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1 Introduction

In this report we deal with problem of finding tracks in full scan TRT. The tracks looked for are
circular tracks either going from the origin (primary vertex) or circular tracks having radius smaller
than is the distance of tracks’s centre from the origin.

The tracks of the second kind may originate from lot of different processes, and among them from
Bremstrahlung phenomenon. To isolate a case of Bremstrahlung it is necessary to find both parts of
the track — the fast one, which can be found in silicon detector and the second one, slow, which is
usually visible in TRT. Our searching of Bremstrahlung tracks is based on finding slow part of track
in TRT, then forming hypotheses for fast part of the track and finally in approving some of these
hypotheses using hits in silicon detector.

Using data from TRT detector only the algorithm forms hypotheses for the first part of the track
giving possible approximate values of pry (up to 6 values). Also corresponding angles of hits in
individual silicon layers and starting angles are computed.

In the second part the algorithm approves or rejects the track hypotheses leaving at most one (the
best) for each track.

The point of view to the problem of finding tracks is more geometrical than physical. Of course,
there is simple relation of circle radius R and transversal momentum pr of electron or positron moving
in magnetic field 2 tesla in ATLAS detector [1]

pric.v] = 0.006R[cp,). (1.1)

In discussion of method and its testing we limit ourselves to barrel only, more exactly, to one half
of barrel.
For searching tracks in TRT several methods are known:

e methods based on Kalman filter [2] [3] [4]
e histogramming method [2]
e method used in Alice detector [5], [6]

To identify Bremstrahlung, the wave algorithm [7] has been used.

2 Problem formulation

Given TRT barrel geometry (i.e. radii of straw layers, angular position of the first straw in each
layer) and list of hits for each event. The straws are ordinarily numbered from 1 to approx. 50.000
starting from inner layer successively one by one to the outer layer. In the list of hits there is ordinal
number of hitted straw and intensity of hit—either 1 (low) or 2 (high). The list may contain a drift
time, but we do not use it. For testing using simulated data there is also KINE number of the track
to which particular hit belongs.

For each event there should be also data from silicon detector — similarly as in TRT: geometry
parameters and list of hits with necessary parameters. The task is to reconstruct tracks. It means
to find for each track a set of hits which form it and state global parameters of the track

e pr (or radius R, see (1.1)),
e the angle of the track in the origin, if it is a single track coming from origin (primary vertex),
e or the distance p of the centre from origin if p > R.

In the last case it is assumed that track identified is the slow part of track after Bremstrahlung.
Based on p and R we have to form hypotheses for possible fast (the first) part of track — i.e before
Bremstrahlung arise.

If Si detector data are given, we have to test these hypotheses with respect to data, approve valid
hypotheses and give more exact parameters of Bremstrahlung track, especially pri, initial angle prs,
Bremstrahlung point, and, finally, list of hits in Si detector and in TRT which form such a track.



3 Method

The method used is based on wave algorithm [7] in its part of searching track candidate. When the
track candidate (the set of hits possibly forming a track) is found, it is tested by new approach. This
approach is essentially different from approach in the report cited, where assumption that the track
goes through the origin (primary vertex) has been used.

3.1 OQutline of the procedure

1. Find a set of hits in TRT, which form (possibly) a circular track. This set of hits we call simply
a track candidate. The track candidate must obey some simple rules as to have enough hits
or do not have ”breaks“-missing hits in more than - say - in 10 successive layers. For details see

[7].

2. Test the track candidate for circularity without prior assumption that track goes through the
origin. The computation will give several values

e track radius Rs
e track radius error AR»

e distance py of centre of the circle from the origin
3. When evaluating these values one can get

e py < R2 (with respect to track radius error, i.e. more exactly p» < Ro + AR2). Then the
origin lies inside the circle and the track candidate cannot form a track we are searching
for.

e po > Ry. Then if

— ARs < Straw Radius, the error is small enough to accept track candidate as a track.
Two cases are possible:
* Either | Ry —p2| <Straw Radius, then we consider the track as a track going through
origin,
x or pg > Ry + ARy and then it can be a track after Bremstrahlung. In this case
the first part of track (from origin to Bremstrahlung point) is looked for
— AR, >Straw Radius. Then the hit from track candidate which has the largest error
is omitted from the track candidate. Then the parameters Ry, AR, po are computed
again and newly evaluated according to this procedure.

