1(‖.‖G)) ≥ covεk
(B1(‖.‖G)).

As for every real number x ≥ 2, bxc ≥ x− 1 ≥ x/2, we have 2b bk̄dc−1 ≥ 2b k̄d/2−1. Thus, we
obtain the following lower bound

2cd n
α 2d

d+2−1 ≤ cov(1+sG)c/nα(B1(‖.‖G)) (4.8)

where cd = b
2

(
1

2(1+sG) r c

) 2d
d+2

.

The inequalities (4.7) and (4.8) give for all but finitely many n ∈ N+

2cd n
α 2d

d+2−1 ≤
(

8
c

)n

nαn(covc/2nαG)n. (4.9)

Taking the logarithm of both sides of (4.9), we get

cd nα 2d
d+2 − 1 ≤ 3n− n log2 c + α n log2 n + n log2 (covc/2 nαG) (4.10)

If α > 1/2 + 1/d, then the left-hand side of (4.10) has order of infinity 2d α
d+2 > 1. Its first

two terms have order 1 and its third term has order smaller than every real number larger
than 1. Hence, if (4.10) holds, the third term of its right-hand side must satisfy O(nα 2d

d+2 ) ≤
n log2 cov(c/2nα) G. Setting ε = c/2nα, for all α > 1/2 + 1/d we get O(

2(c/2ε)β )≤ covε G,
where β = 2d

d+2 − 1
α > 0. This contradicts the assumption (1). 2

Inspection of the proofs of Theorems 4.1 and 4.2 shows that the critical value of α is 1/2,
1/2 + 1/d, resp. With d increasing, the second critical value, 1/2 + 1/d, approaches the first
one, 1/2, which, as expected, corresponds to Maurey-Jones-Barron’s bound.

5 Application to distributed computing

Maurey-Jones-Barron’s theorem has been used by many authors to estimate complexity of
nonlinear approximators used in distributed computing such as feedforward neural networks.
The simplest type of a feedforward network is a one-hidden-layer network, whith a single
linear output unit, which computes functions of the form

∑n
i=1 wiφ(ai, .) , where n is the

number of hidden units, φ : Rp × Rd → R is the hidden unit function, and p, d denote the
dimension of the parameter and the input space, resp..

Denote by Gφ =
{

φ(a, ·) : a ∈ Rp
}

the parametrized set of functions computable by

the unit φ. A single linear output network with n hidden units φ and d inputs computes
functions from spann Gφ and so approximation by neural networks belongs to the variable-
basis approximation scheme. By ‖.‖Gφ

is denoted variation with respect to the set Gφ.
Widespread computational units are perceptrons. A perceptron with an activation function

ψ : R → R computes functions of the form φ((v, b), x) = ψ(v ·x+ b) : Rd+1×Rd → R, where
v ∈ Rd is an input weight vector and b ∈ R is a bias. By

Pd(ψ) =
{
f : [0, 1]d →R; f(x) = ψ(v · x + b), v ∈ Rd, b ∈ R}

we denote the set of functions on [0, 1]d computable by ψ-perceptrons. The most common
activation functions are sigmoidals, i.e., bounded measurable functions σ : R → R such that
limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1. The discontinuous sigmoidal defined as ϑ(t) = 0 for
t < 0 and ϑ(t) = 1 for t ≥ 0 is called Heaviside function.

Let ‖.‖Pd(σ) denote variation with respect to sigmoidal perceptrons with d inputs. As the
set Pd(ϑ) of functions computable by Heaviside perceptrons is equal to the set of characteristic
functions of half-spaces of Rd restricted to [0, 1]d (note that ϑ(v · . + b) restricted to [0, 1]d is
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equal to the characteristic function of {x ∈ [0, 1]d : v · x + b ≥ 0}), we shall write Hd instead
of Pd(ϑ). Hd-variation will be called variation with respect to half-spaces, denoted by ‖.‖Hd

.
Corollary 2.3 implies that all functions with Gφ-variation at most c can be approximated

within sGφ
c n−1/2 by neural networks with n hidden units φ. When Gφ satisfies the assump-

tions of Theorems 4.1 or 4.2, this bound is tight. The following proposition shows that the
second condition of Theorem 4.2 is satisfied by sigmoidal perceptrons.

Proposition 5.1 Let d, n be positive integers and σ : R→ R be a sigmoidal function. Then
in (L2([0, 1]d), ‖.‖2), the ball B1(‖.‖Pd(σ)) contains an orthogonal subset not quickly vanishing
with respect to d.

Proof. It follows from [14, Prop. 3.3] that for every sigmoidal function σ, B1(‖.‖Pd(σ)) ⊇
B1(‖.‖Hd

). Thus it is sufficient to show that B1(‖.‖Hd
) contains an orthogonal subset not

quickly vanishing with respect to d. The following construction of such a subset was used
in [2], [21], and [17]; we report it here for reader’s convenience. For v = (v1, . . . , vd) ∈ Rd

+,

set hv(x) = cv sin(πv · x) : [0, 1]d → R, where cv = d
√

2/(d∑d
j=1 vke). Let Ad = ∪k∈N+Ad,k,

where Ad,k = {hv; v ∈ {1, . . . , k}d} ⊂ (L2([0, 1]d), ‖.‖2). For any positive integer d, Ad is
contained in the ball of radius 2 d

√
2 in Hd-variation, i.e., Ad ⊆ B2d

√
2(‖.‖Hd

), and Ad is
orthogonal not quickly vanishing with respect to d. 2

It was shown in [21, Lemma 2] that for σ either Heaviside or Lipschitz sigmoidal that
is “similar” to Heaviside, covε(Pd(σ) = O(p(1/ε)), where p is a polynomial. Theorem 4.2
combined with this estimate of covering numbers gives as a corollary the impossibility of
improving Maurey-Jones-Barron’s upper bound from Corollary 2.3 for perceptron networks,
which was earlier proved in [1] and [21]. In [1], this tightness result was derived using a
probabilistic argument, while the proof in [21] is based on covering numbers combined with
an analogous result as our Theorem 4.2 stated only for sigmoidal perceptrons satisfying the
conditions above.
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