3.2 Procedure details
3.2.1 Track tolerance, worst case and statistical hit error

From TRT geometry[1] follows that average distance of axes of neighbour straws in given layer is 0.67
cm (0.66-0.68 cm). Straw diameter is 0.4 cm, but evaluating drift values one can find, that radius is
a little bit smaller — straw radius is 0.1949 cm (maximal value of drift time). If there is a hit then
a particle went around the centre of hitted straw in tolerance less than 0.1949 cm from one or other
side.

From it follows simply, that if given a circle, the hits can be accepted if a distance of centre of
corresponding straw from the circle is less than 0.1949 cm. If not, the hit is rejected, i.e. excluded
from track candidate. If the track candidate is formed of only good hits (i.e. hits belonging really to
the track), then worst case error is just 0.1949 cm — we consider the track as practically perpendicular
to the circle of straws in a layer:

€worst case = Fstraw:

where Rgirqayw is effective straw radius, i.e.Rgtpqw =0.1949 cm.



The position of straw with respect to real track is random. If only good hits are considered,
the individual deviations of straw centers from the track may vary from —Rgtrqw t0 +Rgiraw With
homogenous distribution. Let us consider L; norm for deviation. Then mean error in this norm is

1
€L, = §Rstraw-

One can consider Lo norm, and in this case

1

€Ly, = gRstraw-

In fact, we found that the tracks in simulated events are a little broader than it corresponds to
this case. In fact, electron of py > 0.5GeV never hits two neighbour straws in one layer. On the
other hand it hits straws which have distance of its centre from ideal track larger than Rgtpaw- It
corresponds to Rgtraw larger than 0.1949 cm. Then we must use in these consideration Rgiraw @
little hit larger than 0.1949 cm: 0.3 cm.

3.2.2  Circular regression

Let n points be given in a plane in polar coordinates (p1, ¢1), (p2, d2), ... (pn, ¢n). These points we
wish to approximate by a circle so that the error measured as suitable measure of distance of points
from the approximating circle was minimal. The circle k& looked for is given by its radius R and centre

S = (p,9), then k = (R, p, ).

Fig. 1

It holds (see Fig. 1) @ = ¢; — ¢ and according to cosinus theorem in triangle OS; there is

R? = p? 4+ p® — 2pipcos a. (3.1)
We define an error by formula

n

e=> (R} — R’ (3.2)

i=1
and let A; = R? — R?. (The error is then measured by sum of distances squared and the distance

we measure not by difference but by difference of squares; nonetheles | 4;| is a metrics).
As there is



one can write R; = R + §;, where ¢; is small number with respect to R, |§;| < R. Then
R? — R? = 2R6; + 67
and with sufficient exactness

R? — R* = 2R¢;. (3.3)

Because R is a constant then, under the assumption that §; is a small number, it is a linear
relation. In (3.1) we have then standard sum of squares of differences of the second power of track
radius because with respect to (3.2) there is

e=4R>) 4;. (3.4)
i=1
Function € = €(R, p, ¢) is continuous and differentiable. To find its local minimum, we find its

partial derivatives with respect to R,p,¢ and formulas found we set equal to zero. We will get
successively (we write ) instead of Y1 ):

e= [p} +p° — R = 2pipcos(¢; — §)]".

g_; = ) 24,(-2R)
g_; - Z 24:(2p — 2p; cos(¢; — B))
g_; = Z 24;(—2pipsin(¢; — @))

these derivatives are equal to zero in local minimal. Then

> 4;=0 (3.5)
> Ailp— picos(ds — ) =0 (3.6)
> Ailp— pisin(g; — ¢)) = (3.7)
We rewrite (3.5) using (3.4) in form:
> Aipicos(¢i — ¢) =0 (3.8)

Using formulas for sinus and cosinus of difference of angles we get equations (3.5) a (3.6) in form

cos ¢ Z A;pi(sin ¢; + cos ¢;) + sin ¢ Z A;pi(sing; —cosg;)) = 0 (3.9)
cos¢ZAipi(sin ¢; — cos @) + sin¢ZAipi(sin ¢; + cos ¢;) 0 (3.10)

From sum and difference of equations (3.8) a (3.9) one gets after a little algebra
Z A;pi(sing; —cosg;)) = 0 (3.11)
> Aipi(sing; +cosg;) = 0 (3.12)
Let us denote

a; = pPi (sin ¢z — COS ¢z)
b; = pi(sin ¢; + cos ¢;).



Then the equations (3.4), (3.10) and (3.11) can be rewritten in matrix form:

n Y.picosg; Y pising; p> — R? -0
Yai Y aipicosg; Yaipising; |- | 2pcos¢p | = | = pia? (3.13)
Y bi Y bipicosd; Y bipising; 2psin¢ - pib;

Solving these equations we should get

P2 -R* = A= b1
2pcos ¢ B =0,
2psing = C =pfs (3.14)

and from it

1
5 B? + (C?, R=+/p>— A, cos¢p = B/(2p).

The system (3.12) can be considered as sum of n equations in form

1 picosg;  pising; A —p;
a;i apicosg; apising; |- | B | =| —aip? (3.15)
bi  bipicosg; bip;sin; C —bip;

All these equations are singular because the second and the third row are multiples of the first row.
For equation (3.12) it does not hold generally but it will be bad conditioned equation. For this reason
we consider only the first equation of (3.14). Such equations one can write n and it is possible to write
them in standard form of system of linear regression equations with respect to vector 3 = (A, B, C)*:

X -B=uy.
Solving it we will get (under assumption of regularity of matrix X*X):
B=(X'X)"'X1y.

Error estimations: For estimation of error of regression coefficients the theorem holds [8], [9].
Lemma: Under assumption of linear independent columns of matrix X it holds:

1. regression coefficients 8 = (81, B2, - . - B,) are normally distributed

2. regression coefficients have variance matrix

o (XtX)™! (3.16)
3. unbiased estimation of parameter o2 is
S,
2 e
= 3.17
T (3.17)
where
Se=(y—y)(y—y)=y'y- X, (3.18)
and where y' = Xf.
Lemmal8], [9]
Let v;; be element of matrix
(X'x), (3.19)

1,7 =1,2,...m. Then random variable



T; = (bi — Bi) V' s*vii
has distribution ¢,_,,.
Lemma [8]: The half width of confidence interval on level 1 — « for §; is

ki

) < trom(a) - /S04,

We set (3.16) and (3.18) to (3.19) and thus we have just all m values k;/2.
In our case m = 3 (R, p, §).

For practical computation we use formula (3.19) and assumption that ; is normally distributed
and its o correponds to half width of confidence interval on level 0.683 = 1 — 0.317; « = 0.317, then

ag; S tr—m(0-317)\/ SQU“’

here for r = m > 7 value of T}._,,(0.317) is between 1 and 1.0767. In the following we use value 1,
then

(3.20)

o = /8%,

where we use for v;; eq. (3.18) and for s? successively (3.17) a (3.16).
We will get o; for A,B,C and we recompute them to ¢,,0r, 04 using assumption that o is small
enough with respect to mean value and curvature of the function near mean value is small so that

distribution will keep its normality after transformation, and only the mean value and o will be
changed.

Then after a little algebra

dp B
OB  4p
op  C
a0z 4p
Bop Coco
2 _ 2 2
i‘”’ and (’:1"“ are marginal distributions to corresponding directions.
p p

OR

g _ P
ap R
oR _ 1
A 2R
p oA
o = (E02)2+(ﬁ)2

B
¢ = arccos—
2p

9 _ -1 1
B i@y
9 _ B
ap 2p2 /1_(%)2
-1 B
7 = (e 0p0)?  (— 0,
0] pPB p
20\ /1= (B 250\ /1— (B)°



1 B
2 2 2
o, = ————— (05 + —0,)
T A= () 2
1 B2
2 _ 2 2
% = 4p° — B2 (05 + 02 Tp)s

and, at the same time, the following condition must hold:
p® > B2

We are interested in circle radius which corresponds to tangential momentum pp of a particle
according to formula

pr = 0.006R,
and tangent angle v of the track in the point nearest to the origin. In Fig. 2 is seen that it holds

b=¢+m/2
8
R
” P=p+m2
@
0 \
Fig. 2

Circular regression - simplified case when the approximation circle goes through the origin.

If the approximation circle goes through the origin, then the distance p of the centre from the
origin is equal to radius of the circle R. Equation (1.1) changes its form to

R? = p? + R> — 2p;Rcos a. (3.21)
Then there is

n
€= Z(Pf — 2p;R cos a)?
i=1
and

A; = pi(pi — 2R cos ).

Instead of three unknown variables we have two only, R and ¢. It holds

0 Z
0



and we get a system
Yoai Y aipicosgi Y aipising; \ [ 2pcos¢ \ _ [ = pia7
Y bi Y bipicosd; Y bipising; 2psing )\ = pib}

From it we should get values of

2pcos¢p =B
2psing =C (3.22)
and finally
1
p:§\/32+02, cos ¢ = B/(2p)

and due to assumption mentioned there is R = p. For different angle v of the track and momentum
pr it holds

T
Y = o+ 5
pr = 0.006R.

With respect to badly conditioned system matrix we use again linear regression.

The sign of track radius: Let us introduce following convention. Let ¢ be angular position of
the centre of the circle which approximates the track, and «a be the angular position of last (most
outer) hit. Then if

™
) §>

then R > 0, else R < 0. (It is understood that A¢) is minimal oriented angle between circular
track centre and the last hit of the track, see Fig. 3.

NAp=¢—a€ (0

Fig. 3



3.2.3 A little pessimism about error

Let us consider three hits only: the first (1), medium hit (2) and the last hit (3), and let straw diameter
be taken into account. Then we can construct three circles as shown in Fig. 4.

Fig. 4
In Fig.5 is easily seen that
R
sinvy, = 4 sina:%
sin’ym:Rd. Ym = Vs t @
min

Form it, after a little algebra and using approximately cosa = 1,cosys; = 1 we get

sinys 1
Sin Y, 1+ 2R_Rs2traw

d
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On the other hand simply
sinys  Rmin
sinv, R

and combining last two equations there is

R
R iy =
min 1+ 2R7R32traw
Similarly we get
R _ R
max = _ B-Rstraw
1 5
In the end
4R*Rds2trmz
R — Ry =2 =2-R .
max min €R 1_ 4(R’Rds2traw )2
Example:
1
d~ 5(106 —56)em = 25¢m, R ~ 100em, Rgtraw ~ 0, 2cm.
Then

er = 12.8¢cm.

The worst case error of track radius is then rather large, nearly 13% and thus it has no sense to use
it for any other estimation. Similarly one cannot use regression model error which is approximately
of the same size.

Therefore, we will use the regression approximation of circle centre coordinations as ”good” (fixed
centre assumption), and we will compute average distance of all track candidate hits as track radius.
Then individual deviations of hits from this average radius can be computed and finally we can get
mean quadratic error of radius. This error is two orders of magnitude less than error of regression
approximation or than worst case error. Moreover, knowing individual deviations of hits, one can
exclude hit having largest deviation in process of ”clearing“ the track candidate, see Chap. 3.2.6.

3.2.4 Considerations about regression error
Using fixed centre assumption, the individual error of i-th hit is
€ = R? — R?,

where
R; = p} + p* = 2pipcos(¢; — §) (3.23)

(see(3.1)). Note that €; has dimensionality cm?. The mean quadratic error of squared track radius is
given by

2 _
€y =

S|

Z(Rf - R?).

Let
Ri= R+6 (3.24)

where ¢; is individual deviation of i-th hit from mean track circle. Then
€; = R? — R*> = 2Ré; + 67 ~ 2R¢; (3.25)

and then
€;

(3.26)



11

The mean value of €;,i = 1,2, ..., n is the mean quadratic error ¢y of RZ. Due to (3.26), the mean
value of 9;,i =1,2,...,nis
5o = S0
T 2R
and 0y is mean quadratic error of track radius R (with uncertainty given by approximation used
in (3.25)).
For practical computation we use relation
11
0o = =—.|— R? — R?)2.
o 2R n 7;21( 7 )

Transversal momentum error The mean quadratic error dg of track radius R gives, at the
same time, the mean quadratic error of p;, due to formula pr[GeV] = 0.006R[cp,}, then 6pp 0.y =
0.00660[c1r)-

3.2.5 C(leaning the track

In cleaning process we exclude from track candidate successively hits with largest individual error
until for all remaining hits absolute individual errors are less than straw radius:

0; = Rgtraw

2,..., Ny of remaining hits of track candidate. The individual errors d; follow from (3.24) using

One bad hit case: Let in the track candidate be n ”good” hits and one bad hit. The good hits
in average correspond to radius R. The bad hit to the radius, say, R + §. The radius R’ computed
from all n + 1 hits will be

)

1
_n+1(n +R+9) +n+1'

From it follows that for large n we need not count essential influence of one hit to track radius R.
Let 2J be approximately span of straws in a layer and 0 = 2Rt 4w, see Fig 6.

Then
J _ 2Rstraw _

n+1  n+l

Minimal number of hits in track must be N,;;,. The largest § will be

5= Rstraw
Nmin +1
and for Njji, =10 6 = 0.1 Rgtraw = 0.02cm. It is seen, that bad hit near the track can cause

only very slight error in track radius or in pr.

Cleaning procedure:

1. Given track candidate.
2. Compute track parameters R, p, ¢.
3. Compute individual deviations §; for all hits in the track candidate.

4. If there is a hit with largest 6; and its §; > Rgtraw, then exclude this hit from the track candidate.
Go to 1.

5. If track candidate follows other conditions for track, accept it as resulting track; stop.
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R
Bad hit .!
O

Filling up procedure

1. For layer No.l to the last layer do: if there is no hit in this layer and there is a hit in distance
(centre of straw with respect to track circle) less than Rgtayw, then add this straw to the track.

2. Apply cleaning procedure. Stop.

Note. Filling up procedure is not used in the programme for computation speed.

3.2.6 Evaluation procedure

The next step is testing the results of computation. The most essential parameter is mean square
deviation &g of track radius computed directly according to formula

where d; are computed according to (3.23) and (3.24).

Testing procedure

e if o > Rgtraw then

— if |R2| > p + dp then it is a bad circle, T = —1, end
— else it is perhaps good circle but with rather large error. Exclude the worst hit and go back
to the computation of §y without that hit; 7' = 0.

e else it is sufficiently exact circle

— if |Ry| > p + 0o then it is a bad circle, T'= —2, end
— else it is a good and exact circle

% if |Ra| < 70 then circle is too small, T' = —4, end
« if ||Ra| — p| £ Rgtraw then the circle goes through the origin, 7' = 1, end
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x else it is possibly the second Bremstrahlung circle. Perform Bremstrahlung evaluation
and assign proper value to 7', end

The output informative value is T’

T = —4: the circle is exact, but too small

T = —3: for bad situation in testing Bremstrahlung, see later

T = —2: the circle is exact but bad so that origin lies inside the circle
T = —1: the case as previous, but error is large

T = 0: error g is too large. Decrease it by omitting the worst hit and repeating the whole error
evaluation procedure

T = 1: exact circle going through origin (the track originates in primary vertex)

T > 1: results of testing Bremstrahlung, see later.

3.3 Bremstrahlung

If the track identified and tested is sufficiently exactly circular and origin lies outside this circle, then
the track may originate from Bremstrahlung. Bremstrahlung may arise only where there is some
mass. This is on layers of silicon detector or everywhere in inner part of TRT. Using this fact we can
compute hypotheses about primary, i.e. the first part of electron’s or positron’s track. In the case
of Bremstrahlung the track (the B-track) consists of two parts. The first part of B-track has larger
pr (larger radius R;) than the second part of B-track, begins in the origin and ends in some layer of
silicon detector or in TRT. Let us denote this point B. In the point B some energy is lost, but electron
of positron continues its move in the same direction but with smaller pr and then the B-track has
now smaller radius. From it and from elementary geometrical rules follows that Bremstrahlung point
B, the centre S of the second part of the B-track and the centre Sy of the first part of the B-track
must lie on the same straight time as shown in Fig. 7. Moreover, the first part of the B-track must
start nearly exactly in the origin O due to short lifetime of intermediate particles.

the second part t,
of the track

the first part t,
of the track

Fig. 7

3.3.1 The slowest and fastest fast part of B-track

Once the second (slow) part of B-track is identified, a question arises what are all possible fast tracks.
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Limit case — the infinitely fast first part of the B-track

Let us assume, that electron’s or positron’s speed is infinite and then the first part of the track is
a straight line as shown in Fig. 8. In this case the first part ¢; is a straight line and it is tangent to
the slow part ¢o of the B-track. In this case the Bremstrahlung point B is (for given ¢») in shortest
distance from the origin O. Then the distance OB is minimal among all possible ¢; parts of the
B-track. The triangle OB.S, has right angle in point B and then from Pythagoras theorem follows:

OBmzn - dBOo =V P2 - R2- (327)

/
4
/-/ 7~ | B R
/ 0l N
/\ y
ey ||

Fig. 8

The slowest first part of the B-track

When the second part t2 of (possible) B-track is identified, we know also its first hit. It is a hit,
which is nearest of all hits of ¢5. Its distance from origin is given by radius of corresponding layer and
let us denote it as RlayerH1' At the same time the Bremstrahlung point B cannot be farther from

the origin than the first hit. So, maximal distance of B-point from origin is

OBz = dsy, = Rigyers (3.28)

The real Bremstrahlung point must lie somewhere between dp_ and dp,.

3.3.2 Bremstrahlung point B in general position

Let the second part of the track ¢, (the triple (R2, p2, ¢2)) and the distance of B-point from the origin
dp be given. The task is, what radius Ry, or pry, has the first part of the track ¢;.
In the triangle OS;Bi, see Fig. 9, is easily seen that

p5 = R5 +d% — 2Rydp - cos§
In the triangle OS;C simply cosd = dp/(2R;). Eliminating cosd one gets finally

Rod2,

R = ——-"—. 3.29
ERCETRY: 2
Prijg.y, = 0.006R,, (3.30)

The other unknown value is the angular position ¢¥p of the Bremstrahlung point.
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Fig. 9

In Fig. 9 in the triangle OS> B cosinus theorem holds

R3 = p3 +d — 2padp - cosy

and then -y 5
7 = arccos %_ v € (0, g) (3.31)
VB = ¢z + 7 -signRy. (3.32)

3.3.3 Algorithm for forming Bremstrahlung hypotheses

1. Compute the minimal distance dps of Bremstrahlung point, see eq. (3.27). Given dpg, see

(3.28).

. Set successively dp equal to radii Rg;z,... of individual silicon layers starting from the second
layer (Rg;2) or from the most inner layer k for which

Rsir 2 dpo

and until
Rsi, < dpo.

Because the Bremstrahlung may arise also in TRT we can consider its individual inner layers
which have radii less or equal to dpg as some other layers above the last layer of Si detector.
These layers with radii Rg;s, Rgig,- .. can be used in the following computations the same way
as real silicon detector layers. Of course, as Bremstrahlung may arise anywhere in TRT, we will
get only some discrete hypothetical samples, but ”layers” in TRT one can choose arbitrarily
dense.

3. For each dp according to point 2

(a) compute the radius Ry of the first part of the B-track according to formula (3.29) and p7r
according to (3.30),
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(b) set successively dr, equal to radii Rg;1, Rsi2,--. (including possibly also radii of layers in
TRT as mentioned in point 2) starting from Rg;x1 (ke = 1) and until Rgixa < Rsik-

4. For each dj, according to point 3(b) and then each dp according to point 2. compute angu-
lar position ¢ p of the point where electron or positron went through the corresponding layer
according to formula

VB = ¢2 + - signRs.

where ) ) 5
py+dp — B3

i
€ (0,
2p2dr, 7 €S

~ = arccos 5)

(see (3.32) and (3.31))

Thus we have set of possible radii R; and py of the first part #; of the B-track and for each this
radius or pr we have angular position ¢ where t; goes through individual layers of silicon detector
(and also layers in TRT if we use them and if it is possible).

3.3.4 Classification of results

This part is, in fact, continuation of evaluation procedure described in 3.2.6. Here we deal with part
when possible existence of Bremstrahlung was identified.
There:
. it is possibly the second Bremstrahlung circle:

e if dp < dps then there exist a hit in TRT which is nearer to origin then is the shortest distance
where Bremstrahlung can arise and then this is not the Bremstrahlung case, T = —3, end

e set T'=number of accepted hits of track

e if Rg;y > Dpy, then there is no way how to certify Bremstrahlung: no necessary data exist, set
T=1000 + number accepted hits, end

e if Rgi7 > Dpo (or Rsiy,., < Dps if some layers in TRT were also established) then Brem-
strahlung may arise outside the silicon detector (or above last layer considered), T'=2000+number
of accepted hits, end

Else compute parameters of all possible first parts of B-track according to Chap. 3.3.3. Finish.

4 Conclusion

The algorithm developed is based on idea to use instead of distances their squares. Thus most of
dependencies related to circular track in elementary particle detectors changes to linear. It was
shown that especially linear regression of squared variables is applicable in this case. The whole
algorithm of elementary particle track identification has essentially three steps, identification of track
using circular regression and rather rough data from TRT detector, forming track hypotheses using
geometrical conditions for central as well as ”"broken”, i.e. bremsstrahlung tracks and verification and
selection of the best of these hypotheses for each track using the circular regression once more using
data from both TRT and silicon detector.

Acknowledgment
This work has been supported by the Czech Ministry of Industry and Business as a part of the project
Collaboration of the Czech republic with CERN No. RP-4210/69/99.



CONTENTS 17

Contents
1 Introduction 1
2 Problem formulation 1
3 Method 2
3.1 Outline of the procedure . . . . . . . . . . . . 2
3.2 Procedure details . . . . . . .. 2
3.2.1 Track tolerance, worst case and statistical hit error . . . . . . . . ... ... .. 2
3.2.2 Circular regression . . . . . . . . ... 3
3.2.3 A little pessimism about error. . . . . . . ... ... 9
3.2.4 Considerations about regression error . . . . . ... ... oL 10
3.2.5 Cleaning the track . . . . . . . . ... 11
3.2.6 Evaluation procedure . . . . . . ... ... e 12
3.3 Bremstrahlung . . .. .. . . e 13
3.3.1 The slowest and fastest fast part of B-track . . . . . .. ... .. ... ..... 13
3.3.2 Bremstrahlung point B in general position . . . . . ... ... ... ... ... 14
3.3.3 Algorithm for forming Bremstrahlung hypotheses . . . . . . ... .. ... ... 15
3.3.4 Classification of results . . . . . . . . . ... o L 16
4 Conclusion 16
References

[1] ATLAS Technical Proposal for a General-Purpose pp Experiment at the Large Hadron Collider
at CERN. CERN/LHCC 94-43 LHCC/P2 15 Dec. 1994, Chaps. 11.11, 3.4.

[2] Gavrilenko, I.: Description of Global Pattern Recognition Program (XKalman). ATLAS Note-
INDET-97-165 (ATL-I-PN-165), 25 Apr. 1997.

[3] Billoir Pierre: Progressive Track Recognition with a Kalman-like Fitting Procedure. Computer
Physics Commnications 57 (1989) pp. 390-394.

[4] Frithwirth, R.: Applicaton of Kalman Filtering to Track and Vertex Fitting. Nucl. Instr. and
Meth. in Phys res. A262 (1987), pp. 444-450.

[5] Billor, P., Qian, S.: Simultaneous Pattern Recognition and Track Fitting by the Kalman Filtering
Method. Nucl. Instr. and Meth. in Phys res. A294 (1990), pp. 219-228.

[6] Badald, A; Barbera, R; Lo Re, G; Palmeri, A; Pappalardo, G S; Pulvirenti, A; Riggi, F: Tracking
inside the ALICE Inner Tracking System. CERN-ALI-2001-034; CERN-ALICE-PUB-2001-034.
Geneva, CERN, 30 Jul 2001, 11 p.

[7] Jifina, M., Hakl, F.: The Wave Algorithm for Track Searching. Technical Report No. 868, Insti-
tute of Computer Science, Academy of Sciences of the Czech Republic, July 2002, pp. 22.

[8] Andl, J.: Mathematical Statistics (in Czech), SNTL/ALFA, Prague, 1985.

[9] Leamer, E. E.: Specification searches. Ad hoc inference with nonexperimental data. John Wiley
and Sons, New York, 1978.



